
Quantifying the Impact of Process Variability
on Microprocessor Behavior

Bogdan F. Romanescu, Sule Ozev, and Daniel J. Sorin
{bfr, sule, sorin}@ee.duke.edu

Department of Electrical and Computer Engineering
Duke University

Appears in the 2nd Workshop on Architectural Reliability (WAR-2)
Orlando, Florida, December, 2006
Abstract—Architects and chip makers are worried about
the impact of increasing CMOS process variability. This
variability can impact a processor’s performance and,
depending on how aggressively the design is pushed, its
reliability. We perform the first quantitative analysis of the
impact of process variability on an RTL-level specification
of a microprocessor core. For each pipeline stage, we com-
pute the expected latency, as well as the standard deviation
of this latency. We show that with even modest amounts of
process variability, the impact on performance can be sig-
nificant, and this impact can increase when using dynamic
voltage scaling.

I. INTRODUCTION

A major problem facing the semiconductor industry
is the increasing amount of process variability [4, 13].
As transistor and wire dimensions continue to shrink,
the variability in these dimensions—across chips and
within a given chip—has a greater impact. Four parame-
ters in particular exhibit significant variability that can
greatly impact circuit behavior [19]: transistor gate
length (L), gate width (W), gate oxide thickness (Tox),
and threshold voltage (Vt0). Variability in these parame-
ters complicates system design by introducing uncer-
tainty about how a fabricated chip will perform.
Although a circuit or chip is designed to run at a nomi-
nal clock frequency, the fabricated implementation may
stray far from this expected performance. There are use-
ful transistor-level and circuit-level techniques, such as
adaptive body biasing (ABB), gate sizing, Razor flip-
flops [9], and X-Pipe flip-flops [23], that can help to mit-
igate the impact of variability, but they cannot solve the
problem entirely.

For the small amounts of process variability that we
have historically experienced, the simple solution has
been to “speed bin” chips by how they perform. That is,
we test them and then sort them into performance bins;
however, binning at the chip level unfortunately reduces
performance to that of the slowest path in the chip. As
process variability is increasing and the number of tran-
sistors and circuit paths is also increasing, there is a
greater likelihood that one or more of the paths is signif-

icantly slower than its expected delay. Consider a micro-
processor pipeline stage, as a simple example. As
pipeline widths have increased, the number of transis-
tors and circuit paths per pipeline stage has grown.
Combine this trend with increasing variability and it
becomes even more likely that one or more circuit paths
will be significantly slower than nominal and thus slow
down the entire chip. Moreover, consider the trend
towards placing multiple processor cores (each with
many paths) on the same chip, and this issue becomes
even more critical.

For computer architects, the increasing amount of
process variability presents some exciting new chal-
lenges. Now, for a given chip design, there is a probabil-
ity distribution of performance that is not necessarily
tight around the mean (nominal) performance. Variabil-
ity will cause performance and/or reliability problems,
because chips will not behave as intended. As architects,
we would like to develop designs that mitigate the
impact of variability. To design variability-aware
microarchitectures, we must first quantify the impact of
low-level process variability on high-level system
behavior. We believe that this problem must be quanti-
fied before it can be solved appropriately. To date, how-
ever, most architectural papers that discuss process
variability have been qualitative.

Our goal in this paper is to quantify the impact of
process variability on microprocessor behavior. Within
the past few years, researchers have developed statistical
static timing analysis (SSTA) tools that can provide a
statistical analysis of a circuit’s performance [1, 3, 5, 24,
25, 26]. Because no existing SSTA tool is publicly avail-
able, we developed our own SSTA tool that is an exten-
sion of previously developed models. We do not claim
that our SSTA tool is a major contribution; rather, our
contribution is the analysis of a microprocessor using
our SSTA tool. The tool’s inputs are the circuit’s netlist
and the expected process variability (e.g., the standard
deviation of transistor gate length). Given these inputs,
the tool computes the mean and standard deviation (σ)
of the delay through each circuit path, and it is accurate
1

to within 2-3% of full Monte Carlo simulation for non-
trivial circuits. We analytically combine the results from
the most critical paths to determine the results for a
complete circuit.

We apply our SSTA tool to an open-source microar-
chitecture specification, the Illinois Verilog Model [12].
IVM implements an Alpha-like core at the RTL level.

This paper makes three primary contributions:

•We provide a quantitative analysis of the impact of
process variability on a microprocessor.

•We quantitatively show process variability’s even
greater impact on microprocessors with dynamic
voltage scaling (DVS).

•We discover that even small amounts of process
variability can have a significant impact on micro-
processor behavior.

The rest of this paper is as follows. In Section II., we
present the key features of our SSTA tool, including the
validation of its accuracy. In Section III., we describe
the IVM microprocessor that we are analyzing. In
Section IV., we present our experimental evaluation, in
which we apply our tool to the IVM microarchitecture.
In Section V., we explain how variability analysis can be
incorporated into the architectural design cycle. We dis-
cuss related work in Section VI., and we conclude in
Section VII..

II. STATISTICAL TIMING ANALYSIS TOOL

The focus of this paper is not the SSTA tool itself,
but rather to use the tool to quantify the impact of vari-
ability. However, we must provide enough information
about it to justify its use and provide basic insight into
how it works. We also identify its strengths and weak-
nesses in this section.

A high-level overview of our tool is illustrated in
Figure 1. The tool’s inputs are a gate-level netlist of a
circuit and the means and variances1 of the low-level
process parameters (L, W, Tox, Vt0). When we generate

circuit netlists from Verilog, we constrain the netlist
generator tool to only use flip-flops, 2-input NANDs, 2-
input NORs, and NOT gates, and we also restrict fan-out
to 10 gates. The tool’s outputs are the mean delay and
variance of the delay through the circuit.

A. Hierarchical Modeling

We analyze each circuit in four steps. First, as we
explain in Section A.1, we identify the paths in the cir-
cuit that are most likely to be critical. Second, as we dis-
cuss in Section A.2, we divide each of these paths into
small patterns, each of which is small enough to be eas-
ily simulated with the HSpice circuit simulator and
Monte Carlo selection of input parameters. The results
of a Monte Carlo pattern simulation are the mean delay
and delay variance of each gate in the pattern, as well as
the covariances between gates.2 The simulation of all
the patterns takes the majority of the analysis time, but it
is still orders of magnitude less time-consuming than
Monte Carlo analysis of the entire circuit. Our tool’s
runtime is linear in the number of gates on the path,
whereas full Monte Carlo is polynomial. Third, as we
describe in Section A.3, we analytically compose the
results of the pattern simulations to compute the mean
delay and variance of the entire path. This analytical
step takes very little time (e.g., seconds). Fourth, as we
explain in Section A.4, we analytically compose the
results of each path analysis to compute the mean delay
and variance of the entire circuit. This analytical step is
also very fast.

A.1 Identifying Critical Paths

Like many statistical timing analysis tools, our tool
analyzes each circuit path individually. We analyze the
paths that are likely to be most critical. Although identi-
fying the most critical paths is an NP-Complete prob-
lem, there are good heuristics for estimating which paths
are most likely to be critical. The gate depth of a path
and the fanout of the gates on the path are both directly
related to path delay. We use the well-established, indus-

1. Variance is often denoted by σ2. It is the square of the stan-
dard deviation (σ).

Fig. 1. High-Level Overview of SSTA Tool

Statistical Static Timing

Analysis Tool

gate-level netlist of circuit

variability of L, W, Tox, Vt0

mean delay of circuit

standard deviation of circuit delay

2. There is a non-zero covariance between the delays of gates
A and B if, when A’s delay varies, then B’s delay also varies.
2

try-accepted heuristics of Synopsys’s Design Compiler
tool to identify the K most critical paths that it can sensi-
tize (i.e., for which it can provide inputs that make the
paths switch).

A.2 Pattern Construction and Simulation

In each pattern, we consider two gates on the path as
the main gates for which we want to capture the mean,
variance, and covariance information, and the rest of the
pattern consists of their immediate load and driver gates.
In Figure 2, we illustrate how we break down a simple
example path, gates BCDEF, into patterns. In pattern1,
gates B and C are the main gates. By only including
immediate neighbor gates and none of the gates that are
further upstream or downstream, we are making an
approximation for the sake of computational tractability.
The patterns are overlapping, which enables us to accu-
rately model the covariances between gates (discussed
next).

For each pattern, we collect the mean, variance, and
covariance information for the two main gates on the
path using HSpice circuit simulation with Monte Carlo
selection of input parameters. We empirically deter-
mined that we needed 5,000 Monte Carlo simulations
per pattern to obtain statistically significant results.
After 5,000 simulations per pattern, there were negligi-
ble changes in the results. We assume low-level process
variability parameters that are similar to those that have
been explored in the literature [25]. Future work will
explore the impact of changing the means and variances

of the low-level parameters. Our process technology is
130nm, because that is the most trustworthy publicly
available technology. Our parameter means and vari-
ances are in Table I, and we make the common assump-
tion that the parameters have Gaussian distributions. For
L, we assume a variance of 15%. Because we assume
that the absolute variance of W is the same as for L (24
nm), that leads to a variance for W of 4.4% for the
PMOS transistors and 9.6% for the NMOS transistors.

A.3 Analyzing Circuit Paths

To analyze a path in a full circuit (not just a single
pattern), we first look at the first two gates in the path
and then at subsequent gate pairs along the path. For
each pair of gates, we find the corresponding pattern
(including driver and load gates) and assign the appro-
priate mean, variance, and covariance information to

Fig. 2. Dividing a path (gates BCDEF) in a simple circuit into patterns

A B
C

D E F G
Vdd

Vdd
Vdd Vdd

input1

Vdd

Vdd

Vdd

output1

Vdd

VddVdd

out2

out3

out4

out5

Vdd

out6

pattern1

pattern2
pattern3

pattern4

Table I. Process Parameters

parameter mean variance

L 160nm 15%

W (PMOS) 550 nm 4.4%

W (NMOS) 250 nm 9.6%

Tox 3.3 nm 10%

Vt0 (PMOS) -0.3169 V 10%

Vt0 (NMOS) 0.365 V 10%
3

these gates. In Figure 2, for example, the path consists
of gates BCDEF. In this example, we consider gate A to
be the last gate in the previous stage of the circuit and
gate G to be the first gate in the next stage of the circuit.
Gates A and G are included to represent the limited
drive capacity of the previous stage and the loading
effect of the next stage, respectively. Because the param-
eters of A and G vary, we must consider their impact on
the path.

For path BCDEF, the first gate pair we consider is
BC, and we match this gate pair, along with its drivers
and loads, to Pattern 1. We then shift the window by
only one gate downstream, so the next gate pair is CD,
and repeat the pattern matching process. Because we
shift by only one gate, the patterns overlap and we may
find somewhat different mean delay and delay variance
values for a given gate in the two patterns in which it is
one of the main gates (e.g., gate B in Patterns 1 and 2).
To account for this, we approximate the mean delay of a
gate by taking the mean of these two mean delays, and
we approximate the delay variance of a gate by taking
the mean of these two delay variances.

Once we have the means, variances, and covariances
for every gate on the path, we can compute the mean
delay and delay variance of the path.

In the variance equation, cov(g,g-1) is the covariance
between gate g and the gate preceding it on the path, and
cov(g,g+1) is the covariance between gate g and the gate
immediately after it on the path.

A.4 Analyzing an Entire Circuit

A circuit is composed of many paths, and we use an
analytical formulation to determine a full circuit’s mean
delay and delay variance. Since the delay of each path is
a random variable, with a mean and variance, the circuit
delay is a random variable that represents the maximum
of the path delays. We calculate the mean and variance
of the circuit delay using the analytical formulation
given by Clark [7]. In this formulation, the mean and the
variance of each path delay distribution, as well as the
correlations among the path delays are used. We observe
that, as N increases, the mean of the maximum path

delay also increases. The standard deviation, on the
other hand, may decrease slightly, skewing the overall
distribution towards higher values. However, even with
the decreased variance, the overall impact of the maxi-
mum operation is a slight increase in the mean+3σ value
of the distribution, where this increase depends on the
correlations among the path delays.

When analyzing a pipeline, we can use this same
analytical technique to compose the delays of each pipe-
line stage. The maximum of the delays of each pipeline
stage is a random variable that represents the clock
period.

B. Limitations of the Tool

The tool makes three approximations to enable rea-
sonable solution times for a problem that is otherwise
intractable. These approximations, however, are the
sources of potential inaccuracy in the tool’s results.
First, we ignore gates that are not immediate neighbors
of gates on the path under analysis. We have validated
this approximation for the ISCAS benchmark circuits—
it introduces errors of less than 3% in estimates of mean
delay and standard deviation. Second, to compute a
gate’s mean delay, we use the mean of its mean delays in
the two patterns in which it appears. Similarly, to com-
pute a gate’s delay variance, we use the mean of its
delay variance in the two patterns in which it appears.
We separately validated this second assumption on the
ISCAS circuits and showed that taking the mean of the
values in the two patterns achieves better accuracy than
using just one of the two values. Third, when we simu-
late each pattern, we assume that only the critical (last-
arriving) input is switching. That is, we assume that the
other input does not switch or that it switches much ear-
lier than the critical input. This single-switching
assumption at each gate can lead to conservative results
(i.e., it predicts means and variances that are larger than
the actual values), because the delay through a pattern is
generally less when both inputs are switching.3 How-
ever, this single-switching assumption is intuitively rea-
sonable for the most critical path in a circuit, and our
validation results for the ISCAS85 benchmark circuits
confirm this intuition.

C. SSTA Tool Validation

We have validated the accuracy of our tool in esti-
mating the mean and variance of path delay for the
ISCAS85 benchmark circuits. For all of the combina-

mean path delay() mean delay of g()
g gates on path∈

∑=

σ2
path delay()

σg
2

cov g g 1–,() cov g g 1+,()+ +

g gates on path∈
∑

=

3. For example, consider a NAND gate switching from 0 to 1.
If only one input switches, there is a charging path through one
PMOS transistor. If both inputs switch, two PMOS transistors
become active in parallel.
4

tional circuits except c6288,4 we tested our tool on the
single most-critical “true” path (i.e., path that switches)
identified by Design Compiler. Each of these most-criti-
cal paths satisfy our single-switching assumption. These
paths ranged in length from 3 to 51 gates. We compared
the results of our tool with the results of full Monte
Carlo simulation of the entire circuit. The full Monte
Carlo simulations are our reference points because they
are accurate, but they took several compute-months to
complete.

Our SSTA tool is extremely accurate. We show our
validation results in Figure 3. Excluding for a moment
the trivial circuit c17, the mean delays produced by our
tool are within 3% of full Monte Carlo, and the standard
deviations produced by our tool are within 2% of full
Monte Carlo. Circuit c17 has a slightly higher error for
standard deviation, but it only has 3 gates on its critical
path and only 7 gates total; it would normally not be
worth studying. The tool’s accuracy is remarkable, con-
sidering how much faster our tool is than full Monte
Carlo. For less critical paths that have one or more gates
that violate the single-switching assumption, our tool
may produce conservative results that over-estimate
delay, for reasons we explained in Section B..

III. MICROPROCESSOR UNDER STUDY

The microprocessor under study is the Illinois Ver-
ilog Model (IVM), which was developed and generously
distributed by Prof. Sanjay Patel’s research group at the
University of Illinois [12]. The microarchitecture is a
superscalar, dynamically scheduled core that executes a
subset of the Alpha ISA. Patel’s group verified the cor-
rectness of the design by comparing it to an instruction-
level reference model on the SPEC benchmarks. The
pipeline has 12 stages, and 132 instructions can be in-
flight at any time. IVM models this microarchitecture at
the RTL level, which provides sufficient detail for our
study. The IVM architecture is an academic design and,
as such, was not optimized by a large industrial team, so
we try to be careful not to make sweeping generaliza-
tions about all modern architectures based on results
obtained from experiments with IVM. We do not claim
that IVM is representative of commercial microproces-
sors, but we believe it is a larger and more sophisticated
design that has been studied before. Future work will
explore commercial microarchitectures that have
recently been made open-source.

We divided the Verilog code of the IVM pipeline
into its 12 constituent pipeline stages. This process was
largely manual, although it was not difficult since the
Verilog is modular and well-structured. We describe the
pipeline stages in Table II, in terms of their maximum
path depth and their primary contents. For the Execute
stage, we only consider the simple ALUs and the com-
plex ALU, and we analyze them separately; we did not
have time to synthesize and analyze the multiplier,
branch unit, or memory units. We do not consider the
Schedule or ROB stages, because their path depths are
over 100 gates, which makes them unrealistic.

4. The circuit c6288 is a multiplier that is notorious for having
thousands of near-critical paths for which finding switching
paths requires an exhaustive search (which is impossible due
to the input space). Design Compiler does not identify any true
paths for this circuit that are anywhere close to the longest
path in length. As such, we omit c6288 from our validation
experiments.

��

��

��

��

��

��

��

	�
 	��� 	��� 	��� 	���� 	���� 	��
� 	���� 	���� 	
���

����������	
���

�
	

�
�
��
�
		
�
	

���

�������������������

Fig. 3. SSTA Tool Validation Results (percent error with respect to full Monte Carlo Simulation)
5

IV. EXPERIMENTAL EVALUATION

In this section, we present our evaluation of the
impact of process variability on the IVM pipeline. We
discuss our methodology (Section A.) and then present
results for each pipeline stage (Section B.). Last, we
present a study of the impact of process variability on
dynamic voltage scaling (DVS).

A. Experimental Methodology and Assumptions

We analyze each pipeline stage in isolation, to deter-
mine the impact of variability on each, because the
delays of each stage are independent. For each pipeline
stage, we examine the five most critical paths, as deter-
mined by Design Compiler. If there is a steep drop-off
after, say the third most critical path, we ignore the
fourth and fifth most critical paths, because they will
never affect our timing analysis. Ideally, for each pipe-
line stage, we would have analyzed every path that
could reasonably be critical in the presence of variabil-
ity, but time constraints forced us to focus on the five
paths most likely to be critical. Analyzing a subset of all
paths hurts our case (i.e., makes variability seem less
important), because it causes the tool to under-estimate
the impact of variability. Intuitively, considering more
paths leads to more potential variability.

We use the same low-level process variability
parameters that we discussed in Section A. and that are

listed in Table I. We make the following two assump-
tions to enable tractable analysis times:
Assumption #1. We assume that the 5 most-critical
paths in a given pipeline stage are independent. For mul-
tiple paths within a given structure, say an ALU, this
assumption is somewhat unlikely and can lead to under-
estimation of path delay variability.
Assumption #2. We make the same single-switching
assumption that we did when analyzing circuit patterns
in Section II.. Thus, our results may be conservative
(over-estimate delay) for those not-most-critical paths
for which the assumption does not hold for any input
switching pattern. Without an exhaustive search of the
input space, we cannot know how often this situation
occurs, although we do not expect it to occur often.
Unfortunately, for a circuit with N inputs, there are
2N*2N=22N possible input switching combinations,
which is not tractable for non-trivial circuits.

B. Pipeline Stage Analyses

We first look at the delay of each pipeline stage. In
Figure 4, for each pipeline stage, we plot two bars. The
leftmost bar is the delay for just the single most-critical
path. The rightmost bar is the delay for the maximum of
the five most critical paths. The height of each bar repre-
sents the mean delay, and the “error bars” represent
plus/minus three standard deviations (3σ), which is a
common confidence interval for statistical analysis. The

Table II. Characterization of IVM Pipeline Stages. The two shaded entries are unanalyzed because their
path depths were over 100 gates, which made them extremely unrealistic. We split the Execute stage
into two parts— simple ALUs and the complex ALU—for our analysis.

pipeline
stage

max path depth
(#gates) main contents

Fetch0 75 L1 I-cache (8KB, 2-way, 8 ports), RAS (16 entries), BTB (8 entries), sim-
ple branch predictor (1-cycle), 1024-entry hybrid branch predictor (1st of 2
cycles)

Fetch1 33 hybrid branch predictor (2nd of 2 cycles)

Fetch2 34 fetch queue (32 entries)

Decode 30 decode logic (4-wide)

Rename0 67 speculative rename logic (4-wide), memory dependence predictor

Rename1 23 intra-bundle rename logic, 2nd cycle of memory dependence predictor

Schedule n/a scheduler (32 entries)

RegRead 20 register file (80 physical regs, 65 bits/reg, 11 read ports, 7 write ports)

Execute 31 (simple ALU)
39 (complex ALU)

2 simple ALUs, complex ALU, multiplier, branch unit, 2 address genera-
tion units, load queue, store queue

ROB n/a reorder buffer (64 entries, 8-wide)

ArchRATFile 28 arch. register alias table, arch. free list

NextPC 10 multiplexor for selecting the next PC
6

amount of variability is easier to discern in Figure 5. In
this figure, we plot the normalized variability of each
pipeline stage, which we define as 6σ/mean*100%. This
metric, 6σ/mean, represents the 3σ confidence interval
in each direction from the mean, as a fraction of the
mean.5 We make several observations and conclusions
from this data.

First, before discussing variability, we note that the
mean delay differs significantly across the pipeline

stages. This pipeline imbalance is an artifact of IVM
having been developed for studying reliability, rather
than being fine-tuned for performance. Because of this
unrealistic imbalance, we do not attempt to analyze the
impact of variability on the pipeline as a whole.

Second, we observe from Figure 4 that architects
cannot simply study the single most-critical path when
analyzing a circuit in the presence of process variability.
Other paths with near-critical mean delays often cause
the overall pipeline stage delay to have a greater mean
and/or mean plus 3σ. While the mean delay increases as
we consider more than the single most-critical path, the
delay variance usually decreases. Clark’s formula for

5. Note that this metric is also equal to six times the coefficient
of variation.

�

�

�

�

�

�

�

��
�	
��

��
�	
��

��
�	
��

�
�	
��
�

�
��
��
��

�
��
��
��

�
��
�
��
�

��
�
 !
�"
#$

	�
�
 !
�%
"
#$

"
�	
��
"
&�
�!�

'
�%
�(
)

��������������

�
�
�
�
��
�
��
�
��
�
�
�

�

����)����	�!�(���

��
����)����	�!�(����

Fig. 4. Delay (mean plus/minus 3σ) of Each Pipeline Stage

Fig. 5. Normalized Variability (6σ/mean) of Each Pipeline Stage
7

computing the maximum of multiple random variables
implies this result for paths with equal or similar delay
distributions [7]. One exception is the Fetch1 pipeline
stage, which exhibits greater variance when considering
multiple paths, because those paths have extremely dif-
ferent variances.

Third, we conclude that process variability does
indeed lead to non-trivial variability in pipeline delay.
The results in Figure 5 reveal 7-17% normalized vari-
abilities. For future technologies, for which process
variability is expected to become even more pro-
nounced, this impact on microarchitectural performance
variability will be even greater.

Fourth, we observe a striking correlation between
path length and delay variability. For pipeline stages
with longer paths, such as Fetch0 and Rename0, the nor-
malized variability is less. Intuitively, this is because the
delay variabilities of each gate along the path are more
likely to cancel each other out. That is, some gates will
be faster and some will be slower, and as we add more
gates the normalized variability will decrease. This
result has a large potential impact on microarchitecture
design. As designs have trended towards deeper pipe-
lines, each pipeline stage has become shorter. This
trend, however, unfortunately amplifies the problem of
process variability. Consider two processors, P1 and P2,
where P1 has a deeper pipeline (i.e., more pipeline
stages, with shorter paths in each stage). It is possible
that the distribution of clock frequencies of fabricated
chips of P1 and P2 actually favors P2. Furthermore, this
result suggests that recent research to determine the
optimal pipeline depth (e.g., Hrishikesh et al. [10])
might have to be re-visited to account for process vari-
ability.

C. The Impact of Variability on Dynamic Voltage
Scaling (DVS)

DVS is used by a microprocessor to dynamically
adapt its power consumption. By lowering the supply
voltage, the power consumption is reduced. DVS is a
well-known and commercially accepted mechanism, yet
we suspected that it could exacerbate the impact of pro-
cess variability. Lowering the supply voltage reduces the
drive current. With less drive current, the sensitivity of
gate delay to process parameters increases. Since there
is a higher sensitivity, the variation in the gate delay will
increase for the same variation in the process parame-
ters.

To test our hypothesis, we performed an experiment
on just the simple ALU from the IVM pipeline. We
started with a supply voltage of 1.2V and then decreased
it in steps of 0.12V down to 0.84V. In Figure 6, we plot
the normalized variability (6σ/mean) of the delay of just

the simple ALU (considering just the single-most criti-
cal path). The data shows that the normalized variability
does indeed increase as the supply voltage decreases.
The same experiment on the next most critical paths dis-
played similar results (not shown).

These results, albeit for just one component in a
microprocessor, suggest that architects planning to use
DVS in the future may need to be especially careful of
the impact of process variability. Moreover, it is possible
that paths that are not critical at one supply voltage set-
ting may become critical in another. Thus, it is possible
that DVS will lead to degraded performance and/or reli-
ability, unless architects consider the impact of process
variability.

V. VARIABILITY ANALYSIS IN THE DESIGN

CYCLE

In general, variability analysis has two primary pur-
poses during the design cycle of a microarchitecture.
First, variability analysis is an important tool for the
design team. They can use this kind of analysis to iden-
tify and optimize critical paths. In the presence of pro-
cess variability, designers cannot just look for the paths
with the longest mean delay—they must look for the
paths with the greatest statistical delay (e.g., mean delay
plus three times the standard deviation). Moreover, they
cannot just consider a single longest path because,
depending on variability, a nominally non-critical path
(i.e., a path that would not be critical if there was no
variability) could be critical.

Second, variability analysis can be used to help pre-
dict expected performance and reliability across all fab-
ricated chips. In effect, it enables us to accurately
predict the distribution of chips into speed bins. This
prediction is useful in at least two ways. It can obviously
help predict how many chips of each speed bin will be
available to be sold. It can also be used for comparing to

Fig. 6. Normalized Variability of Simple ALU Delay
as a Function of Supply Voltage
8

the actual speed binning results—if the actual chips do
not follow the same distribution, that discrepancy can
potentially identify a fabrication problem.

VI. RELATED WORK

There has been some work on quantitatively evaluat-
ing the impact of variability on selected parts of micro-
processors, especially storage structures. Agarwal et al.
[2] study the impact of variability on cache perfor-
mance. Liang and Brooks [17, 18] explore the perfor-
mance impact of variability on execution units and
SRAM structures, such as register files. Venkatesan et
al. [22] developed a DRAM placement policy that con-
sidered the impact of variability in required refresh
rates. By placing data in DRAM pages that require less
frequent refreshes, they save refresh power. Our work
here differs in that we study the impact of variability on
an entire pipeline.

Some related work has explored the impact of vari-
ability on a simplified model of a processor. Datta et al.
[8] assume that the delay distribution of each pipeline
stage is already known and then show how to analyti-
cally combine these stage delay distributions into an
overall processor delay distribution. Humenay et al. [11]
developed a model of variability’s impact on a pipeline,
in which they assume that each pipe stage is either all
SRAM or all logic. If the stage is logic, it is modeled as
an adder instead of the actual logic. Kim et al. [15] dis-
cuss the impact of process variability on the power con-
sumption of an abstract pipeline that is modeled in terms
of the number of FO4 delays per stage. Our work differs
by looking at the actual circuitry in each pipeline stage,
instead of abstracting it away or assuming its delay is
known.

There have been many SSTA tools like ours. The
most similar tools are the ones by Agarwal et al. [1],
Amin et al. [3], Chang and Sapatnekar [5], Visweswa-
riah et al. [24], Zhan et al. [25], and Zhang et al. [26].
These analytical tools consider gate-level details, and
they are scalable to large benchmark circuits. They pro-
duce probability distributions for path delays, and they
have been validated against Monte Carlo. Our work dif-
fers in that we have used our tool to analyze a full
microprocessor. There are also some subtle differences
in our SSTA methodology, but these are second-order
effects, and we do not claim to innovate in the tool itself.

Some recent research has explored techniques for
mitigating the impact of variability at both the architec-
tural level [2, 17, 18, 22] and circuit level [9, 23, 14, 20,
6, 16, 21]. We do not discuss this work in detail because
it is orthogonal to the issue of analysis.

VII. CONCLUSIONS

Process variability is becoming an important chal-
lenge for computer architects. We cannot just assume
that circuits will perform at their nominal frequencies,
because variability in process parameters will lead to
variability in overall performance. Even modest
amounts of process variability affect how we should
design a microarchitecture.

The primary goal of this paper was to present the
quantitative impact of process variability on microarchi-
tectural performance and reliability. We believe that
designing variability-aware microarchitectures is a
vitally important problem for architects to consider, and
we look forward to future work in this area.

ACKNOWLEDGMENTS

This work is supported in part by the National Sci-
ence Foundation under grant CCF-0444516, the
National Aeronautics and Space Administration under
grant NNG04GQ06G, an equipment gift from Intel Cor-
poration, and a Warren Faculty Scholarship.

We thank Sanjay Patel and Nick Wang for their help
with IVM. We thank Alvy Lebeck and Anita Lungu for
helpful comments on this work. We thank Fred Bower
for helping us with an experiment. We thank Hisham
Massoud for consultations on semiconductor physics.
We thank Jennifer Miller for her early work on this
project.

REFERENCES

[1] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical
Timing Analysis for Intra-Die Process Variations with
Spatial Correlations. In Proceedings of IEEE ICCAD,
pages 900–907, Nov. 2003.

[2] A. Agarwal et al. A Process-Tolerant Cache
Architecture for Improved Yield in Nanoscale
Technologies. IEEE Transactions on Very Large Scale
Integration Systems, 13(1):27–38, Jan. 2005.

[3] C. Amin et al. Statistical Static Timing Analysis: How
Simple Can We Get? In Proceedings of the 42nd
Design Automation Conference, pages 652–657, June
2005.

[4] S. Borkar. Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation. IEEE Micro, 25(6):10–
16, Nov/Dec 2005.

[5] H. Chang and S. S. Sapatnekar. Statistical Timing
Analysis Considering Spatial Correlations Using a
Single Pert-like Traversal. In Proceedings of
International Conference on Computer Aided Design,
pages 621–625, Nov. 2003.

[6] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and
D. Sylvester. Parametric Yield Maximization Using
9

Gate Sizing Based on Efficient Statistical Power and
Delay Gradient Computation. In Proceedings of the
International Conference on Computer Aided Design,
Nov. 2005.

[7] C. E. Clark. The Greatest of a Finite Set of Random
Variables. Operations Research, 9(2):145–162, Mar.-
Apr. 1961.

[8] A. Datta, S. Bhunia, S. Mukhopadhyay, N. Banerjee,
and K. Roy. Statistical Modeling of Pipeline Delay and
Design Pipeline Under Process Variation to Enhance
Yield in Sub-100nm Technologies. In Proceedings of
Design, Automation, and Test in Europe, pages 926–
931, Mar. 2005.

[9] D. Ernst et al. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2003.

[10] M. S. Hrishikesh, K. I. Farkas, N. P. Jouppi, D. Burger,
S. W. Keckler, and P. Shivakumar. The Optimal Logic
Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays.
In Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 14–24,
May 2002.

[11] E. Humenay, D. Tarjan, W. Huang, and K. Skadron.
Impact of Parameter Variations on Multicore
Architectures. In Proceedings of the Workshop on
Architectural Support for Gigascale Integration, June
2006.

[12] Illinois Advanced Computing Systems Group. Illinois
Verilog Model.
http://www.crhc.uiuc.edu/ACS/tools/ivm/about.html.

[13] International Technology Roadmap for
Semiconductors, 2003.

[14] T. Kehl. Hardware Self-Tuning and Circuit
Performance Monitoring. In Proceedings of the
International Conference on Computer Design, Oct.
1993.

[15] N. Kim et al. Total Power-Optimal Pipelining and
Parallel Processing Under Process Variations in
Nanometer Technology. In Proceedings of the
International Conference on Computer Aided Design,
Nov. 2005.

[16] X. Li, J. Le, M. Celik, and L. Pileggi. Defining
Statistical Sensitivity for Timing Optimization of
Logic Circuits with Large-Scale Process and
Environmental Variations. In Proceedings of the
International Conference on Computer Aided Design,
pages 844–851, Nov. 2005.

[17] X. Liang and D. Brooks. Latency Adaptation of
Multiported Register Files to Mitigate Variations. In
Proceedings of the Workshop on Architectural Support
for Gigascale Integration, June 2006.

[18] X. Liang and D. Brooks. Mitigating the Impact of
Process Variations on Processor Register Files and
Execution Units. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture, Dec. 2006.

[19] S. Nassif. Design for Variability in DSM
Technologies. In Proceedings of First International
Symposium on Quality of Electronic Design, pages
451–454, Mar. 2000.

[20] D. Patil et al. A New Method for Design of Robust
Digital Circuits. In Proceedings of the International
Symposium on Quality of Electronic Design, pages
676–681, Mar. 2005.

[21] D. Sinha, N. Shenoy, and H. Zhou. Statistical Gate
Sizing for Timing Yield Optimization. In Proceedings
of the International Conference on Computer Aided
Design, pages 1037–1041, Nov. 2005.

[22] R. K. Venkatesan, S. Herr, and E. Rotenberg.
Retention-Aware Placement in DRAM (RAPID):
Software Methods for Quasi-Non-Volatile DRAM. In
Proceedings of the Twelfth International Symposium
on High-Performance Computer Architecture, Feb.
2006.

[23] X. Vera, O. Unsal, and A. Gonzalez. X-Pipe: An
Adaptive Resilient Microarchitecture for Parameter
Variations. In Proceedings of the Workshop on
Architectural Support for Gigascale Integration, June
2006.

[24] C. Visweswariah et al. First-Order Incremental Block-
Based Statistical Timing Analysis. In Proceedings of
the 41st Design Automation Conference, pages 331–
336, June 2004.

[25] Y. Zhan, A. J. Strojwas, X. Li, and L. T. Pileggi.
Correlation-Aware Statistical Timing Analysis with
Non-Gaussian Delay Distributions. In Proceedings of
the 42nd Design Automation Conference, pages 77–82,
June 2005.

[26] L. Zhang et al. Correlation-Preserved Non-Gaussian
Statistical Timing Analysis with Quadratic Timing
Model. In Proceedings of the 42nd Design Automation
Conference, pages 83–88, June 2005.
10

	I. Introduction
	II. Statistical Timing Analysis Tool
	Fig. 1. High-Level Overview of SSTA Tool
	A. Hierarchical Modeling
	A.1 Identifying Critical Paths
	A.2 Pattern Construction and Simulation
	Fig. 2. Dividing a path (gates BCDEF) in a simple circuit into patterns
	Table I. Process Parameters

	A.3 Analyzing Circuit Paths
	A.4 Analyzing an Entire Circuit

	B. Limitations of the Tool
	C. SSTA Tool Validation
	Fig. 3. SSTA Tool Validation Results (percent error with respect to full Monte Carlo Simulation)

	III. Microprocessor Under Study
	Table II. Characterization of IVM Pipeline Stages. The two shaded entries are unanalyzed because their path depths were over 100 gates, which made them extremely unrealistic. We split the Execute stage into two parts- simple ALUs and the comp...

	IV. Experimental Evaluation
	A. Experimental Methodology and Assumptions
	Assumption #1
	Assumption #2

	B. Pipeline Stage Analyses
	Fig. 4. Delay (mean plus/minus 3s) of Each Pipeline Stage
	Fig. 5. Normalized Variability (6s/mean) of Each Pipeline Stage

	C. The Impact of Variability on Dynamic Voltage Scaling (DVS)
	Fig. 6. Normalized Variability of Simple ALU Delay as a Function of Supply Voltage

	V. Variability Analysis in the Design Cycle
	VI. Related Work
	VII. Conclusions
	Acknowledgments
	References
	Quantifying the Impact of Process Variability on Microprocessor Behavior
	Bogdan F. Romanescu, Sule Ozev, and Daniel J. Sorin {bfr, sule, sorin}@ee.duke.edu Department of Electrical and Computer Engineering Duke University

