
Argus-G: A Low-Cost Error Detection Scheme for GPGPUs
Ralph Nathan

Dept. of ECE
Duke University

Durham, NC, USA
rn19@duke.edu

Daniel J. Sorin
Dept. of ECE

Duke University
Durham, NC, USA
sorin@ee.duke.edu

ABSTRACT

We have developed Argus-G, a low-cost error detection

mechanism for the SIMT cores found in GPGPUs. As GPUs make

the transition into general purpose computing, detecting errors

and dealing with them will become a more pressing issue.

General purpose graphics processing units are increasingly used

for scientific computing, where errors, if not detected, can

significantly distort the results of these scientific simulations.

Argus-G is an adaptation of the Argus error detection scheme

for general purpose cores that has been tailored for GPUs. Our

experiments show that, on average, our implementation incurs a

4% overhead in runtime and a 10% increase in the number of

instructions executed.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Testing, and

Fault-Tolerance; I.3.1 [Computer Graphics]: Hardware

Architecture – graphics processors.

General Terms

Performance and Reliability.

Keywords

Error detection, GPU, GPGPU, fault tolerance, computer

architecture.

1. Introduction
As GPUs complete their transition into the general purpose

computing space, detecting errors and dealing with them will

become a more pressing issue. Due to technology scaling,

transistors have been decreasing in size, thereby increasing the

chance of faults developing [6]. In addition, the die sizes of

GPGPUs have been increasing. Having a greater number of

smaller transistors increases the probability of a transient or a

permanent fault.

In the past, when GPUs were primarily used for graphical

applications, there was no demand for error detection

mechanisms. At the worst, an error would affect a pixel or two on

the screen. But, since GPUs have now transitioned into the

general purpose computing space, including high performance

scientific computing, faults can significantly distort the results of

the scientific simulations run on these systems. Thus, error

detection for General Purpose GPUs (GPGPUs) is now a pressing

concern for architects.

To the best of our knowledge, the only scheme that is currently in

use, or that has been suggested, is the one provided by Nvidia on

the Fermi series on GPGPUs. Nvidia uses Error Correcting Codes

[21] (ECC) to detect and fix soft errors in the register files and the

memory system. However, ECC does not detect errors in the

logic, including the numerous functional units and control logic.

In order to remedy this problem, we propose Argus-G, an error

checking mechanism designed for the Single Instruction Multiple

Thread (SIMT) cores present in the current generations of Nvidia

and ATI GPGPUs. Argus-G is an implementation of the Argus

[16] error detection scheme, adapted to be compatible with SIMT

cores. Argus-G detects errors in the computation of results [27,

22, 23, 18], control flow [6, 12, 28] and the data flow [15] of

programs run on GPGPUs. Detecting errors avoids silent data

corruption and, if combined with an error recovery mechanism,

can enable transparent fault tolerance.

The primary contribution of this paper is a low-cost mechanism

for detecting errors in the SIMT cores present in GPGPUs.

Although the Argus approach has already been proposed for

general purpose cores, our application and adaptation of Argus to

GPUs is novel. We experimentally evaluated the feasibility of this

scheme using GPGPU-Sim [4], a simulator that models CUDA

[20] capable GPUs.

In Section 2, we present an overview of the Argus framework and

how it has been implemented for general purpose cores. In

Section 3, we describe the Argus-G implementation. In Section 4,

we present our experimental evaluation of Argus-G. Section 5

presents the related work, and in Section 6 we discuss future

work. We conclude in Section 7.

2. Argus Overview
This section describes the Argus methodology (Section 2.1) and

how it has been implemented for general purpose cores (Section

2.2). The implementation of Argus is core-specific, and we will

present our Argus-G implementation for GPGPUs in Section 3.

2.1 Argus Framework
The actions performed by von Neumann machines can be

decomposed into three basic activities: choosing the sequence of

instructions to execute (“control flow”), performing the

computation specified by each instruction (“computation”), and

passing the result of the computation to other data-dependent

instructions (“dataflow”). Checking the computation, control

flow and dataflow is a provably complete method of detecting

errors in cores. We now discuss the requirements of the three

checkers present in any Argus implementation.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WRA ’10, December 4–8, 2010, Atlanta, Georgia, U.S.A.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

 Figure 1: SIMT Pipeline with the Argus-G Checking

Methodology.

Computation Checker: A computational checker detects errors

in the functional units. The way in which these checkers are

implemented depends on the type of the functional unit. Many

checkers can use knowledge about the initial result to simplify the

checking logic. Sellers et al. [27] provide a survey of checkers for

adders, multipliers, dividers, bit-wise logic units, etc.

Computation checking is a well-known problem with well-studied

solutions.

Control Flow Checker: The control flow checker verifies that the

dynamic (runtime) execution path of the program is valid with

respect to its static control flow graph. However, if the two graphs

differ, then an error has occurred. The control flow checker

detects errors in the instruction fetch unit, the branch destination

computation and the PC update logic. One limitation of control

flow checking is that it cannot detect whether the core has

incorrectly entered one of two possible control flow paths at a

branch instruction. This coverage hole is eliminated when we add

a dataflow checker and a computation checker.

Dataflow checker: The dataflow checker verifies that the runtime

dataflow is the same as that specified in the program’s binary. The

dataflow checker detects errors in the fetch, decode, and register

read/write units.

2.2 Argus-1 Implementation
Argus-1 [16] is a low-cost error detection implementation of the

Argus scheme for simple, in-order, general purpose cores. Argus-

1 includes checkers for computation, control flow, and dataflow.

At first, one might assume that the Argus-1 implementation would

be appropriate for GPGPUs. However, we would not want to use

Argus-1 to detect errors for GPGPUs for cost reasons. Even

though Argus-1 could detect the same errors for a single-threaded

pipeline that Argus-G would detect for a SIMT pipeline, Argus-1

would not be able to take advantage of the SIMT nature of

GPGPUs, leading to an increase in hardware costs.

3. Argus-G Implementation
In this section, we describe an implementation of Argus adapted

to the SIMT pipelined cores present in GPGPUs, called Argus-G.

Argus-G is a low-cost error detection mechanism for GPGPUs.

3.1 Baseline GPGPU Configurations

In this section, we describe the system model for which we

designed Argus-G. A GPGPU has the ability to execute hundreds

of threads simultaneously. A GPGPU has many shader cores, each

of which has a SIMT pipeline. The width of the SIMT pipeline

depends on the specific architecture of the GPGPU. The SIMT

pipeline consists of a shared fetch stage, but each thread in the

SIMT pipeline has its own register files and Stream Processors

(SP). The integer multiply and divide units and all the FP units are

shared between the threads. GPGPUs have five different memory

address spaces: local, shared, global, constant, and texture. Argus-

G has to check that loads and stores from these memories are

indeed from the correct memory space. The fact that GPGPUs

have multiple memory types adds another level of complexity

over simple cores that the checking mechanism has to consider.

Argus-G is implemented at the SP level where each thread context

needs checking. Argus-G performs these checks at the SPs due to

the fact that errors in control flow and dataflow occur at the thread

granularity. In a system where the width of the SIMT pipeline is

n, we require n Argus-G check mechanisms (see Figure 1).

The simulator we use, GPGPU-Sim [4], simulates Parallel Thread

Execution (PTX) instructions. PTX [20] is an intermediate,

pseudo-assembly language used by Nvidia’s CUDA programming

environment [19]. PTX is generated when CUDA code is

compiled, but when the binary is run on the GPGPU, it is

converted just-in-time (JIT) into the native model specific

assembly language (see Figure 2). Having no direct translation of

the instructions into bits allows Nvidia to have PTX run on

multiple GPGPU architectures. PTX also has virtual registers so

there is no register file size limit, again allowing PTX to be ported

to multiple architectures.

Figure 2: The CUDA Chain from High Level to Assembly

Nvidia

Driver
NVCC

Compiler
CUDA

OPENCL

PTX

Native

Assembly
Quadro

Tesla

Fermi

Native

Assembly

Native

Assembly

3.2 Control Flow and Dataflow Checkers
The control flow and dataflow checkers are based on the work

done by DDFV [15]. Even though DDFV was developed for

superscalar cores, it can be adapted to work for SIMT cores. The

initial Argus-1 implementation demonstrated that DDFV could be

streamlined to work with simple, single-threaded cores. We

extended the concepts that were proposed by DDFV and Argus-1

and adapted them to make them compatible with the SIMT cores

in GPGPUs.

Argus-G detects errors in the core’s dataflow by comparing the

static dataflow graph (DFG) specified by the program to the

dynamic DFG computed by the processor during execution. Both

DFGs are represented using constant-sized signatures. The static

signatures are computed during the translation process from PTX

to the native assembly, which occurs just before runtime (PTX is

translated JIT to the native assembly code). To avoid problems

with data dependent branches, which can dynamically alter the

DFG, Argus-G performs checks at the granularity of basic blocks.

However, some errors may not be detected due to aliasing (i.e.,

having multiple basic blocks with the same signature), though the

chance of this occurring can be diminished by increasing the size

of the signatures.

The mechanism described in the previous paragraph checks the

dataflow, and it implicitly checks the control flow within a basic

block, but not the control flow between basic blocks. To provide

full control flow checking, we add another mechanism over the

basic dataflow checker. We use a block’s basic dataflow signature

as both a representation of the block’s internal dataflow, and as a

unique, address-independent block identifier that can be used for

full control flow checking. This signature is called the dataflow

and control flow signature (DCS). Argus-G embeds into each

basic block the signatures of its legal successor basic blocks. Then

at runtime, if an error occurs, the error will be detected (barring

aliasing), because the block’s runtime DCS will not match the

signature computed statically at compile time.

Figure 3 illustrates how Argus-G embeds the DCS for basic

blocks with one or two successor basic blocks. The DCS is

embedded in a NOP instruction. A basic block that has only one

legal basic block after it contains only that basic block’s signature

(e.g., the signature embedded in BB3 is that of BB4). However, a

basic block that has two legal successor basic blocks must contain

the signatures of both those basic blocks (e.g., in basic block BB1,

we embed the signatures of basic blocks BB2 and BB3).

DCS Computation: We compute the DCS similarly to the way in

which DDFV computed the dataflow signature and Argus-1

computed the DCS. We maintain a State History Signature (SHS)

for each architectural location, i.e., we have a SHS for each

register (SHSreg), program counter (SHSpc), and memory

(SHSmem). Since GPGPUs have five different types of memory

Argus-G needs five different SHSmem’s, one for each type of

memory. This is one of the differences between the original

Argus-1 implementation and Argus-G. One scenario that Argus-G

currently does not address is if multiple threads concurrently

access the texture or the shared memories. We plan to address this

in future work, but for now we simplistically assume that

concurrent accesses to texture or shared memories are either

disallowed or temporarily disable checking of the SHSs for these

memories.

A SHS for a particular location represents the history of that

particular location from the start of the current basic block. The

SHS of each location is reset to its specific initial value whenever

a basic block is found to have executed correctly, i.e., has

succeeded its legal parent block and has its computed DCS match

the embedded DCS. Each SHS has to be maintained for all

previous mentioned locations in each lane of the SIMT pipelines.

The SHS of a particular destination location depends on the

operation that produced it, as well as the operand registers used.

When an instruction is executed, for example, add.u32 %r3, %r2,

%r1, the new SHS of destination register %r3 depends on SHS%r2,

SHS%r1, and the fact that the operation was an add.

In order to detect whether the dynamic dataflow graph for

memory operations was the same as the static dataflow graph, we

assign an initial value to SHSs of the various memory address

spaces. When a load instruction is executed, the SHS of the

destination operand will depend on the memory space type, and

the address type, whether the address was a constant, from a

register, or from a register with an offset added to it. The dataflow

checker does not, however, check the value of the offset, the

immediate address, or the final computed address. These values

are checked by the computation checker. For example, when the

instruction load.const.s32 %r4, [Mem_Address1] is executed, the

new SHS of destination register %r4 will depend on its previous

value, SHS%r4, SHSCONST_MEM, and the fact that the address was

an immediate. The SHS of the PC, SHSpc, is written to by jumps

and branches, both of which are present in the CUDA

architecture. We deal with stores in a similar manner, as we

incorporate the fact that the store occurred and to which address

space it occurred, but the DCS does not check to see if the value

stored was correct.

Signature Size: The size of the DCS and the SHSs should allow a

unique value for each of the registers, PC, and memory spaces. In

addition, the DCS should be small enough to be easily embedded

into the binary. The size of the DCS depends on the number of

free bits available in the NOP instructions used for embedding the

signatures. Because we do not have access to the actual

architectures, our method of performing the computation of the

static signatures is different from how we would have approached

it if we had access to the actual assembly code run on the GPGPU.

Embedding Signatures: Signature instructions embedded into

the program cause performance degradation because they increase

the pressure on the instruction cache and also consume processor

cycles. These signatures were added using NOPs in PTX as we

are not able to access the actual architecture. Had it been available

to us, we could have amortized the costs of adding NOPS by

embedding the DCS in other instructions with unused bits.

PTX Assembly Code with Signatures Embedded

BB1: cvt.u32.u16 %r1, %tid.x;

 add.u32 %r2, %r1, %r1;

 setp.gt.s32 %p1, %r1, %r1;

 Signature {BB2, BB3}

 @%p1bra $BB3; // branch instruction

BB2: add.u32 %r1, %r1, 17;

 Signature {BB4}

 bra.uni BB4; // unconditional jump

BB3: mul.wide.u16 %r3, %r1, %r2

 Signature {BB4}

BB4: ld.const.s32 %r4, [Mem_Address1];

Figure 3: DCS Embedding

Figure 4(a): Increase in Normalized Runtime with Argus-G

Because the CUDA programming environment mandates that

PTX assembly is translated JIT to the native assembly, Argus-G

can work with legacy code and the programmer can make

optimizations at the PTX level, not just at the source code level.

We can then embed the signatures during the conversion process

from PTX to the native assembly.

3.3 Computation Checker

There are many well-known methods to check the results of the

functional units [27]. The choice of computation checkers is a

matter of trading off cost (area and power) versus error detection

coverage. Because computation checking is, in general, the same

for GPGPUs as it is for general purpose cores, we do not discuss it

further here. We only note that GPUs may have some functional

unit types not found in general purpose cores, and these functional

units would require different checkers than those used in general

purpose cores.

3.4 Error Detection Coverage
Argus is a provably complete methodology for detecting errors,

although implementations of Argus may miss some errors due to

the use of imperfect checkers (e.g., modulo checking of a

multiplier is cost-effective but imperfect). The Argus-G

implementation of Argus detects errors, both transient and

permanent, throughout most of the chip. Because Argus-G relies

on a lossy signature of dataflow graphs, the DCS, there is some

probability of aliasing and thus missing an error. The computation

checkers are also likely to use lossy checking, such as modulo

checking, and thus would also miss some errors. Lastly, we have

not yet extended Argus-G to detect errors outside the cores,

Table 1: List of Benchmarks

Benchmarks Description

AES [13] AES cryptography

BFS [11] Search in a Large Graph Algorithm

LIB [10] Monte Carlo Simulations

LPS [9] 3D Laplace Solver

MUM [26] DNA Sequence Alignment

NN [5] Neural Network

RAY [14] Ray tracing

STO [1] Distributed Storage Systems Acceleration

Figure 4(b): Increase in the Number of Instructions Executed

including errors in the interconnect between the various shader

cores and errors in the transmission of data between the GPU and

the host CPU.

3.5 Responding to Detected Errors
The current implementation of Argus-G naively deals with

detected errors by clearing all registers and restarting the thread in

which an error was found. A better approach would be to leverage

the nature of the CUDA programming environment’s hierarchy of

threads, warps, and programs. If the thread has modified the

memory space shared by threads within that warp, then the entire

warp would be restarted since we cannot guarantee that other

threads in that warp did not access the corrupted data. If the thread

modified the global memory, then the entire program will be

restarted. One could avoid restarting by adding a memory

checkpoint/recovery scheme, but it is not clear that the costs of

doing this would exceed the benefits.

If the detected error is due to a permanent fault, the error will

recur after restarting. To diagnose this situation, we can add a

counter to each core that is incremented when Argus-G detects an

error in that core. If the counter exceeds a threshold, that core

would be deemed permanently faulty.

4. Experimental Evaluation

The goal of this evaluation is to determine the performance

overheads of Argus-G. We are not evaluating error detection

coverage, area overhead, and power costs since we do not yet

have a realistic hardware model of the GPU core; we are currently

developing this hardware to enable a more thorough evaluation of

Argus-G.

4.1 Evaluation Methodology

We evaluated Argus-G using GPGPU-Sim [4], a cycle-accurate

GPGPU simulator. The system modeled by GPGPU-Sim is

similar to that of the Nvidia Quadro FX5800, a CUDA capable

GPGPU. The Nvidia Quadro FX5800 has 30 SIMT shader cores

and each shader core has 8 SPs. As previously mentioned, the

complex integer arithmetic units, as well as, all the floating point

units are shared between the threads.

We use scientific benchmarks that are prevalent in the

contemporary general purpose GPU computing space. A full list

of these benchmarks can be found in Table 1. We examine both

the performance overhead, measured in processor cycles, as well

as the increase in the number of instructions executed.

4.2 Performance Overhead

Argus-G’s performance overheads come from the signature

containing instructions embedded into the program’s binary.

These instructions take up space in the instruction cache and also

consume processor cycles when executed. The increase in the

runtime, shown in Figure 4(a), is, on average, 4%. The increase in

the number of dynamic instructions, shown in Figure 4(b), is, on

average, 10%. The difference in these two numbers is due to the

parallel nature of GPGPUs, in which up to hundreds of threads

can be executing simultaneously. The parallel nature of GPGPUs

allows us to amortize the costs of adding the extra NOPs. If we

had access to the binary translations of the instructions, we could

embed the signatures within the unused bits of other instructions

instead of NOPs and thereby further reduce the impact on

performance.

Table 2 shows the average size of the basic blocks. When the

basic blocks are relatively large (e.g., in AES, where the program

consists of 4 basic blocks), the impact on performance (0.2%) is

negligible. However, when the size of the basic blocks is much

smaller (e.g., RAY), the impact on performance (12%) is

significant. For benchmarks with long basic blocks, the increase

in the static code length is negligible, less than 1% for AES and

NN, and the corresponding impact on runtime is also small. But

benchmarks with smaller basic blocks need more NOPs inserted

and thus affect performance more. However, the impact on

performance also depends on the dynamic path selected through

the program during runtime and we leave a detailed analysis of

this for the future.

Table 2: Average Basic Block Size and increase in code length

Benchmarks
Basic Block Size (In

Instructions)

Percentage Increase

in Static Code Length

AES 425 0.2

BFS 9 10

LIB 11 3

LPS 12 8

MUM 5 18

NN 105 1

RAY 9 10

STO 23 4

5. Related Work
Although, to the best of our knowledge, no other error detection

schemes have been proposed for GPGPUs, other schemes that

detect errors in computation, control flow, the memory system

and dataflow have been proposed. The schemes that check for

control flow and dataflow were primarily targeted at superscalar

cores or simpler cores.

Error Correcting Code: ECC [21] is used in the current

generation of Nvidia GPGPUs. It is used to correct single-bit soft

errors in data storage structures, such as, the register files, shared

memories and the caches. To the best of our knowledge, this is the

only error detection scheme for GPGPUs. ECC can be used in

conjunction with Argus-G to make GPGPUs more fault tolerant

than either system could in isolation.

Argus: Argus is a low-cost comprehensive system designed to

detect errors in control flow, dataflow, computation and memory

accesses. Argus combines dataflow checking and control flow

checking into a single mechanism. It was designed to work with

simple, in-order cores. As already mentioned, we modified Argus

to make it compatible with GPGPUs.

DIVA: DIVA [2, 3, 29] is a heterogeneous DMR scheme that

uses a simple, yet architecturally identical core, embedded in the

pipeline stage of another core for checking. This system is well

suited to high performance, speculative RISC architectures. It can

be implemented on GPGPUs, but the costs of doing so will be

significant.

Redundant Multithreading: Redundant multithreading [17, 24,

25] can be used to detect errors in GPGPUs without incurring

much hardware costs since GPGPUs inherently have the capacity

to run redundant threads. The n-way SIMT pipeline can be

modified such that only n/2 threads are running each time and the

other n/2 lanes are used for the redundant threads. However, in

this case there exist significant opportunity costs since the

theoretical maximum performance ceiling of the chip would be

halved.

Summary: Though some of these prior mechanisms overlap with

Argus-G, most of them have obstacles preventing them from

ported to Argus efficiently. The key among these obstacles are

performance and power impact and the increase in hardware.

6. Future Work
We plan to improve upon the evaluation of Argus-G by obtaining

the results for error coverage and the area and power costs. We

are currently working on an FPGA-based implementation of a

GPGPU in order to thoroughly evaluate these attributes.

7. Conclusion

The goal of this research was to develop a low-cost mechanism to

detect errors in GPGPUs. We expect the popularity of GPGPUs to

increase with time since they can be used for a wide variety of

scientific applications. Therefore, it is important that we detect

errors in GPGPUs in order to not distort results of simulations.

The Argus-G implementation shows the potential of employing

the Argus methodology in the SIMT cores present in GPGPUs.

The Argus-G performance costs are low (on average 4%

overhead), but we believe that with additional tuning, we can

further decrease the performance costs.

8. References
[1] Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G.,

and Ripeanu, M,. 2008. StoreGPU: Exploiting Graphics

Processing Units to Accelerate Distributed Storage Systems.

In Proc. 17th Int’l Symp. on High Performance Distributed

Computing, pages 165–174, 2008.

[2] Austin, T. M. 1999. DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design. In Proceedings of the

32nd Annual ACM/IEEE international Symposium on

Microarchitecture.

[3] Austin, T.M. 2000. DIVA: A Dynamic Approach to

Microprocessor Verification. In Journal of Instruction-Level

Parallelism, 2, May 2000.

[4] Bakhoda A., Yuan, G. L., Fung W. W. L., Wong H., and

Aamodt T. M. 2009. Analyzing CUDA Workloads Using a

Detailed GPU Simulator. In IEEE International Symposium

on Performance Analysis of Systems and Software, April

2009.

[5] Billconan and Kavinguy. A Neural Network on GPU.

http://www.codeproject.com/KB/graphics/GPUNN.aspx.

[6] Borkar, S. 2005. Designing reliable systems from unreliable

components: the challenges of transistor variability and

degradation. Micro, IEEE 25(6): 10-16.

[7] Delord, X. and Saucier, G. 1991. Formalizing Signature

Analysis for Control Flow Checking of Pipelined RISC

Microprocessors. In Proc. of Int’l Test Conf., 1991.

[8] Eibl, P. J., Cook, A. D., and Sorin, D. J. 2009. Reduced

Precision Checking for a Floating Point Adder.

In Proceedings of the 2009 24th IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems.

[9] Giles, M. Jacobi Iteration for a Laplace Discretisation on a

3D Structured Grid.

http://people.maths.ox.ac.uk/˜gilesm/hpc/NVIDIA/laplace3d.

pdf.

[10] Giles, M., and Xiaoke, S. Notes on Using the NVIDIA 8800

GTX graphics card.

http://people.maths.ox.ac.uk/˜gilesm/hpc/.

[11] Harish, P. and Narayanan, P. J. 2007. Accelerating Large

Graph Algorithms on the GPU Using CUDA. In HiPC, pages

197–208, 2007.

[12] Kim, S. and Somani, A.K. 2001. On-Line Integrity

Monitoring of Microprocessor Control Logic. In Proceedings

of the International Conference on Computer Design: VLSI

in Computers & Processors (September 23 - 26, 2001).

[13] Manavski, S.A. 2007. CUDA Compatible GPU as an

Efficient Hardware Accelerator for AES Cryptography. In

ICSPC 2007: Proc. of IEEE Int’l Conf. on Signal Processing

and Communication, pages 65–68, 2007.

[14] Maxime. Ray tracing. http://www.nvidia.com/cuda.

[15] Meixner, A. and Sorin, D. J. 2007. Error Detection Using

Dynamic Dataflow Verification. In Proceedings of the 16th

International Conference on Parallel Architecture and

Compilation Techniques (September 15 - 19, 2007).

[16] Meixner, A., Bauer, M. E., and Sorin, D. 2007. Argus: Low-

Cost, Comprehensive Error Detection in Simple Cores. In

Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture (December 01 - 05, 2007).

[17] Mukherjee, S. S, et al. 2002. Detailed Design and

Implementation of Redundant Multithreading Alternatives.

In Proc. of the 29th Annual Int’l Symp. On Computer

Architecture, p. 99–110, May 2002.

[18] Nicolaidis, M. 1993. Efficient Implementations of Self-

Checking Adders and ALUs. In Proc. of the 23rd Int’l Symp.

on Fault-Tolerant Computing Systems, p. 586–595, June

1993.

[19] Nvidia. 2007. CUDA: Compute Unified Device Architecture,

Version 1.0. June 2007.

[20] Nvidia. 2009. Compute PTX: Parallel Thread Execution,

Version 1.4. March, 2009.

[21] Nvidia. 2009. Whitepaper. Nvidia’s Next Generation CUDA

Compute Architecture: Fermi.

[22] Patel, J. H. and Fung, L. Y. 1983. Concurrent Error

Detection in Multiply and Divide Arrays. In IEEE Trans.

Comput. 32, 4 (Apr. 1983), 417-422.

[23] Patel, J.H. and Fung, L. Y. 1982. Concurrent Error Detection

in ALUs by Recomputing with Shifted Operands. In IEEE

Trans. on Computers, C-31(7):589–595, July 1982.

[24] Reinhardt, S. K., and Mukherjee, S. S. 2000. Transient Fault

Detection via Simultaneous Multithreading. In Proc. Of the

27th Annual Int’l Symp. on Computer Architecture, p. 25–36,

June 2000.

[25] Rotenberg, E. 1999. AR-SMT: A Microarchitectural

Approach to Fault Tolerance in Microprocessors. In Proc. of

the 29th Int’l Symp. On Fault-Tolerant Computing Systems,

p. 84–91, June 1999.

[26] Schatz, M., Trapnell, C., Delcher, A., and Varshney, A.

2007. High-Throughput Sequence Alignment using Graphics

Processing Units. In BMC Bioinformatics, 8(1):474, 2007.

[27] Sellers, F.F. et al. 1968. Error Detecting Logic for Digital

Computers. McGraw Hill Book Company.

[28] Warter, N.J and Hwu, W.-M. W. 1990. A Software Based

Approach to Achieving Optimal Performance for Signature

Control Flow Checking. In Proc. of the 20th Int’l Symp. on

Fault-Tolerant Computing Systems, p.442–449, June 1990.

[29] Weaver, C. and Austin, T. M. 2001. A Fault Tolerant

Approach to Microprocessor Design. In Proceedings of the

2001 international Conference on Dependable Systems and

Networks (Formerly: Ftcs) (July 01 - 04, 2001).

[30] Yilmaz, M., Meixner, A., Ozev, S., and Sorin, D. J. 2007.

Lazy Error Detection for Microprocessor Functional Units.

In Proceedings of the 22nd IEEE international Symposium

on Defect and Fault-Tolerance in VLSI Systems (September

26 - 28, 2007).

http://www.codeproject.com/KB/graphics/GPUNN.aspx

