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Abstract—Architects and chip makers are worried about 
the impact of increasing CMOS process variability. This 
variability can impact a processor’s performance and, 
depending on how aggressively the design is pushed, its 
reliability. We perform the first quantitative analysis of the 
impact of process variability on an RTL-level specification 
of a microprocessor core. For each pipeline stage, we com-
pute the expected latency, as well as the standard deviation 
of this latency. We show that with even modest amounts of 
process variability, the impact on performance can be sig-
nificant, and this impact can increase when using dynamic 
voltage scaling. 

I.  INTRODUCTION

A major problem facing the semiconductor industry 
is the increasing amount of process variability [4, 13]. 
As transistor and wire dimensions continue to shrink, 
the variability in these dimensions—across chips and 
within a given chip—has a greater impact. Four parame-
ters in particular exhibit significant variability that can 
greatly impact circuit behavior [19]: transistor gate 
length (L), gate width (W), gate oxide thickness (Tox), 
and threshold voltage (Vt0). Variability in these parame-
ters complicates system design by introducing uncer-
tainty about how a fabricated chip will perform. 
Although a circuit or chip is designed to run at a nomi-
nal clock frequency, the fabricated implementation may 
stray far from this expected performance. There are use-
ful transistor-level and circuit-level techniques, such as 
adaptive body biasing (ABB), gate sizing, Razor flip-
flops [9], and X-Pipe flip-flops [23], that can help to mit-
igate the impact of variability, but they cannot solve the 
problem entirely. 

For the small amounts of process variability that we 
have historically experienced, the simple solution has 
been to “speed bin” chips by how they perform. That is, 
we test them and then sort them into performance bins; 
however, binning at the chip level unfortunately reduces 
performance to that of the slowest path in the chip. As 
process variability is increasing and the number of tran-
sistors and circuit paths is also increasing, there is a 
greater likelihood that one or more of the paths is signif-

icantly slower than its expected delay. Consider a micro-
processor pipeline stage, as a simple example. As 
pipeline widths have increased, the number of transis-
tors and circuit paths per pipeline stage has grown. 
Combine this trend with increasing variability and it 
becomes even more likely that one or more circuit paths 
will be significantly slower than nominal and thus slow 
down the entire chip. Moreover, consider the trend 
towards placing multiple processor cores (each with 
many paths) on the same chip, and this issue becomes 
even more critical.

For computer architects, the increasing amount of 
process variability presents some exciting new chal-
lenges. Now, for a given chip design, there is a probabil-
ity distribution of performance that is not necessarily 
tight around the mean (nominal) performance. Variabil-
ity will cause performance and/or reliability problems, 
because chips will not behave as intended. As architects, 
we would like to develop designs that mitigate the 
impact of variability. To design variability-aware 
microarchitectures, we must first quantify the impact of 
low-level process variability on high-level system 
behavior. We believe that this problem must be quanti-
fied before it can be solved appropriately. To date, how-
ever, most architectural papers that discuss process 
variability have been qualitative. 

Our goal in this paper is to quantify the impact of 
process variability on microprocessor behavior. Within 
the past few years, researchers have developed statistical 
static timing analysis (SSTA) tools that can provide a 
statistical analysis of a circuit’s performance [1, 3, 5, 24, 
25, 26]. Because no existing SSTA tool is publicly avail-
able, we developed our own SSTA tool that is an exten-
sion of previously developed models. We do not claim 
that our SSTA tool is a major contribution; rather, our 
contribution is the analysis of a microprocessor using 
our SSTA tool. The tool’s inputs are the circuit’s netlist 
and the expected process variability (e.g., the standard 
deviation of transistor gate length). Given these inputs, 
the tool computes the mean and standard deviation (σ) 
of the delay through each circuit path, and it is accurate 
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to within 2-3% of full Monte Carlo simulation for non-
trivial circuits. We analytically combine the results from 
the most critical paths to determine the results for a 
complete circuit. 

We apply our SSTA tool to an open-source microar-
chitecture specification, the Illinois Verilog Model [12]. 
IVM implements an Alpha-like core at the RTL level.

This paper makes three primary contributions:

•We provide a quantitative analysis of the impact of 
process variability on a microprocessor.

•We quantitatively show process variability’s even 
greater impact on microprocessors with dynamic 
voltage scaling (DVS).

•We discover that even small amounts of process 
variability can have a significant impact on micro-
processor behavior.

The rest of this paper is as follows. In Section II., we 
present the key features of our SSTA tool, including the 
validation of its accuracy. In Section III., we describe 
the IVM microprocessor that we are analyzing. In 
Section IV., we present our experimental evaluation, in 
which we apply our tool to the IVM microarchitecture. 
In Section V., we explain how variability analysis can be 
incorporated into the architectural design cycle. We dis-
cuss related work in Section VI., and we conclude in 
Section VII.. 

II.  STATISTICAL TIMING ANALYSIS TOOL

The focus of this paper is not the SSTA tool itself, 
but rather to use the tool to quantify the impact of vari-
ability. However, we must provide enough information 
about it to justify its use and provide basic insight into 
how it works. We also identify its strengths and weak-
nesses in this section. 

A high-level overview of our tool is illustrated in 
Figure 1. The tool’s inputs are a gate-level netlist of a 
circuit and the means and variances1 of the low-level 
process parameters (L, W, Tox, Vt0). When we generate 

circuit netlists from Verilog, we constrain the netlist 
generator tool to only use flip-flops, 2-input NANDs, 2-
input NORs, and NOT gates, and we also restrict fan-out 
to 10 gates. The tool’s outputs are the mean delay and 
variance of the delay through the circuit. 

A.  Hierarchical Modeling

We analyze each circuit in four steps. First, as we 
explain in Section A.1, we identify the paths in the cir-
cuit that are most likely to be critical. Second, as we dis-
cuss in Section A.2, we divide each of these paths into 
small patterns, each of which is small enough to be eas-
ily simulated with the HSpice circuit simulator and 
Monte Carlo selection of input parameters. The results 
of a Monte Carlo pattern simulation are the mean delay 
and delay variance of each gate in the pattern, as well as 
the covariances between gates.2 The simulation of all 
the patterns takes the majority of the analysis time, but it 
is still orders of magnitude less time-consuming than 
Monte Carlo analysis of the entire circuit. Our tool’s 
runtime is linear in the number of gates on the path, 
whereas full Monte Carlo is polynomial. Third, as we 
describe in Section A.3, we analytically compose the 
results of the pattern simulations to compute the mean 
delay and variance of the entire path. This analytical 
step takes very little time (e.g., seconds). Fourth, as we 
explain in Section A.4, we analytically compose the 
results of each path analysis to compute the mean delay 
and variance of the entire circuit. This analytical step is 
also very fast.

A.1  Identifying Critical Paths

Like many statistical timing analysis tools, our tool 
analyzes each circuit path individually. We analyze the 
paths that are likely to be most critical. Although identi-
fying the most critical paths is an NP-Complete prob-
lem, there are good heuristics for estimating which paths 
are most likely to be critical. The gate depth of a path 
and the fanout of the gates on the path are both directly 
related to path delay. We use the well-established, indus-

1.  Variance is often denoted by σ2. It is the square of the stan-
dard deviation (σ).

Fig. 1. High-Level Overview of SSTA Tool
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Analysis Tool

gate-level netlist of circuit

variability of L, W, Tox, Vt0

mean delay of circuit

standard deviation of circuit delay

2.  There is a non-zero covariance between the delays of gates 
A and B if, when A’s delay varies, then B’s delay also varies. 
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try-accepted heuristics of Synopsys’s Design Compiler 
tool to identify the K most critical paths that it can sensi-
tize (i.e., for which it can provide inputs that make the 
paths switch). 

A.2  Pattern Construction and Simulation

In each pattern, we consider two gates on the path as 
the main gates for which we want to capture the mean, 
variance, and covariance information, and the rest of the 
pattern consists of their immediate load and driver gates. 
In Figure 2, we illustrate how we break down a simple 
example path, gates BCDEF, into patterns. In pattern1, 
gates B and C are the main gates. By only including 
immediate neighbor gates and none of the gates that are 
further upstream or downstream, we are making an 
approximation for the sake of computational tractability. 
The patterns are overlapping, which enables us to accu-
rately model the covariances between gates (discussed 
next). 

For each pattern, we collect the mean, variance, and 
covariance information for the two main gates on the 
path using HSpice circuit simulation with Monte Carlo 
selection of input parameters. We empirically deter-
mined that we needed 5,000 Monte Carlo simulations 
per pattern to obtain statistically significant results. 
After 5,000 simulations per pattern, there were negligi-
ble changes in the results. We assume low-level process 
variability parameters that are similar to those that have 
been explored in the literature [25]. Future work will 
explore the impact of changing the means and variances 

of the low-level parameters. Our process technology is 
130nm, because that is the most trustworthy publicly 
available technology. Our parameter means and vari-
ances are in Table I, and we make the common assump-
tion that the parameters have Gaussian distributions. For 
L, we assume a variance of 15%. Because we assume 
that the absolute variance of W is the same as for L (24 
nm), that leads to a variance for W of 4.4% for the 
PMOS transistors and 9.6% for the NMOS transistors. 

A.3  Analyzing Circuit Paths

To analyze a path in a full circuit (not just a single 
pattern), we first look at the first two gates in the path 
and then at subsequent gate pairs along the path. For 
each pair of gates, we find the corresponding pattern 
(including driver and load gates) and assign the appro-
priate mean, variance, and covariance information to 

Fig. 2. Dividing a path (gates BCDEF) in a simple circuit into patterns
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Table I. Process Parameters

parameter mean variance

L 160nm 15%

W (PMOS) 550 nm 4.4%

W (NMOS) 250 nm 9.6%

Tox 3.3 nm 10%

Vt0 (PMOS) -0.3169 V 10%

Vt0 (NMOS) 0.365 V 10%
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these gates. In Figure 2, for example, the path consists 
of gates BCDEF. In this example, we consider gate A to 
be the last gate in the previous stage of the circuit and 
gate G to be the first gate in the next stage of the circuit. 
Gates A and G are included to represent the limited 
drive capacity of the previous stage and the loading 
effect of the next stage, respectively. Because the param-
eters of A and G vary, we must consider their impact on 
the path. 

For path BCDEF, the first gate pair we consider is 
BC, and we match this gate pair, along with its drivers 
and loads, to Pattern 1. We then shift the window by 
only one gate downstream, so the next gate pair is CD, 
and repeat the pattern matching process. Because we 
shift by only one gate, the patterns overlap and we may 
find somewhat different mean delay and delay variance 
values for a given gate in the two patterns in which it is 
one of the main gates (e.g., gate B in Patterns 1 and 2). 
To account for this, we approximate the mean delay of a 
gate by taking the mean of these two mean delays, and 
we approximate the delay variance of a gate by taking 
the mean of these two delay variances. 

Once we have the means, variances, and covariances 
for every gate on the path, we can compute the mean 
delay and delay variance of the path. 

In the variance equation, cov(g,g-1) is the covariance 
between gate g and the gate preceding it on the path, and 
cov(g,g+1) is the covariance between gate g and the gate 
immediately after it on the path.

A.4  Analyzing an Entire Circuit

A circuit is composed of many paths, and we use an 
analytical formulation to determine a full circuit’s mean 
delay and delay variance. Since the delay of each path is 
a random variable, with a mean and variance, the circuit 
delay is a random variable that represents the maximum 
of the path delays. We calculate the mean and variance 
of the circuit delay using the analytical formulation 
given by Clark [7]. In this formulation, the mean and the 
variance of each path delay distribution, as well as the 
correlations among the path delays are used. We observe 
that, as N increases, the mean of the maximum path 

delay also increases. The standard deviation, on the 
other hand, may decrease slightly, skewing the overall 
distribution towards higher values. However, even with 
the decreased variance, the overall impact of the maxi-
mum operation is a slight increase in the mean+3σ value 
of the distribution, where this increase depends on the 
correlations among the path delays.

When analyzing a pipeline, we can use this same 
analytical technique to compose the delays of each pipe-
line stage. The maximum of the delays of each pipeline 
stage is a random variable that represents the clock 
period. 

B.  Limitations of the Tool

The tool makes three approximations to enable rea-
sonable solution times for a problem that is otherwise 
intractable. These approximations, however, are the 
sources of potential inaccuracy in the tool’s results. 
First, we ignore gates that are not immediate neighbors 
of gates on the path under analysis. We have validated 
this approximation for the ISCAS benchmark circuits—
it introduces errors of less than 3% in estimates of mean 
delay and standard deviation. Second, to compute a 
gate’s mean delay, we use the mean of its mean delays in 
the two patterns in which it appears. Similarly, to com-
pute a gate’s delay variance, we use the mean of its 
delay variance in the two patterns in which it appears. 
We separately validated this second assumption on the 
ISCAS circuits and showed that taking the mean of the 
values in the two patterns achieves better accuracy than 
using just one of the two values. Third, when we simu-
late each pattern, we assume that only the critical (last-
arriving) input is switching. That is, we assume that the 
other input does not switch or that it switches much ear-
lier than the critical input. This single-switching 
assumption at each gate can lead to conservative results 
(i.e., it predicts means and variances that are larger than 
the actual values), because the delay through a pattern is 
generally less when both inputs are switching.3 How-
ever, this single-switching assumption is intuitively rea-
sonable for the most critical path in a circuit, and our 
validation results for the ISCAS85 benchmark circuits 
confirm this intuition. 

C.  SSTA Tool Validation

We have validated the accuracy of our tool in esti-
mating the mean and variance of path delay for the 
ISCAS85 benchmark circuits. For all of the combina-

mean path delay( ) mean delay of g( )
g gates on path∈

∑=

σ2
path delay( )

σg
2

cov g g 1–,( ) cov g g 1+,( )+ +

g gates on path∈
∑

=

3.  For example, consider a NAND gate switching from 0 to 1. 
If only one input switches, there is a charging path through one 
PMOS transistor. If both inputs switch, two PMOS transistors 
become active in parallel. 
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tional circuits except c6288,4 we tested our tool on the 
single most-critical “true” path (i.e., path that switches) 
identified by Design Compiler. Each of these most-criti-
cal paths satisfy our single-switching assumption. These 
paths ranged in length from 3 to 51 gates. We compared 
the results of our tool with the results of full Monte 
Carlo simulation of the entire circuit. The full Monte 
Carlo simulations are our reference points because they 
are accurate, but they took several compute-months to 
complete.

Our SSTA tool is extremely accurate. We show our 
validation results in Figure 3. Excluding for a moment 
the trivial circuit c17, the mean delays produced by our 
tool are within 3% of full Monte Carlo, and the standard 
deviations produced by our tool are within 2% of full 
Monte Carlo. Circuit c17 has a slightly higher error for 
standard deviation, but it only has 3 gates on its critical 
path and only 7 gates total; it would normally not be 
worth studying. The tool’s accuracy is remarkable, con-
sidering how much faster our tool is than full Monte 
Carlo. For less critical paths that have one or more gates 
that violate the single-switching assumption, our tool 
may produce conservative results that over-estimate 
delay, for reasons we explained in Section B.. 

III.  MICROPROCESSOR UNDER STUDY

The microprocessor under study is the Illinois Ver-
ilog Model (IVM), which was developed and generously 
distributed by Prof. Sanjay Patel’s research group at the 
University of Illinois [12]. The microarchitecture is a 
superscalar, dynamically scheduled core that executes a 
subset of the Alpha ISA. Patel’s group verified the cor-
rectness of the design by comparing it to an instruction-
level reference model on the SPEC benchmarks. The 
pipeline has 12 stages, and 132 instructions can be in-
flight at any time. IVM models this microarchitecture at 
the RTL level, which provides sufficient detail for our 
study. The IVM architecture is an academic design and, 
as such, was not optimized by a large industrial team, so 
we try to be careful not to make sweeping generaliza-
tions about all modern architectures based on results 
obtained from experiments with IVM. We do not claim 
that IVM is representative of commercial microproces-
sors, but we believe it is a larger and more sophisticated 
design that has been studied before. Future work will 
explore commercial microarchitectures that have 
recently been made open-source.

We divided the Verilog code of the IVM pipeline 
into its 12 constituent pipeline stages. This process was 
largely manual, although it was not difficult since the 
Verilog is modular and well-structured. We describe the 
pipeline stages in Table II, in terms of their maximum 
path depth and their primary contents. For the Execute 
stage, we only consider the simple ALUs and the com-
plex ALU, and we analyze them separately; we did not 
have time to synthesize and analyze the multiplier, 
branch unit, or memory units. We do not consider the 
Schedule or ROB stages, because their path depths are 
over 100 gates, which makes them unrealistic. 

4.  The circuit c6288 is a multiplier that is notorious for having 
thousands of near-critical paths for which finding switching 
paths requires an exhaustive search (which is impossible due 
to the input space). Design Compiler does not identify any true 
paths for this circuit that are anywhere close to the longest 
path in length. As such, we omit c6288 from our validation 
experiments. 

��

��

��

��

��

��

��

	�
 	��� 	��� 	��� 	���� 	���� 	��
� 	���� 	���� 	
���

����������	
���


�
	

�
�
��
�
		
�
	

���

�������������������

Fig. 3. SSTA Tool Validation Results (percent error with respect to full Monte Carlo Simulation)
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IV.  EXPERIMENTAL EVALUATION

In this section, we present our evaluation of the 
impact of process variability on the IVM pipeline. We 
discuss our methodology (Section A.) and then present 
results for each pipeline stage (Section B.). Last, we 
present a study of the impact of process variability on 
dynamic voltage scaling (DVS).

A.  Experimental Methodology and Assumptions

We analyze each pipeline stage in isolation, to deter-
mine the impact of variability on each, because the 
delays of each stage are independent. For each pipeline 
stage, we examine the five most critical paths, as deter-
mined by Design Compiler. If there is a steep drop-off 
after, say the third most critical path, we ignore the 
fourth and fifth most critical paths, because they will 
never affect our timing analysis. Ideally, for each pipe-
line stage, we would have analyzed every path that 
could reasonably be critical in the presence of variabil-
ity, but time constraints forced us to focus on the five 
paths most likely to be critical. Analyzing a subset of all 
paths hurts our case (i.e., makes variability seem less 
important), because it causes the tool to under-estimate 
the impact of variability. Intuitively, considering more 
paths leads to more potential variability.

We use the same low-level process variability 
parameters that we discussed in Section A. and that are 

listed in Table I. We make the following two assump-
tions to enable tractable analysis times:
Assumption #1. We assume that the 5 most-critical 
paths in a given pipeline stage are independent. For mul-
tiple paths within a given structure, say an ALU, this 
assumption is somewhat unlikely and can lead to under-
estimation of path delay variability. 
Assumption #2. We make the same single-switching 
assumption that we did when analyzing circuit patterns 
in Section II.. Thus, our results may be conservative 
(over-estimate delay) for those not-most-critical paths 
for which the assumption does not hold for any input 
switching pattern. Without an exhaustive search of the 
input space, we cannot know how often this situation 
occurs, although we do not expect it to occur often. 
Unfortunately, for a circuit with N inputs, there are 
2N*2N=22N possible input switching combinations, 
which is not tractable for non-trivial circuits. 

B.  Pipeline Stage Analyses

We first look at the delay of each pipeline stage. In 
Figure 4, for each pipeline stage, we plot two bars. The 
leftmost bar is the delay for just the single most-critical 
path. The rightmost bar is the delay for the maximum of 
the five most critical paths. The height of each bar repre-
sents the mean delay, and the “error bars” represent 
plus/minus three standard deviations (3σ), which is a 
common confidence interval for statistical analysis. The 

Table II. Characterization of IVM Pipeline Stages. The two shaded entries are unanalyzed because their 
path depths were over 100 gates, which made them extremely unrealistic. We split the Execute stage 
into two parts— simple ALUs and the complex ALU—for our analysis.

pipeline  
stage

max path depth 
(#gates) main contents

Fetch0 75 L1 I-cache (8KB, 2-way, 8 ports), RAS (16 entries), BTB (8 entries), sim-
ple branch predictor (1-cycle), 1024-entry hybrid branch predictor (1st of 2 
cycles)

Fetch1 33 hybrid branch predictor (2nd of 2 cycles)

Fetch2 34 fetch queue (32 entries)

Decode 30 decode logic (4-wide)

Rename0 67 speculative rename logic (4-wide), memory dependence predictor

Rename1 23 intra-bundle rename logic, 2nd cycle of memory dependence predictor 

Schedule n/a scheduler (32 entries)

RegRead 20 register file (80 physical regs, 65 bits/reg, 11 read ports, 7 write ports)

Execute 31 (simple ALU) 
39 (complex ALU)

2 simple ALUs, complex ALU, multiplier, branch unit, 2 address genera-
tion units, load queue, store queue

ROB n/a reorder buffer (64 entries, 8-wide)

ArchRATFile 28 arch. register alias table, arch. free list

NextPC 10 multiplexor for selecting the next PC
6



amount of variability is easier to discern in Figure 5. In 
this figure, we plot the normalized variability of each 
pipeline stage, which we define as 6σ/mean*100%. This 
metric, 6σ/mean, represents the 3σ confidence interval 
in each direction from the mean, as a fraction of the 
mean.5 We make several observations and conclusions 
from this data.

First, before discussing variability, we note that the 
mean delay differs significantly across the pipeline 

stages. This pipeline imbalance is an artifact of IVM 
having been developed for studying reliability, rather 
than being fine-tuned for performance. Because of this 
unrealistic imbalance, we do not attempt to analyze the 
impact of variability on the pipeline as a whole. 

Second, we observe from Figure 4 that architects 
cannot simply study the single most-critical path when 
analyzing a circuit in the presence of process variability. 
Other paths with near-critical mean delays often cause 
the overall pipeline stage delay to have a greater mean 
and/or mean plus 3σ. While the mean delay increases as 
we consider more than the single most-critical path, the 
delay variance usually decreases. Clark’s formula for 

5.  Note that this metric is also equal to six times the coefficient 
of variation. 
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Fig. 4. Delay (mean plus/minus 3σ) of Each Pipeline Stage

Fig. 5. Normalized Variability (6σ/mean) of Each Pipeline Stage
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computing the maximum of multiple random variables 
implies this result for paths with equal or similar delay 
distributions [7]. One exception is the Fetch1 pipeline 
stage, which exhibits greater variance when considering 
multiple paths, because those paths have extremely dif-
ferent variances. 

Third, we conclude that process variability does 
indeed lead to non-trivial variability in pipeline delay. 
The results in Figure 5 reveal 7-17% normalized vari-
abilities. For future technologies, for which process 
variability is expected to become even more pro-
nounced, this impact on microarchitectural performance 
variability will be even greater. 

Fourth, we observe a striking correlation between 
path length and delay variability. For pipeline stages 
with longer paths, such as Fetch0 and Rename0, the nor-
malized variability is less. Intuitively, this is because the 
delay variabilities of each gate along the path are more 
likely to cancel each other out. That is, some gates will 
be faster and some will be slower, and as we add more 
gates the normalized variability will decrease. This 
result has a large potential impact on microarchitecture 
design. As designs have trended towards deeper pipe-
lines, each pipeline stage has become shorter. This 
trend, however, unfortunately amplifies the problem of 
process variability. Consider two processors, P1 and P2, 
where P1 has a deeper pipeline (i.e., more pipeline 
stages, with shorter paths in each stage). It is possible 
that the distribution of clock frequencies of fabricated 
chips of P1 and P2 actually favors P2. Furthermore, this 
result suggests that recent research to determine the 
optimal pipeline depth (e.g., Hrishikesh et al. [10]) 
might have to be re-visited to account for process vari-
ability.

C.  The Impact of Variability on Dynamic Voltage 
Scaling (DVS)

DVS is used by a microprocessor to dynamically 
adapt its power consumption. By lowering the supply 
voltage, the power consumption is reduced. DVS is a 
well-known and commercially accepted mechanism, yet 
we suspected that it could exacerbate the impact of pro-
cess variability. Lowering the supply voltage reduces the 
drive current. With less drive current, the sensitivity of 
gate delay to process parameters increases. Since there 
is a higher sensitivity, the variation in the gate delay will 
increase for the same variation in the process parame-
ters.

To test our hypothesis, we performed an experiment 
on just the simple ALU from the IVM pipeline. We 
started with a supply voltage of 1.2V and then decreased 
it in steps of 0.12V down to 0.84V. In Figure 6, we plot 
the normalized variability (6σ/mean) of the delay of just 

the simple ALU (considering just the single-most criti-
cal path). The data shows that the normalized variability 
does indeed increase as the supply voltage decreases. 
The same experiment on the next most critical paths dis-
played similar results (not shown). 

These results, albeit for just one component in a 
microprocessor, suggest that architects planning to use 
DVS in the future may need to be especially careful of 
the impact of process variability. Moreover, it is possible 
that paths that are not critical at one supply voltage set-
ting may become critical in another. Thus, it is possible 
that DVS will lead to degraded performance and/or reli-
ability, unless architects consider the impact of process 
variability. 

V.  VARIABILITY ANALYSIS IN THE DESIGN 

CYCLE

In general, variability analysis has two primary pur-
poses during the design cycle of a microarchitecture. 
First, variability analysis is an important tool for the 
design team. They can use this kind of analysis to iden-
tify and optimize critical paths. In the presence of pro-
cess variability, designers cannot just look for the paths 
with the longest mean delay—they must look for the 
paths with the greatest statistical delay (e.g., mean delay 
plus three times the standard deviation). Moreover, they 
cannot just consider a single longest path because, 
depending on variability, a nominally non-critical path 
(i.e., a path that would not be critical if there was no 
variability) could be critical. 

Second, variability analysis can be used to help pre-
dict expected performance and reliability across all fab-
ricated chips. In effect, it enables us to accurately 
predict the distribution of chips into speed bins. This 
prediction is useful in at least two ways. It can obviously 
help predict how many chips of each speed bin will be 
available to be sold. It can also be used for comparing to 

Fig. 6. Normalized Variability of Simple ALU Delay 
as a Function of Supply Voltage
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the actual speed binning results—if the actual chips do 
not follow the same distribution, that discrepancy can 
potentially identify a fabrication problem.

VI.  RELATED WORK

There has been some work on quantitatively evaluat-
ing the impact of variability on selected parts of micro-
processors, especially storage structures. Agarwal et al. 
[2] study the impact of variability on cache perfor-
mance. Liang and Brooks [17, 18] explore the perfor-
mance impact of variability on execution units and 
SRAM structures, such as register files. Venkatesan et 
al. [22] developed a DRAM placement policy that con-
sidered the impact of variability in required refresh 
rates. By placing data in DRAM pages that require less 
frequent refreshes, they save refresh power. Our work 
here differs in that we study the impact of variability on 
an entire pipeline. 

Some related work has explored the impact of vari-
ability on a simplified model of a processor. Datta et al. 
[8] assume that the delay distribution of each pipeline 
stage is already known and then show how to analyti-
cally combine these stage delay distributions into an 
overall processor delay distribution. Humenay et al. [11] 
developed a model of variability’s impact on a pipeline, 
in which they assume that each pipe stage is either all 
SRAM or all logic. If the stage is logic, it is modeled as 
an adder instead of the actual logic. Kim et al. [15] dis-
cuss the impact of process variability on the power con-
sumption of an abstract pipeline that is modeled in terms 
of the number of FO4 delays per stage. Our work differs 
by looking at the actual circuitry in each pipeline stage, 
instead of abstracting it away or assuming its delay is 
known.

There have been many SSTA tools like ours. The 
most similar tools are the ones by Agarwal et al. [1], 
Amin et al. [3], Chang and Sapatnekar [5], Visweswa-
riah et al. [24], Zhan et al. [25], and Zhang et al. [26]. 
These analytical tools consider gate-level details, and 
they are scalable to large benchmark circuits. They pro-
duce probability distributions for path delays, and they 
have been validated against Monte Carlo. Our work dif-
fers in that we have used our tool to analyze a full 
microprocessor. There are also some subtle differences 
in our SSTA methodology, but these are second-order 
effects, and we do not claim to innovate in the tool itself.

Some recent research has explored techniques for 
mitigating the impact of variability at both the architec-
tural level [2, 17, 18, 22] and circuit level [9, 23, 14, 20, 
6, 16, 21]. We do not discuss this work in detail because 
it is orthogonal to the issue of analysis. 

VII.  CONCLUSIONS

Process variability is becoming an important chal-
lenge for computer architects. We cannot just assume 
that circuits will perform at their nominal frequencies, 
because variability in process parameters will lead to 
variability in overall performance. Even modest 
amounts of process variability affect how we should 
design a microarchitecture. 

The primary goal of this paper was to present the 
quantitative impact of process variability on microarchi-
tectural performance and reliability. We believe that 
designing variability-aware microarchitectures is a 
vitally important problem for architects to consider, and 
we look forward to future work in this area. 
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