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ABSTRACT 

We have developed Argus-G, a low-cost error detection 

mechanism for the SIMT cores found in GPGPUs. As GPUs make 

the transition into general purpose computing, detecting errors 

and dealing with them will become a more pressing issue. 

General purpose graphics processing units are increasingly used 

for scientific computing, where errors, if not detected, can 

significantly distort the results of these scientific simulations. 

Argus-G is an adaptation of the Argus error detection scheme  

for general purpose cores that has been tailored for GPUs. Our 

experiments show that, on average, our implementation incurs a 

4% overhead in runtime and a 10% increase in the number of 

instructions executed.  

Categories and Subject Descriptors 

B.8.1 [Performance and Reliability]: Reliability, Testing, and 

Fault-Tolerance; I.3.1 [Computer Graphics]: Hardware 

Architecture – graphics processors. 

General Terms 

Performance and Reliability. 

Keywords 

Error detection, GPU, GPGPU, fault tolerance, computer 

architecture. 

1. Introduction 
As GPUs complete their transition into the general purpose 

computing space, detecting errors and dealing with them will 

become a more pressing issue. Due to technology scaling, 

transistors have been decreasing in size, thereby increasing the 

chance of faults developing [6]. In addition, the die sizes of 

GPGPUs have been increasing.   Having a greater number of 

smaller transistors increases the probability of a transient or a 

permanent fault.  

In the past, when GPUs were primarily used for graphical 

applications, there was no demand for error detection 

mechanisms. At the worst, an error would affect a pixel or two on 

the screen. But, since GPUs have now transitioned into the 

general purpose computing space, including high performance 

scientific computing, faults can significantly distort the results of 

the scientific simulations run on these systems. Thus, error  

 

detection for General Purpose GPUs (GPGPUs) is now a pressing 

concern for architects.  

To the best of our knowledge, the only scheme that is currently in 

use, or that has been suggested, is the one provided by Nvidia on 

the Fermi series on GPGPUs. Nvidia uses Error Correcting Codes 

[21] (ECC) to detect and fix soft errors in the register files and the 

memory system. However, ECC does not detect errors in the 

logic, including the numerous functional units and control logic.  

In order to remedy this problem, we propose Argus-G, an error 

checking mechanism designed for the Single Instruction Multiple 

Thread (SIMT) cores present in the current generations of Nvidia 

and ATI GPGPUs. Argus-G is an implementation of the Argus 

[16] error detection scheme, adapted to be compatible with SIMT 

cores. Argus-G detects errors in the computation of results [27, 

22, 23, 18], control flow [6, 12, 28] and the data flow [15] of 

programs run on GPGPUs.  Detecting errors avoids silent data 

corruption and, if combined with an error recovery mechanism, 

can enable transparent fault tolerance. 

The primary contribution of this paper is a low-cost mechanism 

for detecting errors in the SIMT cores present in GPGPUs. 

Although the Argus approach has already been proposed for 

general purpose cores, our application and adaptation of Argus to 

GPUs is novel. We experimentally evaluated the feasibility of this 

scheme using GPGPU-Sim [4], a simulator that models CUDA 

[20] capable GPUs.  

In Section 2, we present an overview of the Argus framework and 

how it has been implemented for general purpose cores. In 

Section 3, we describe the Argus-G implementation.  In Section 4, 

we present our experimental evaluation of Argus-G.  Section 5 

presents the related work, and in Section 6 we discuss future 

work. We conclude in Section 7.  

2. Argus Overview 
This section describes the Argus methodology (Section 2.1) and 

how it has been implemented for general purpose cores (Section 

2.2).  The implementation of Argus is core-specific, and we will 

present our Argus-G implementation for GPGPUs in Section 3.  

2.1 Argus Framework 
The actions performed by von Neumann machines can be 

decomposed into three basic activities: choosing the sequence of 

instructions to execute (“control flow”), performing the 

computation specified by each instruction (“computation”), and 

passing the result of the computation to other data-dependent 

instructions (“dataflow”).  Checking the computation, control 

flow and dataflow is a provably complete method of detecting 

errors in cores. We now discuss the requirements of the three 

checkers present in any Argus implementation.  
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 Figure 1: SIMT Pipeline with the Argus-G Checking 

Methodology. 

Computation Checker: A computational checker detects errors 

in the functional units.  The way in which these checkers are 

implemented depends on the type of the functional unit. Many 

checkers can use knowledge about the initial result to simplify the 

checking logic. Sellers et al. [27] provide a survey of checkers for 

adders, multipliers, dividers, bit-wise logic units, etc.  

Computation checking is a well-known problem with well-studied 

solutions. 

Control Flow Checker: The control flow checker verifies that the 

dynamic (runtime) execution path of the program is valid with 

respect to its static control flow graph. However, if the two graphs 

differ, then an error has occurred. The control flow checker 

detects errors in the instruction fetch unit, the branch destination 

computation and the PC update logic. One limitation of control 

flow checking is that it cannot detect whether the core has 

incorrectly entered one of two possible control flow paths at a 

branch instruction. This coverage hole is eliminated when we add 

a dataflow checker and a computation checker.  

Dataflow checker: The dataflow checker verifies that the runtime 

dataflow is the same as that specified in the program’s binary. The 

dataflow checker detects errors in the fetch, decode, and register 

read/write units.  

2.2 Argus-1 Implementation 
Argus-1 [16] is a low-cost error detection implementation of the 

Argus scheme for simple, in-order, general purpose cores. Argus-

1 includes checkers for computation, control flow, and dataflow.  

At first, one might assume that the Argus-1 implementation would 

be appropriate for GPGPUs.  However, we would not want to use 

Argus-1 to detect errors for GPGPUs for cost reasons. Even 

though Argus-1 could detect the same errors for a single-threaded 

pipeline that Argus-G would detect for a SIMT pipeline, Argus-1 

would not be able to take advantage of the SIMT nature of 

GPGPUs, leading to an increase in hardware costs.  

3. Argus-G Implementation 
In this section, we describe an implementation of Argus adapted 

to the SIMT pipelined cores present in GPGPUs, called Argus-G. 

Argus-G is a low-cost error detection mechanism for GPGPUs.  

3.1 Baseline GPGPU Configurations 

In this section, we describe the system model for which we 

designed Argus-G.  A GPGPU has the ability to execute hundreds 

of threads simultaneously. A GPGPU has many shader cores, each 

of which has a SIMT pipeline. The width of the SIMT pipeline 

depends on the specific architecture of the GPGPU. The SIMT 

pipeline consists of a shared fetch stage, but each thread in the 

SIMT pipeline has its own register files and Stream Processors 

(SP). The integer multiply and divide units and all the FP units are 

shared between the threads. GPGPUs have five different memory 

address spaces: local, shared, global, constant, and texture. Argus-

G has to check that loads and stores from these memories are 

indeed from the correct memory space. The fact that GPGPUs 

have multiple memory types adds another level of complexity 

over simple cores that the checking mechanism has to consider.  

Argus-G is implemented at the SP level where each thread context 

needs checking. Argus-G performs these checks at the SPs due to 

the fact that errors in control flow and dataflow occur at the thread 

granularity. In a system where the width of the SIMT pipeline is 

n, we require n Argus-G check mechanisms (see Figure 1). 

The simulator we use, GPGPU-Sim [4], simulates Parallel Thread 

Execution (PTX) instructions. PTX [20] is an intermediate, 

pseudo-assembly language used by Nvidia’s CUDA programming 

environment [19]. PTX is generated when CUDA code is 

compiled, but when the binary is run on the GPGPU, it is 

converted just-in-time (JIT) into the native model specific 

assembly language (see Figure 2). Having no direct translation of 

the instructions into bits allows Nvidia to have PTX run on 

multiple GPGPU architectures. PTX also has virtual registers so 

there is no register file size limit, again allowing PTX to be ported 

to multiple architectures. 

 

Figure 2: The CUDA Chain from High Level to Assembly 
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3.2 Control Flow and Dataflow Checkers 
The control flow and dataflow checkers are based on the work 

done by DDFV [15]. Even though DDFV was developed for 

superscalar cores, it can be adapted to work for SIMT cores. The 

initial Argus-1 implementation demonstrated that DDFV could be 

streamlined to work with simple, single-threaded cores. We 

extended the concepts that were proposed by DDFV and Argus-1 

and adapted them to make them compatible with the SIMT cores 

in GPGPUs. 

Argus-G detects errors in the core’s dataflow by comparing the 

static dataflow graph (DFG) specified by the program to the 

dynamic DFG computed by the processor during execution. Both 

DFGs are represented using constant-sized signatures. The static 

signatures are computed during the translation process from PTX 

to the native assembly, which occurs just before runtime (PTX is 

translated JIT to the native assembly code). To avoid problems 

with data dependent branches, which can dynamically alter the 

DFG, Argus-G performs checks at the granularity of basic blocks. 

However, some errors may not be detected due to aliasing (i.e., 

having multiple basic blocks with the same signature), though the 

chance of this occurring can be diminished by increasing the size 

of the signatures. 

The mechanism described in the previous paragraph checks the 

dataflow, and it implicitly checks the control flow within a basic 

block, but not the control flow between basic blocks. To provide 

full control flow checking, we add another mechanism over the 

basic dataflow checker. We use a block’s basic dataflow signature 

as both a representation of the block’s internal dataflow, and as a 

unique, address-independent block identifier that can be used for 

full control flow checking. This signature is called the dataflow 

and control flow signature (DCS). Argus-G embeds into each 

basic block the signatures of its legal successor basic blocks. Then 

at runtime, if an error occurs, the error will be detected (barring 

aliasing), because the block’s runtime DCS will not match the 

signature computed statically at compile time. 

Figure 3 illustrates how Argus-G embeds the DCS for basic 

blocks with one or two successor basic blocks. The DCS is 

embedded in a NOP instruction. A basic block that has only one 

legal basic block after it contains only that basic block’s signature 

(e.g., the signature embedded in BB3 is that of BB4). However, a 

basic block that has two legal successor basic blocks must contain 

the signatures of both those basic blocks (e.g., in basic block BB1, 

we embed the signatures of basic blocks BB2 and BB3).  

DCS Computation: We compute the DCS similarly to the way in 

which DDFV computed the dataflow signature and Argus-1 

computed the DCS. We maintain a State History Signature (SHS) 

for each architectural location, i.e., we have a SHS for each 

register (SHSreg), program counter (SHSpc), and memory 

(SHSmem). Since GPGPUs have five different types of memory 

Argus-G needs five different SHSmem’s, one for each type of 

memory. This is one of the differences between the original 

Argus-1 implementation and Argus-G. One scenario that Argus-G 

currently does not address is if multiple threads concurrently 

access the texture or the shared memories. We plan to address this 

in future work, but for now we simplistically assume that 

concurrent accesses to texture or shared memories are either 

disallowed or temporarily disable checking of the SHSs for these 

memories.   

A SHS for a particular location represents the history of that 

particular location from the start of the current basic block. The 

SHS of each location is reset to its specific initial value whenever 

a basic block is found to have executed correctly, i.e., has 

succeeded its legal parent block and has its computed DCS match 

the embedded DCS. Each SHS has to be maintained for all 

previous mentioned locations in each lane of the SIMT pipelines. 

The SHS of a particular destination location depends on the 

operation that produced it, as well as the operand registers used. 

When an instruction is executed, for example, add.u32 %r3, %r2, 

%r1, the new SHS of destination register %r3 depends on SHS%r2, 

SHS%r1, and the fact that the operation was an add.  

In order to detect whether the dynamic dataflow graph for 

memory operations was the same as the static dataflow graph, we 

assign an initial value to SHSs of the various memory address 

spaces. When a load instruction is executed, the SHS of the 

destination operand will depend on the memory space type, and 

the address type, whether the address was a constant, from a 

register, or from a register with an offset added to it. The dataflow 

checker does not, however, check the value of the offset, the 

immediate address, or the final computed address. These values 

are checked by the computation checker. For example, when the 

instruction load.const.s32 %r4, [Mem_Address1] is executed, the 

new SHS of destination register %r4 will depend on its previous 

value, SHS%r4, SHSCONST_MEM, and the fact that the address was 

an immediate. The SHS of the PC, SHSpc, is written to by jumps 

and branches, both of which are present in the CUDA 

architecture. We deal with stores in a similar manner, as we 

incorporate the fact that the store occurred and to which address 

space it occurred, but the DCS does not check to see if the value 

stored was correct. 

Signature Size: The size of the DCS and the SHSs should allow a 

unique value for each of the registers, PC, and memory spaces. In 

addition, the DCS should be small enough to be easily embedded 

into the binary. The size of the DCS depends on the number of 

free bits available in the NOP instructions used for embedding the 

signatures. Because we do not have access to the actual 

architectures, our method of performing the computation of the 

static signatures is different from how we would have approached 

it if we had access to the actual assembly code run on the GPGPU.  

Embedding Signatures: Signature instructions embedded into 

the program cause performance degradation because they increase 

the pressure on the instruction cache and also consume processor 

cycles. These signatures were added using NOPs in PTX as we 

are not able to access the actual architecture. Had it been available 

to us, we could have amortized the costs of adding NOPS by 

embedding the DCS in other instructions with unused bits.  

PTX Assembly Code with Signatures Embedded 

 

BB1: cvt.u32.u16    %r1, %tid.x;       

 add.u32          %r2, %r1, %r1;         

 setp.gt.s32      %p1, %r1, %r1;   

 Signature       {BB2, BB3}  

 @%p1bra        $BB3; // branch instruction 

BB2: add.u32          %r1, %r1, 17; 

 Signature        {BB4} 

  bra.uni              BB4; // unconditional jump 

BB3: mul.wide.u16   %r3, %r1, %r2 

 Signature        {BB4} 

BB4:  ld.const.s32    %r4, [Mem_Address1]; 

  

Figure 3: DCS Embedding 



 
Figure 4(a): Increase in Normalized Runtime with Argus-G 

Because the CUDA programming environment mandates that 

PTX assembly is translated JIT to the native assembly, Argus-G 

can work with legacy code and the programmer can make 

optimizations at the PTX level, not just at the source code level. 

We can then embed the signatures during the conversion process 

from PTX to the native assembly.  

3.3 Computation Checker 

There are many well-known methods to check the results of the 

functional units [27]. The choice of computation checkers is a 

matter of trading off cost (area and power) versus error detection 

coverage.  Because computation checking is, in general, the same 

for GPGPUs as it is for general purpose cores, we do not discuss it 

further here.  We only note that GPUs may have some functional 

unit types not found in general purpose cores, and these functional 

units would require different checkers than those used in general 

purpose cores. 

3.4 Error Detection Coverage 
Argus is a provably complete methodology for detecting errors, 

although implementations of Argus may miss some errors due to 

the use of imperfect checkers (e.g., modulo checking of a 

multiplier is cost-effective but imperfect).  The Argus-G 

implementation of Argus detects errors, both transient and 

permanent, throughout most of the chip. Because Argus-G relies 

on a lossy signature of dataflow graphs, the DCS, there is some 

probability of aliasing and thus missing an error. The computation 

checkers are also likely to use lossy checking, such as modulo 

checking, and thus would also miss some errors.  Lastly, we have 

not yet extended Argus-G to detect errors outside the cores,  

Table 1: List of Benchmarks  

Benchmarks Description 

AES [13] AES cryptography 

BFS [11] Search in a Large Graph Algorithm  

LIB [10] Monte Carlo Simulations 

LPS [9] 3D Laplace Solver 

MUM [26] DNA Sequence Alignment 

NN [5] Neural Network 

RAY [14] Ray tracing  

STO [1] Distributed Storage Systems Acceleration 

Figure 4(b): Increase in the Number of Instructions Executed 

including errors in the interconnect between the various shader 

cores and errors in the transmission of data between the GPU and 

the host CPU.  

3.5 Responding to Detected Errors 
The current implementation of Argus-G naively deals with 

detected errors by clearing all registers and restarting the thread in 

which an error was found. A better approach would be to leverage 

the nature of the CUDA programming environment’s hierarchy of 

threads, warps, and programs. If the thread has modified the 

memory space shared by threads within that warp, then the entire 

warp would be restarted since we cannot guarantee that other 

threads in that warp did not access the corrupted data. If the thread 

modified the global memory, then the entire program will be 

restarted. One could avoid restarting by adding a memory 

checkpoint/recovery scheme, but it is not clear that the costs of 

doing this would exceed the benefits.  

If the detected error is due to a permanent fault, the error will 

recur after restarting.  To diagnose this situation, we can add a 

counter to each core that is incremented when Argus-G detects an 

error in that core.  If the counter exceeds a threshold, that core 

would be deemed permanently faulty. 

4. Experimental Evaluation 

The goal of this evaluation is to determine the performance 

overheads of Argus-G. We are not evaluating error detection 

coverage, area overhead, and power costs since we do not yet 

have a realistic hardware model of the GPU core; we are currently 

developing this hardware to enable a more thorough evaluation of 

Argus-G. 

4.1 Evaluation Methodology 

We evaluated Argus-G using GPGPU-Sim [4], a cycle-accurate 

GPGPU simulator. The system modeled by GPGPU-Sim is 

similar to that of the Nvidia Quadro FX5800, a CUDA capable 

GPGPU. The Nvidia Quadro FX5800 has 30 SIMT shader cores 

and each shader core has 8 SPs. As previously mentioned, the 

complex integer arithmetic units, as well as, all the floating point 

units are shared between the threads.  

We use scientific benchmarks that are prevalent in the 

contemporary general purpose GPU computing space. A full list 

of these benchmarks can be found in Table 1. We examine both 

the performance overhead, measured in processor cycles, as well 

as the increase in the number of instructions executed.  



4.2 Performance Overhead 

Argus-G’s performance overheads come from the signature 

containing instructions embedded into the program’s binary. 

These instructions take up space in the instruction cache and also 

consume processor cycles when executed. The increase in the 

runtime, shown in Figure 4(a), is, on average, 4%. The increase in 

the number of dynamic instructions, shown in Figure 4(b), is, on 

average, 10%. The difference in these two numbers is due to the 

parallel nature of GPGPUs, in which up to hundreds of threads 

can be executing simultaneously. The parallel nature of GPGPUs 

allows us to amortize the costs of adding the extra NOPs. If we 

had access to the binary translations of the instructions, we could 

embed the signatures within the unused bits of other instructions 

instead of NOPs and thereby further reduce the impact on 

performance. 

Table 2 shows the average size of the basic blocks. When the 

basic blocks are relatively large (e.g., in AES, where the program 

consists of 4 basic blocks), the impact on performance (0.2%) is 

negligible. However, when the size of the basic blocks is much 

smaller (e.g., RAY), the impact on performance (12%) is 

significant. For benchmarks with long basic blocks, the increase 

in the static code length is negligible, less than 1% for AES and 

NN, and the corresponding impact on runtime is also small. But 

benchmarks with smaller basic blocks need more NOPs inserted 

and thus affect performance more. However, the impact on 

performance also depends on the dynamic path selected through 

the program during runtime and we leave a detailed analysis of 

this for the future.  

Table 2: Average Basic Block Size and increase in code length 

Benchmarks 
Basic Block Size (In 

Instructions) 

Percentage Increase 

in Static Code Length 

AES 425 0.2 

BFS 9 10 

LIB 11 3 

LPS  12 8 

MUM 5 18 

NN  105 1 

RAY  9 10 

STO  23 4 

5. Related Work 
Although, to the best of our knowledge, no other error detection 

schemes have been proposed for GPGPUs, other schemes that 

detect errors in computation, control flow, the memory system 

and dataflow have been proposed. The schemes that check for 

control flow and dataflow were primarily targeted at superscalar 

cores or simpler cores.  

Error Correcting Code: ECC [21] is used in the current 

generation of Nvidia GPGPUs. It is used to correct single-bit soft 

errors in data storage structures, such as, the register files, shared 

memories and the caches. To the best of our knowledge, this is the 

only error detection scheme for GPGPUs. ECC can be used in 

conjunction with Argus-G to make GPGPUs more fault tolerant 

than either system could in isolation.  

Argus: Argus is a low-cost comprehensive system designed to 

detect errors in control flow, dataflow, computation and memory 

accesses. Argus combines dataflow checking and control flow 

checking into a single mechanism. It was designed to work with 

simple, in-order cores. As already mentioned, we modified Argus 

to make it compatible with GPGPUs.  

DIVA: DIVA [2, 3, 29] is a heterogeneous DMR scheme that 

uses a simple, yet architecturally identical core, embedded in the 

pipeline stage of another core for checking. This system is well 

suited to high performance, speculative RISC architectures. It can 

be implemented on GPGPUs, but the costs of doing so will be 

significant.  

Redundant Multithreading: Redundant multithreading [17, 24, 

25] can be used to detect errors in GPGPUs without incurring 

much hardware costs since GPGPUs inherently have the capacity 

to run redundant threads. The n-way SIMT pipeline can be 

modified such that only n/2 threads are running each time and the 

other n/2 lanes are used for the redundant threads. However, in 

this case there exist significant opportunity costs since the 

theoretical maximum performance ceiling of the chip would be 

halved.  

Summary: Though some of these prior mechanisms overlap with 

Argus-G, most of them have obstacles preventing them from 

ported to Argus efficiently. The key among these obstacles are 

performance and power impact and the increase in hardware.  

6. Future Work 
We plan to improve upon the evaluation of Argus-G by obtaining 

the results for error coverage and the area and power costs. We 

are currently working on an FPGA-based implementation of a 

GPGPU in order to thoroughly evaluate these attributes. 

7. Conclusion 

The goal of this research was to develop a low-cost mechanism to 

detect errors in GPGPUs. We expect the popularity of GPGPUs to 

increase with time since they can be used for a wide variety of 

scientific applications. Therefore, it is important that we detect 

errors in GPGPUs in order to not distort results of simulations.  

 

The Argus-G implementation shows the potential of employing 

the Argus methodology in the SIMT cores present in GPGPUs. 

The Argus-G performance costs are low (on average 4% 

overhead), but we believe that with additional tuning, we can 

further decrease the performance costs.  

8. References 
[1] Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G., 

and Ripeanu, M,. 2008. StoreGPU: Exploiting Graphics 

Processing Units to Accelerate Distributed Storage Systems. 

In Proc. 17th Int’l Symp. on High Performance Distributed 

Computing, pages 165–174, 2008. 

[2] Austin, T. M. 1999. DIVA: A Reliable Substrate for Deep 

Submicron Microarchitecture Design. In Proceedings of the 

32nd Annual ACM/IEEE international Symposium on 

Microarchitecture.  

[3]  Austin, T.M. 2000. DIVA: A Dynamic Approach to 

Microprocessor Verification. In Journal of Instruction-Level 

Parallelism, 2, May 2000. 

[4] Bakhoda A., Yuan, G. L., Fung W. W. L., Wong H., and 

Aamodt T. M. 2009. Analyzing CUDA Workloads Using a 

Detailed GPU Simulator. In IEEE International Symposium 



on Performance Analysis of Systems and Software, April 

2009.  

[5] Billconan and Kavinguy. A Neural Network on GPU. 

http://www.codeproject.com/KB/graphics/GPUNN.aspx. 

[6] Borkar, S. 2005. Designing reliable systems from unreliable 

components: the challenges of transistor variability and 

degradation. Micro, IEEE 25(6): 10-16. 

[7] Delord, X. and Saucier, G. 1991. Formalizing Signature 

Analysis for Control Flow Checking of Pipelined RISC 

Microprocessors. In Proc. of Int’l Test Conf., 1991. 

[8] Eibl, P. J., Cook, A. D., and Sorin, D. J. 2009. Reduced 

Precision Checking for a Floating Point Adder. 

In Proceedings of the 2009 24th IEEE International 

Symposium on Defect and Fault Tolerance in VLSI Systems. 

[9] Giles, M. Jacobi Iteration for a Laplace Discretisation on a 

3D Structured Grid. 

http://people.maths.ox.ac.uk/˜gilesm/hpc/NVIDIA/laplace3d.

pdf. 

[10]  Giles, M., and Xiaoke, S. Notes on Using the NVIDIA 8800 

GTX graphics card. 

http://people.maths.ox.ac.uk/˜gilesm/hpc/. 

[11] Harish, P. and Narayanan, P. J. 2007. Accelerating Large 

Graph Algorithms on the GPU Using CUDA. In HiPC, pages 

197–208, 2007. 

[12] Kim, S. and Somani, A.K. 2001. On-Line Integrity 

Monitoring of Microprocessor Control Logic. In Proceedings 

of the International Conference on Computer Design: VLSI 

in Computers & Processors (September 23 - 26, 2001).  

[13] Manavski, S.A. 2007. CUDA Compatible GPU as an 

Efficient Hardware Accelerator for AES Cryptography. In 

ICSPC 2007: Proc. of IEEE Int’l Conf. on Signal Processing 

and Communication, pages 65–68, 2007. 

[14] Maxime. Ray tracing. http://www.nvidia.com/cuda. 

[15] Meixner, A. and Sorin, D. J. 2007. Error Detection Using 

Dynamic Dataflow Verification. In Proceedings of the 16th 

International Conference on Parallel Architecture and 

Compilation Techniques (September 15 - 19, 2007). 

[16] Meixner, A., Bauer, M. E., and Sorin, D. 2007. Argus: Low-

Cost, Comprehensive Error Detection in Simple Cores. In 

Proceedings of the 40th Annual IEEE/ACM International 

Symposium on Microarchitecture (December 01 - 05, 2007).  

[17] Mukherjee, S. S, et al. 2002. Detailed Design and 

Implementation of Redundant Multithreading Alternatives. 

In Proc. of the 29th Annual Int’l Symp. On Computer 

Architecture, p. 99–110, May 2002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[18] Nicolaidis, M. 1993. Efficient Implementations of Self-

Checking Adders and ALUs. In Proc. of the 23rd Int’l Symp. 

on Fault-Tolerant Computing Systems, p. 586–595, June 

1993. 

[19] Nvidia. 2007. CUDA: Compute Unified Device Architecture, 

Version 1.0. June 2007.  

[20] Nvidia. 2009. Compute PTX: Parallel Thread Execution, 

Version 1.4. March, 2009.  

[21] Nvidia. 2009. Whitepaper. Nvidia’s Next Generation CUDA 

Compute Architecture: Fermi.  

[22] Patel, J. H. and Fung, L. Y. 1983. Concurrent Error 

Detection in Multiply and Divide Arrays. In IEEE Trans.  

Comput. 32, 4 (Apr. 1983), 417-422.  

[23] Patel, J.H. and Fung, L. Y. 1982. Concurrent Error Detection 

in ALUs by Recomputing with Shifted Operands. In  IEEE 

Trans. on Computers, C-31(7):589–595, July 1982. 

[24] Reinhardt, S. K., and Mukherjee, S. S. 2000. Transient Fault 

Detection via Simultaneous Multithreading. In Proc. Of the 

27th Annual Int’l Symp. on Computer Architecture, p. 25–36, 

June 2000. 

[25] Rotenberg, E. 1999. AR-SMT: A Microarchitectural 

Approach to Fault Tolerance in Microprocessors. In Proc. of 

the 29th Int’l Symp. On Fault-Tolerant Computing Systems, 

p. 84–91, June 1999. 

[26] Schatz, M., Trapnell, C.,  Delcher, A., and Varshney, A. 

2007. High-Throughput Sequence Alignment using Graphics 

Processing Units. In BMC Bioinformatics, 8(1):474, 2007. 

[27] Sellers, F.F. et al. 1968. Error Detecting Logic for Digital 

Computers. McGraw Hill Book Company.  

[28] Warter, N.J and Hwu, W.-M. W. 1990. A Software Based 

Approach to Achieving Optimal Performance for Signature 

Control Flow Checking. In Proc. of the 20th Int’l Symp. on 

Fault-Tolerant Computing Systems, p.442–449, June 1990. 

[29] Weaver, C. and Austin, T. M. 2001. A Fault Tolerant 

Approach to Microprocessor Design. In Proceedings of the 

2001 international Conference on Dependable Systems and 

Networks (Formerly: Ftcs) (July 01 - 04, 2001).  

[30] Yilmaz, M., Meixner, A., Ozev, S., and Sorin, D. J. 2007. 

Lazy Error Detection for Microprocessor Functional Units. 

In Proceedings of the 22nd IEEE international Symposium 

on Defect and Fault-Tolerance in VLSI Systems (September 

26 - 28, 2007).  

http://www.codeproject.com/KB/graphics/GPUNN.aspx

