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The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with 

CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs.  

Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual 

memory (CCSVM), this is not the communication paradigm used by any current HMC.  In this 

paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the 

pthreads programming model, called xthreads, for programming this HMC.  Our goal is to 

evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM.  
 

1 INTRODUCTION 

The trend in general-purpose chips is for them to consist of multiple cores of various types—

including traditional, general-purpose compute cores (CPU cores), graphics cores (GPU cores), 

digital signal processing cores (DSPs), cryptography engines, etc.—connected to each other and to 

a memory system.  Already, general-purpose chips from major manufacturers include CPU and 

GPU cores, including Intel’s Sandy Bridge [42][16], AMD’s Fusion [4], and Nvidia Research’s 

Echelon [18]. IBM’s PowerEN chip [3] includes CPU cores and four special-purpose cores, 

including accelerators for cryptographic processing and XML processing.   

In Section 2, we compare current heterogeneous multicores to current homogeneous 

multicores, and we focus on how the cores communicate with each other. Perhaps surprisingly, the 

communication paradigms in emerging heterogeneous multicores (HMCs) differ from the 

established, dominant communication paradigm for homogeneous multicores.  The vast majority 

of homogeneous multicores provide tight coupling between cores, with all cores communicating 

and synchronizing via cache-coherent shared virtual memory (CCSVM).  Despite the benefits of 

tight coupling, current HMCs are loosely coupled and do not support CCSVM, although some 

HMCs support aspects of CCSVM.   

In Section 3, we develop a tightly coupled CCSVM architecture and microarchitecture for an 

HMC consisting of CPU cores and massively-threaded throughput-oriented processor (MTTOP) 

cores.
1
   The most prevalent examples of MTTOPs are GPUs, but MTTOPs also include Intel’s 

Many Integrated Core (MIC) architecture [31] and academic accelerator designs such as Rigel 

[19] and vector-thread architectures [21].  The key features that distinguish MTTOPs from CPU 

multicores are: a very large number of cores, relatively simple core pipelines, hardware support for 

a large number of threads per core, and support for efficient data-parallel execution using the 

SIMT execution model. 

We do not claim to invent CCSVM for HMCs; rather our goal is to evaluate one strawman 

design in this space.  As a limit study of CCSVM for HMCs, we prefer an extremely tightly 

coupled design instead of trying to more closely model today’s HMC chips.  We discuss many of 

the issues that arise when designing CCSVM for HMCs, including TLB misses at MTTOP cores 

and maintaining TLB coherence. 

In Section 4, we present a programming model that we have developed for utilizing CCSVM 

on an HMC.  The programming model, called xthreads, is a natural extension of pthreads.  In the 

xthreads programming model, a process running on a CPU can spawn a set of threads on MTTOP 

cores in a way that is similar to how one can spawn threads on CPU cores using pthreads.  We 

have implemented the xthreads compilation toolchain to automatically convert xthreads source 

code into executable code for the CPUs and MTTOPs. 

In Section 5, we present an experimental evaluation of our HMC design and the performance of 

xthreads software running on it. The evaluation compares our full-system simulation of an HMC 

                                                           
1 We use the term “GPU core” to refer to a streaming multiprocessor (SM) in NVIDIA terminology or a 

compute unit in AMD terminology. 
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with CCSVM to a high-end HMC currently on the market from AMD. We show that the CCSVM 

HMC can vastly outperform the AMD chip when offloading small tasks from the CPUs to the 

MTTOPs.   

In Section 6, we discuss the open challenges in supporting CCSVM on future HMCs.  We have 

demonstrated the potential of CCSVM to improve performance and efficiency, but there are still 

issues to resolve, including scalability and maintaining performance on graphics workloads.  

In Section 7, we discuss related work, including several recent HMC designs. 

In this paper, we make the following contributions: 

• We describe the architecture and microarchitecture for an HMC with CCSVM,  

• We explain the differences between an HMC with CCSVM and state-of-the-art systems, 

• We experimentally demonstrate the potential of an HMC with CCSVM to increase 

performance and reduce the number of off-chip DRAM accesses, compared to a state-of-

the-art HMC running OpenCL, and 

• We show how CCSVM/xthreads enables the use of pointer-based data structures in 

software that runs on CPU/MTTOP chips, thus extending MTTOP applications from 

primarily numerical code to include pointer-chasing code. 

2 Communication Paradigms for Current Multicore Chips 

In this section, we compare the tightly-coupled designs of current homogeneous multicores to 

the loosely-coupled designs of current heterogeneous multicores.  At the end of this section, we 

focus on one representative heterogeneous multicore, AMD’s Llano Fusion APU [4]
2
; we use the 

APU as the system we experimentally compare against in Section 5.  We defer a discussion of 

other HMCs until Section 7. 

2.1 Homogeneous Multicore Chips 

The vast majority of today’s homogeneous chips [32][23][34][7], including homogeneous chips 

with vector units [31], tightly couple the cores with hardware-implemented, fine-grained, cache-

coherent shared virtual memory (CCSVM). The virtual memory is managed by the operating 

system’s kernel and easily shared between threads.  Hardware cache coherence provides automatic 

data movement between cores and removes this burden from the programmer.  Although there are 

some concerns about coherence’s scalability, recent work shows that coherence should scale to at 

least hundreds of cores [28]. 

By coupling the cores together very tightly, CCSVM offers many attractive features.  Tightly-

coupled multicore chips have relatively low overheads for communication and synchronization.  

CCSVM enables software to be highly portable in both performance and functionality.  It is also 

easy to launch threads on homogeneous CPUs since the kernel manages threads and schedules 

them intelligently.  

2.2 Communication Options for Heterogeneous Multicore Chips 

The most important design decision in a multicore chip is choosing how the cores should 

communicate.  Even though the dominant communication paradigm in today’s homogeneous 

chips is CCSVM, no existing HMC uses CCSVM.  AMD, ARM, and Qualcomm have 

collaborated to create an architecture called HSA that provides shared virtual memory and a 

memory consistency model, yet HSA does not provide coherence [39].  Some chips, such as the 

Cell processor [17] and a recent ARM GPU
3
, provide shared virtual memory but without hardware 

cache coherence. AMD also suggests that future GPUs may have hardware support for address 

translation [1].  Other HMC designs provide software-implemented coherent shared virtual 

memory at the programming language level [20][13].  Another common design is for the cores to 

communicate via DMA, thus communicating large quantities of data (i.e., coarse-grain 

communication) from one memory to another.  These memories may or may not be part of the 

                                                           
2 We would have also considered Intel’s SandyBridge CPU/GPU chip [42], but there is insufficient publicly 

available information on it for us to confidently describe its design. 
3 http://blogs.arm.com/multimedia/534-memory-management-on-embedded-graphics-processors/ 
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same virtual address space, depending on the chip design.  The DMA transfer may or may not 

maintain cache coherence.   

The options for synchronizing between CPU cores and non-CPU cores are closely related to the 

communication mechanisms.  Communication via DMA often leads to synchronization via 

interrupts and/or polling through memory-mapped I/O.  Communication via CCSVM facilitates 

synchronization via atomic operations (e.g., fetch-and-op) and memory barriers.   

2.3 A Typical HMC: The AMD Fusion APU 

AMD’s current Fusion APU, code-named Llano [11], is a heterogeneous multicore processor 

consisting of x86-64 CPU cores and a Radeon GPU.  The CPU and GPU cores have different 

virtual address spaces, but they can communicate via regions of physical memory that are pinned 

in known locations.  The chip has a unified Northbridge that, under some circumstances, facilitates 

coherent communication across these virtual address spaces. Llano supports multiple 

communication paradigms.  First, Llano permits the CPU cores and the GPU to perform coherent 

DMA between their virtual address spaces.  In a typical OpenCL program, the CPU cores use 

DMA to transfer the input data to the GPU, and the GPU’s driver uses DMA to transfer the output 

data back to the CPU cores.  Although the DMA transfers are coherent with respect to the CPU’s 

caches, the load/store accesses by CPU cores and GPU cores between the DMA accesses are not 

coherent.  Second, Llano allows a CPU core to perform high-bandwidth, uncacheable writes 

directly into part of the GPUs’ virtual address space that is pinned in physical memory at boot.  

Third, Llano introduces the Fusion Control Link (FCL) that provides coherent communication 

over the Unified NorthBridge (UNB) but at a lower bandwidth.  With FCL, the GPU driver can 

create a shared memory region in pinned physical memory that is mapped in both the CPU and 

GPU virtual address spaces. Assuming the GPU does not cache this memory space, then writes by 

the CPU cores and the GPU cores over the FCL are visible to each other, including GPU writes 

being visible to the CPUs’ caches.  A GPU read over the FCL obtains coherent data that can reside 

in a CPU core’s cache.  The FCL communication mechanism is somewhat similar to CCSVM, 

except (a) the virtual address space is only shared for small amounts of pinned physical memory 

and (b) the communication is not guaranteed to be coherent if the GPU cores cache the shared 

memory region.  

3 CCSVM Chip Architecture and Microarchitecture 

In this section, we present the clean-slate architecture and microarchitecture of a HMC with 

cache-coherent shared virtual memory.  Where possible, we strive to separate the architecture 

from the microarchitecture, and we will highlight this point throughout the section.  Throughout 

the rest of the paper, we assume that all cores are either CPU cores or MTTOP cores. 

 
Figure 1.  System Model.  Network is actually a torus, but it is drawn as a mesh for clarity. 
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Our HMC’s CCSVM design is intentionally unoptimized and not tuned to the specific system 

model.  Where possible, we make conservative assumptions (e.g., our cache coherence protocol 

does not treat MTTOP cores differently from CPU cores, despite their known behavioral 

differences).  Our goal is to isolate the impact of CCSVM without muddying the picture with 

optimizations. If unoptimized CCSVM outshines existing designs, then the difference is due to 

CCSVM itself and not due to any particular optimization. 

3.1 Chip Organization 

The chip consists of CPU cores and MTTOP cores that are connected together via some 

interconnection network.  Each CPU core and each MTTOP core has its own private cache (or 

cache hierarchy) and its own private TLB and page table walker.  All cores share one or more 

levels of globally shared cache.  This cache is logically shared and CPU and MTTOP cores can 

communicate via loads and stores to this cache. This shared cache is significantly different than 

the physically shared but logically partitioned last-level cache in Intel’s SandyBridge and 

IvyBridge chips; in the Intel chips, communication between CPU and GPU cores must still occur 

via off-chip DRAM.
4
   We do not differentially manage the cache for fairness or performance 

depending on the core initiating the request [24]. 

We illustrate the organization of our specific microarchitecture in Figure 1, in which the CPU 

and MTTOP cores communicate over a 2D torus interconnection network (drawn as a mesh, rather 

than torus, for clarity).  In this design, the shared L2 cache is banked and co-located with a banked 

directory that holds state used for cache coherence.    

One detail not shown in the figure is our introduction of a simple controller called the MTTOP 

InterFace Device (MIFD).  The MIFD’s purpose is to abstract away the details of the MTTOP 

(including how many MTTOP cores are on the chip) by providing a general interface to the 

collection of MTTOP cores. The MIFD is similar to the microcontrollers used to schedule tasks on 

current MTTOPs. When a CPU core launches a task (a set of threads) on the MTTOP, it 

communicates this task to the MIFD via a write syscall, and the MIFD finds a set of available 

MTTOP thread contexts that can run the assigned task. Task assignment is done in a simple round-

robin manner until there are no MTTOP thread contexts remaining. The MIFD does not guarantee 

that a task that requires global synchronization will be entirely scheduled, but it will write an error 

register if there are not enough MTTOP thread contexts available.  The MIFD thus enables an 

architecture in which the number of MTTOP cores is a microarchitectural feature. The MIFD 

driver is a very simple piece of code (~30 lines), unlike drivers for current MTTOPs that perform 

JIT compilation from the HLL to the MTTOP’s native machine language. The primary purposes 

of this driver are to assign threads to MTTOP cores, arbitrate between CPU processes seeking to 

launch MTTOP threads, and set up the virtual address space on the MTTOP cores. 

3.2 Cache-Coherent Shared Virtual Memory 

The key aspect of our architecture is to extend CCSVM from homogeneous to heterogeneous 

chips.   

3.2.1 Shared Virtual Memory (SVM) 

Architecture.  In all SVM architectures (for homogeneous or heterogeneous chips), all threads 

from a given process share the same virtual address space, and they communicate via loads and 

stores to this address space.  The system translates virtual addresses to physical addresses, with the 

common case being that a load/store hits in the core’s TLB and quickly finds the translation it 

needs.  We assume that the caches are physically addressed (or at least physically tagged), as in all 

current commercial chips of which we are aware.  

There are several possible differences between SVM architectures. For one, how are TLB 

misses handled?  Some architectures specify that TLB misses are handled by trapping into the OS, 

whereas others specify that a hardware page table walker will handle the miss.  Second, there is 

often architectural support for managing the page table itself, such as x86’s CR3 register that is an 

architecturally-visible register that points to the root of the process’s page table.  Third, there is a 

                                                           
4 http://www.anandtech.com/print/3922  

http://www.realworldtech.com/page.cfm?ArticleID=RWT080811195102&p=9 
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range of architectural support for maintaining TLB coherence.  Some architectures provide special 

instructions or interrupts to accelerate the process of TLB shootdown [38].  Because the CPU 

cores in the target system we study are x86, our HMC faithfully adheres to x86-specific 

architectural decisions, including the use of a hardware TLB miss handler (page table walker). 

Microarchitecture.  Satisfying the x86 architecture, as it pertains to SVM, introduces some 

interesting issues in our heterogeneous chip.  Adding TLBs and page table walkers to each 

MTTOP core is straightforward; we discuss the costs of adding them in Section 3.4.  Sending the 

contents of the CR3 register to a MTTOP core when a task begins (as part of the task descriptor 

that is communicated via the write syscall to the MIFD) is also straightforward, although it does 

require us to add a CR3 register to each MTTOP core.  However, two other issues are more 

complicated.   

First, what happens when a MTTOP core encounters a page fault?  The MTTOP core misses in 

its TLB and its page table walker identifies the miss as a page fault.  On a CPU core, a page fault 

traps to the OS, but today’s MTTOP cores are not (yet) running the OS.  A relatively simple 

solution to this problem is to have the MTTOP core interrupt a CPU core, with the interrupt 

signaling that the CPU core should handle the page fault.  We implement this mechanism via the 

MIFD, thus maintaining the abstraction that CPU cores do not need to be aware of specific 

MTTOP cores or of the number of MTTOP cores.  The MIFD, as a device, may interrupt a CPU 

core on behalf of one of the MTTOP cores.  One challenge, previously identified by IBM’s 

PowerEN [12] and Intel’s research prototypes [40][41], is that, unlike when a CPU core page 

faults, the interrupt occurs on the CPU core when the CPU core is not necessarily running the 

process that page faulted.  The PowerEN skirts this problem by requiring the software to 

implement a user-level page fault handler on the CPU core.  For CCSVM, we have the MTTOP 

core interrupt the CPU core with the interrupt cause (page fault) and the x86 CR3 register that is 

required to identify the necessary page table.  AMD’s IOMMU design [1] takes a somewhat 

similar approach of offloading GPU page faults to the CPU, but the request and acknowledgment 

are performed over PCIe.   

Second, how do we keep the TLBs at the MTTOP cores coherent?  TLB coherence in all-CPU 

chips is usually maintained via TLB shootdowns.  A CPU core that modifies a translation sends an 

interrupt to other cores that may be caching that translation in their TLBs, and those TLBs 

invalidate their copies of the translation.  On our chip, we must consider what happens when a 

CPU core initiates a shootdown.  (A MTTOP core may not trigger a shootdown, since it does not 

run the OS and cannot modify translations.)  We extend shootdown by having the CPU core signal 

the TLBs at all MTTOP cores to flush.  Flushing is conservative, in that we could have only 

selectively invalidated entries, but it is a simple, viable option.  A future consideration is to 

incorporate the TLBs into the coherence protocol [30].   

3.2.2 Cache Coherence 

Architecture.  Cache coherence is not, strictly speaking, an architectural issue.  To be precise, 

an architecture specifies only the memory consistency model (Section 3.2.3).  However, virtually 

all homogeneous systems with SVM provide hardware cache coherence as a key element in 

supporting the consistency model.
5
  Cache coherence protocols ensure that cores cannot continue 

to read stale values from their caches; protocols commonly enforce the “single writer or multiple 

readers” (SWMR) invariant [35].  

Microarchitecture.  Because coherence protocols are not architecturally visible, we can choose 

any protocol that is sufficient to support the desired consistency model.  For our purposes, any 

protocol that maintains the SWMR invariant suffices.  In our implementation, we choose a 

standard, unoptimized MOESI [37] directory protocol in which the directory state is embedded in 

the L2 blocks, similar to recent Intel and AMD chips [34][6].  With an inclusive L2 cache (as in 

Nehalem [34]), an L2 miss indicates that the block is not cached in any L1 and thus triggers an 

access to off-chip memory.  Our choice of protocol is noteworthy only insofar as the protocol 

itself is not special.  The assumption of write-back caches with coherence is a significant deviation 

from current MTTOP cores that generally have write-through caches with the ability to bypass the 

L1 for coherent reads, writes, and atomic operations. However, some current MTTOPs, such as 

                                                           
5 We do not consider software coherence [25] in this paper. 
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MIC and ARM’s Mali GPU [36], already provide cache-coherent shared memory or shared 

memory without cache coherence, like AMD’s Heterogeneous System Architecture [39].  Recent 

academic research has also explored cache coherence tailored specifically for GPUs (without 

associated CPUs) [33]. We believe there is potential—in terms of performance and power—in 

tailoring a coherence protocol for a specific HMC, to take advantage of its distinctive features; we 

leave this research to future work.   

3.2.3 Memory Consistency Model  

Homogeneous chips with CCSVM support a memory consistency model [35]. The consistency 

model specifies, at the architectural level, the legal orderings of loads and stores performed by 

threads in a process.  For example, sequential consistency (SC) [22] specifies that all loads and 

stores must appear to perform in a total order, such that the total order respects the program order 

at each thread and each load obtains the value of the most recent store (in the total order) to the 

same address.   

To the best of our knowledge, no heterogeneous chip has specified a clear memory consistency 

model (presumably because they do not support CCSVM), although high-level languages (HLLs) 

like CUDA and OpenCL provide ordering guarantees when programmers insert memory barrier 

operations (e.g., CUDA’s thread fence and OpenCL’s read and write fences).  Now that we are 

considering CCSVM for heterogeneous chips, we believe it is time to specify an architectural-

level consistency model for these chips.  An architectural consistency model would help 

microarchitects to design systems by providing them with a clear specification of correctness.  An 

architectural consistency model would also help programmers, either those who write in xthreads 

or those who write the software that supports HLLs. 

The space of possible consistency models for arbitrary heterogeneous chips is enormous, 

because of the rich variety of memory access instructions and memory access patterns.  We leave 

an exploration of this space for future work and instead, for now, conservatively provide a 

sequentially consistent (SC) model.
6
  SC is the simplest model to reason about, and for the proof-

of-concept design in this paper we are willing to forego many optimizations that violate SC (e.g., 

we have no write buffers between the cores and their caches).  SC is far more restrictive than the 

memory models provided by current MTTOPs, particularly GPUs, which tend to prefer relaxed 

models for graphics computations.  Recent work explores consistency models for homogeneous 

MTTOPs [15], but it is not clear how those results apply to HMCs that include MTTOPs.  We are 

not arguing for SC, and we believe more relaxed models are likely preferable in the future, but we 

are advocating for the specification of precise consistency models.   

 

3.2.4 Synchronization 

Architecture: Our CCSVM architecture provides several synchronization primitives that can be 

used to construct typical HLL synchronization constructs (e.g., locks, barriers, signal/wait).  In 

addition to the synchronization operations supported by the x86 CPU cores, the MTTOP ISA 

provides simple atomic operations like those in OpenCL (e.g., atomic_cas, atomic_add, 

atomic_inc, atomic_dec).   

Microarchitecture: Today’s MTTOP cores tend to perform atomic instructions at the last-level 

cache/memory rather than at the L1 cache as is often the case for CPUs.  Because our goal is to 

supportt general-purpose MTTOP code, rather than just graphics code, and because we want the 

MTTOP cores to mesh well with the CPU cores, our MTTOP performs atomic operations at the 

L1 after requesting exclusive coherence access to the block. 

3.3 CCSVM’s Potential Benefits 

The primary benefit of CCSVM is communication performance.  As we show experimentally 

in Section 5, CCSVM can vastly outperform hardware that requires the CPUs and MTTOPs to 

communicate via off-chip DRAM.  This result is intuitive; on-chip communication has far lower 

                                                           
6 Our x86 CPUs must satisfy the x86 consistency model [29].  Because the x86 model is more relaxed than 

SC, SC is a valid implementation of the x86 model.  
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latency and far greater bandwidth.  CCSVM provides a safe (coherent) mechanism for 

transforming the vast majority of communication to be on-chip rather than off-chip.   

CCSVM’s shift to on-chip communication has secondary potential benefits, including lower 

energy and power costs (on-chip communication is more power- and energy- efficient than off-

chip) and greater effective off-chip memory bandwidth (because this bandwidth is not being used 

for communication than can now be done on-chip). 

The CCSVM architecture also offers two qualitative benefits.  First, it has the virtue of being 

similar to the CCSVM architectures that industry and academia are both already familiar with.  All 

other things being equal, familiarity is good.  The community has a long history of designing, 

validating, and programming (homogeneous) CCSVM machines, and this accumulated experience 

and wisdom is a benefit when working on a new system.  Second, CCSVM is an architecture with 

a clean, clear specification.  Being able to incorporate all cores, regardless of type, in the 

architectural memory consistency model facilitates memory system design and validation, as well 

as programming.   

3.4 CCSVM’s Costs 

Our CCSVM architecture and the specific microarchitecture we implement have their costs, 

with respect to today’s HMCs.  First, we have added page table walkers to each MTTOP.  These 

are small structures, compared to the size of a MTTOP, but they are not free.  Nvidia and AMD 

GPUs already have or soon will have TLBs [9], so we do not consider those an added cost for 

CCSVM.  Second, we have added the MIFD, which is a single small structure—similar to the 

microcontroller in today’s GPUs—for the entire chip.  Third, we have extended the on-chip 

interconnection network to accommodate the MTTOPs.  For the 2D torus in our microarchitecture, 

this extension is simply a matter of adding nodes in the torus to which we attach the MTTOPs; we 

do not need to increase the bandwidth of any switches or links to accommodate the MTTOPs.  

Fourth, we have added a few bits per cache block for coherence state.  Each of these four hardware 

additions has area costs and energy/power costs, but none seem prohibitive.  Without laying out an 

entire chip, though, we cannot quantify these costs.  One can also argue that the hardware and 

power dedicated to CCSVM’s additional structures represents an opportunity cost, because this 

hardware and power could be used for other purposes.  Once again, we do not believe this 

opportunity cost is great; even if it costs us the same as one MTTOP core (which is significantly 

more than we expect), this is likely a reasonable tradeoff given the vast performance and power 

benefits CCSVM achieves.  

One potential qualitative cost of CCSVM is its complexity.  CCSVM is indeed a more 

complicated design than keeping the cores loosely coupled and having them communicate via 

DMA.  Fortunately, the community has a long history of producing (homogeneous) CCSVM 

chips, and we believe industry can extend from homogeneous to heterogeneous chips.  

Another potential drawback of CCSVM is a concern about coherence’s scalability.  Some 

architects believe that cache coherence does not scale to large numbers of cores, in which case 

proposing it as an option for future heterogeneous chips would indeed be problematic.  However, 

based on recent analyses [10][28], we believe coherence will scale well enough for at least 

hundreds of cores and likely more.  

3.5 Compatibility with Graphics and with CUDA/OpenCL 

The primary use of many MTTOPs—specifically, GPUs—is still graphics and we expect it to 

remain this way for the foreseeable future.  Thus we cannot allow our design, which is tailored for 

general-purpose computation, to hinder the graphics capability of a chip. There is also an 

established code base in CUDA and OpenCL that we cannot ignore.  Fortunately our CCSVM 

design is compatible with graphics and other legacy code.  Legacy code can run using the existing 

drivers and bypass our simple CCSVM driver.  The caches can be reconfigured for use as 

scratchpads [27], and we can disable the cache coherence hardware and page table walkers at the 

MTTOPs.   The interconnection network used for CCSVM is overkill for legacy code that has 

little communication between MTTOPs, but it poses no problem for running legacy code.  
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4 Xthreads Programming Model 

Given that we now have a CCSVM design for an HMC, we need to be able to write software 

that takes advantage of having CCSVM.  We developed xthreads with the goal of providing a 

pthreads-like programming model that exploits CCSVM and is easy to use.  We could not simply 

adopt the current versions of OpenCL and CUDA, because they do not exploit CCSVM; however, 

OpenCL or CUDA could be implemented to run on top of xthreads. 

We do not claim that xthreads is optimal in any sense, nor do we wish to quantitatively 

compare it to other programming models for heterogeneous chips.   Rather, we have developed 

xthreads as a proof-of-concept—that is, there exists at least one reasonable programming model 

that enables us to demonstrate the benefits of CCSVM.  Future work will delve more deeply into 

improving and evaluating the programming model.  

4.1 API 

The xthreads API, summarized in Table 1, extends pthreads by enabling a thread on a CPU 

core to spawn threads on non-CPU cores.  For our system model in which the non-CPU cores are 

MTTOP cores, the API’s create_mthread (“m” is for “MTTOP”) function enables a CPU thread 

to spawn a set of SIMT threads that will run on one or more MTTOP cores (depending on the  

microarchitecture).  This function is roughly equivalent to (a) calling OpenCL’s 

clEnEnqueueNDRange() with a work group size equal to the number of threads or (b) invoking a 

CUDA kernel with one thread block.  Given that CCSVM provides coherence across all threads 

and all memory, there is no use having xthreads provide more levels of task splitting. Unlike 

CUDA and OpenCL, xthreads does not require that a subset of threads needs to be located on the 

same MTTOP core in order to enable communication between threads. Thus even small tasks can 

be split up to use the entire MTTOP instead of one MTTOP core. 

Table 1.  Synopsis of Basic API Functions 

Called 

By 

Function Description 

CPU 

create_mthread(void* fn, args* fnArgs, 
ThreadID firstThread, ThreadID 
lastThread) 

Spawns a set of one or more MTTOP 

threads that each runs the specified 

function with the specified arguments. 

wait(ConditionVar* condition, ThreadID 
firstThread, ThreadID lastThread, 
unsigned int waitCondition) 

CPU thread sets array of condition 

variables to WaitingOnMTTOP and 

waits until MTTOP threads change 

array elements to Ready.  The 

waitCondition argument could specify, 

for example, that the CPU wait for 

malloc requests from the MTTOP 

threads. 

signal(ConditionVar* condition, ThreadID 
firstThread, ThreadID lastThread) 

CPU thread sets array of condition 

variables  to Ready so that MTTOP 

threads can stop waiting 

cpu_mttop_barrier(ThreadID firstThread, 
ThreadID lastThread, barrierArray* 
barrierArray, bool* sense) 

CPU thread waits for all MTTOP 

threads to write to array of barrier 

locations, then CPU flips sense. 

MTTOP 

wait(ConditionVar* condition, ThreadID 
firstThread, ThreadID lastThread) 

MTTOP threads set array of condition 

variables to WaitingOnCPU and waits 

until CPU changes these array elements 

to Ready 

signal(ConditionVar* condition, ThreadID 
firstThread, ThreadID lastThread) 

MTTOP threads set array of condition 

to Ready so that CPU thread can stop 

waiting 

cpu_mttop_barrier(barrierArray* 
barrierArray, bool* sense) 

MTTOP thread writes to its barrier array 

entry, then waits for sense to flip. 

mttop_malloc(int size) Returns dynamically allocated memory 

(like malloc) 
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The two primary mechanisms for synchronization are wait/signal and barrier.  A CPU thread or 

a set of MTTOP threads can wait until signaled by CPU or MTTOP threads.  The wait/signal pair 

operates on condition variables in memory.  For example, a CPU thread can wait for an array of C 

condition variables to all change from WaitingOnMTTOP to Ready, and this transition will occur 

when C MTTOP threads have changed these condition variables to be Ready.   The barrier 

function is a global barrier across one CPU thread and a set of MTTOP threads.  We considered 

other types of barriers (e.g., a barrier that applies only to MTTOP threads) and a lock, but we 

found that we did not need them for our algorithms.   

4.2 Compilation Toolchain 

We have implemented a compilation framework that enables us to easily convert xthreads 

source code into an executable that runs on both the CPU and MTTOP cores.  We illustrate the 

compiler toolchain in Figure 2.  This toolchain and the executable model (i.e., embedding the 

MTTOP’s code in the text segment of the CPU’s executable) are quite similar to the CHI 

prototype [40]. 

4.3 Runtime 

When a process begins, the CPU cores begin executing threads as they would in a “normal” 

pthreads application.  The differences begin when a CPU thread calls create_mthread() for a 

MTTOP task with N threads.  For each task, the library performs a write syscall to the MTTOP 

interface device.  This write syscall describes a task as: {program counter of function, arguments 

to function, first thread’s ID, CR3 register}.  The MIFD then assigns incoming tasks to available 

MTTOP cores.  If a task specifies more threads than the SIMD width of a single MTTOP core, 

then the task is distributed in SIMD-width chunks to multiple MTTOP cores. A SIMD-width 

chunk is known as a warp in NVIDIA terminology and a wavefront in AMD terminology. 

When a MTTOP core receives a task from the MIFD, it sets its CR3 register so that it can 

participate in virtual address translation with the other threads (CPU and MTTOP) in the process.  

The MTTOP core then begins executing from the program counter it receives.  When it reaches an 

Exit instruction, it halts and waits for the MIFD to send a new task.  

4.4 Example of Xthreads vs. OpenCL 

To illustrate the xthreads programming model and API, we provide a simple example.  In 

Figure 4 and Figure 3, we provide the xthreads and OpenCL code, respectively, for computing the 

sum of two vectors of integers.  The xthreads code is fairly simple and intuitive.  There is a 

minimum amount of overhead to create tasks and set up the MTTOP.  The OpenCL code is far 

more complicated, largely because of all of the work it has to do to explicitly communicate 

between the CPU and the MTTOP. Increased code complexity obviously does not directly lead to 

poorer performance, but it does reveal situations in which more work must be done. 

 

 

 

 
Figure 2.  Compilation Toolchain 



10 

 

In the kernel file 
 
__kernel void vector_add(__global __read_only int * v1,  

                                  __global __read_only int * v2, 
                                  __global __write_only int * sum){ 

       unsigned int tid = get_global_id(0); 
       sum[tid] = v1[tid] + v2[tid]; 
} 

In the host file 
int main(){ 
  cl_platform_id platform_id = NULL; 
  cl_device_id device_id = NULL; 
  cl_uint ret_num_devices, ret_num_platforms; 
  cl_int ret; 
  ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms); 
  ret = clGetDeviceIDs( platform_id,CL_DEVICE_TYPE_DEFAULT,1,&device_id, &ret_num_devices); 
                        // Create an OpenCL context 
  cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret); 
                       // Create a command queue 
  cl_command_queue cmd_queue = clCreateCommandQueue(context, device_id, 0, &ret); 
  cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_str, (const size_t       
*)&source_size, &ret); 
                       // Build the program 

  ret = clBuildProgram(program, 0/*1*/, 0/*&device_id*/, NULL, NULL, NULL); 
  cl_mem v1_mem_obj = clCreateBuffer(context,  
        CL_MEM_ALLOC_HOST_PTR |  
        CL_MEM_READ_WRITE,256*sizeof(int), NULL, &ret); 
  cl_mem v2_mem_obj = clCreateBuffer(context,  
        CL_MEM_ALLOC_HOST_PTR | 
        CL_MEM_READ_WRITE, 256*sizeof(int), NULL, &ret); 
  cl_mem sum_mem_obj = clCreateBuffer(context, 
         CL_MEM_ALLOC_HOST_PTR | 
        CL_MEM_READ_WRITE, 256*sizeof(int), NULL, &ret); 
  int *v1 = (int*)clEnqueueMapBuffer(cmd_queue, v1_mem_obj, 
        CL_TRUE, 0, 0, 256*sizeof(int),0, NULL, NULL,NULL); 
  int *v2 = (int*)clEnqueueMapBuffer(cmd_queue, v2_mem_obj, 
        CL_TRUE, 0, 0, 256*sizeof(int),0, NULL, NULL,NULL); 
  for(int i = 0; i < 256; i++) { 
      v1[i] = rand(); 
      v2[i] = rand(); 
  } 
  clEnqueueUnmapMemObject(cmd_queue,v1_mem_obj,a,0,NULL,NULL); 
  clEnqueueUnmapMemObject(cmd_queue,v2_mem_obj,b,0,NULL,NULL); 
  cl_kernel kernel = clCreateKernel(program, "vector_add", &ret); 
                     // Execute the OpenCL kernel on the list 
  size_t global_item_size = size ; // Process the entire lists 

  size_t gsize = size ; // Process the entire list 
  size_t local_item_size = (size<64)?size:64; // Process one item at a time 

  global_item_size = global_item_size/local_item_size; 
  cl_event x; 
  ret=clSetKernelArg(kernel, 0, sizeof(int), &size); 
  ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&v1_mem_obj); 
  ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&v2_mem_obj); 
  ret = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&sum_mem_obj); 
  ret = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, &gsize, NULL, 0, NULL,NULL); 
  clFinish(cmd_queue); 
  clEnqueueUnmapMemObject(cmd_queue,sum_mem_obj,sum,0,NULL,NULL); 
  clReleaseMemObject(v1_mem_obj); 
  clReleaseMemObject(v2_mem_obj); 
  clReleaseMemObject(sum_mem_obj); 
  return 0; 
} 

Figure 3.  OpenCL Code 
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5 Experimental Evaluation 

The goal of this evaluation is to quantitatively determine the viability of the CCSVM system 

model for heterogeneous chips, for at least the specific implementation of it we have presented, 

and the xthreads programming model.  We believe this is the first experimental evaluation of the 

impact of CCSVM on performance, memory access efficiency, and programmability. We also 

believe that this is the first experimental evaluation of a CPU/MTTOP chip executing code with 

pointer-based data structures.   Throughout this evaluation, we focus on the memory system and 

communication; we try to factor out the details of the CPU and MTTOP core pipelines, which are 

orthogonal to this work. 

5.1 Methodology and Target System 

We have implemented our chip design in the gem5 full-system simulator [2].  Our extensions 

to gem5 enable it to faithfully model the functionality and timing of the entire system.  The 

simulated CPU cores are in-order x86 cores that run unmodified Linux 2.6 with the addition of our 

simple MIFD driver (~30 lines of C code).  The MTTOP cores are SIMT cores that have an 

Alpha-like ISA that has been modified to be data parallel.  The MTTOP’s ISA is also similar to 

PTX, the assembly-like intermediate language to which CUDA is compiled and that Nvidia 

drivers convert to the native ISA of Nvidia GPUs.  The details of the target system are in Table 2. 

Evaluating the performance of CCSVM running xthreads benchmarks is somewhat challenging 

for two reasons.  First, no xthreads benchmarks existed prior to this work, so we have had to port 

and re-write benchmarks.  Second, comparing the performance of CCSVM to other system models 

is complicated by the different programming models and the complexity of modeling existing 

systems.  For example, to truly model Intel’s SandyBridge or an AMD Fusion chip in a 

comparable way, we would need access to its driver and its native ISA, among other information 

that is not publicly available. We fundamentally cannot simulate a currently available HMC and, 

as academics, we cannot implement a complete HMC in hardware. 

struct args{ 
    int* v1, v2, sum;  // 3 vectors of ints 

    bool* done; 
} 
 

_MTTOP_  void add(int tid, args* arg){ 
    arg->sum[tid]=arg->v1[tid] +arg->v2[tid]; 
    mthread_signal(arg->done); 
} 
 

_CPU_ int  main(int argc, char** argv){ 
    args inputs; 
    inputs.v1=malloc(256*sizeof(int)); 
    inputs.v2=malloc(256*sizeof(int)); 
    inputs.sum=malloc(256*sizeof(int)); 
    inputs.done=malloc(256*sizeof(bool)); 
    for(int i=0;i<256;i++){ 
        inputs.v1[i]=rand(); 
        inputs.v2[i]=rand(); 
        inputs.done[i]=0; 
     } 
   mthread_create(0,256,&add,&inputs); 
   mthread_wait(0,255,inputs.done); 
   free(inputs.v1); 
   free(inputs.v2); 
   free(inputs.sum); 
   free(inputs.done); 
} 

Figure 4.  Xthreads Code 
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Thus, we cannot perform a perfectly equivalent “apples-to-apples” comparison.  Instead, we 

compare a real, current HMC to a simulator of our CCSVM design and configure the simulator to 

be conservative so as to favor the current HMC over our design.  We purchased an AMD “Llano” 

system based on its Quad-Core A8-3850 APU [11], and we use this real hardware running 

OpenCL software for comparisons to CCSVM running xthreads software. The APU’s 

specifications are in Table 2.   

The configuration parameters show how we favor the APU over the CCSVM design.  Notably, 

the simulated CCSVM CPU cores are in-order and capable of executing only one instruction every 

other cycle (i.e., max IPC is 0.5); thus, the simulated CCSVM CPU cores perform far worse than 

the CPU cores in the APU.  Also, the maximum throughput of the simulated CCSVM MTTOP is 

less than that of the APU’s GPU by a factor equal to the utilization of the VLIW width of the 

APU’s GPU cores.  When the APU’s GPU is fully utilizing each VLIW instruction, it has a 

throughput that is 4x that of the simulated CCSVM’s MTTOP; when the APU’s GPU is at its 

minimum VLIW utilization, its throughput is equal to that of the CCSVM MTTOP.   

5.2 Performance on “Typical” General Purpose Benchmarks 

We have argued that the loose coupling between the CPU and MTTOP cores in today’s 

systems is inefficient.  To experimentally demonstrate the potential benefits of tighter coupling 

between the CPU and MTTOP cores, we first compare the execution of a (dense) matrix 

multiplication kernel that is launched from a CPU to as many MTTOP cores as can be utilized for 

the matrix size.  Intuitively, the overhead to launch a task will be better amortized over larger task 

sizes, and the benefit of CCSVM will be highlighted by how it enables smaller tasks to be 

profitably offloaded to the MTTOP cores.  In Figure 5, we plot the log-scale runtimes of the AMD 

APU running OpenCL code and CCSVM running xthreads code, relative to the AMD CPU core 

(i.e., just using the CPU core on the APU chip), as a function of the matrix sizes.  For the APU, we 

present two runtime datapoints: full runtime and runtime without compilation and without 

OpenCL initialization code.   

The results are striking: CCSVM/xthreads greatly outperforms the APU, especially for smaller 

matrix sizes.  Eventually, as the matrices reach 1024x1024, the APU’s performance catches up to 

CCSVM/xthreads, because the APU’s raw GPU performance exceeds that of our simulated  

Table 2.  Simulated CCSVM System and AMD System Configurations 

 CCSVM System (simulated) AMD APU (A8-3850 hardware) [11] 

CPU 4 in-order x86 cores, 2.9 GHz, max IPC=0.5 4 out-of-order x86 cores, 2.9GHz, max 

IPC=4 

MTTOP • 10 MTTOP cores with Alpha-like ISA, 

600MHz. 

• Combined max of 80 operations per cycle 

• Each MTTOP core supports 128 threads and 

can simultaneously execute 8 threads. 

• 5 SIMD processing units with 16 VLIW 

Radeon cores per SIMD unit, 600 MHz.  

• Combined max of 80 VLIWinstrs/cycle 

• Each VLIW instruction is 1-4 operations 

(max 320 operations per cycle). 

On-chip 

memory 
• Each CPU core has:  

    L1I, L1D: write-back, 64KB, 4-way, 2-

cycle hit 

TLB: 64-entry, fully-associative 

• Each MTTOP core has: 

    L1I, L1D: write-back, 16KB, 4-way, 1-

cycle hit 

    TLB: 64-entry, fully-associative 

• All CPU and MTTOP cores share an 

inclusive 4MB L2: 

    4 1MB banks, 10 CPU cycles, 2 MTTOP 

cycles 

• Each CPU core has: 

L1I, L1D: 64KB, 4-way, 1ns hit 

L2: 1 MB, 3.6ns hit 

L2 TLB: 1024-entry 

• Each  SIMD processing unit has: 

 32KB of local memory 

Off-chip 

memory 

2GB DRAM, hit latency 100ns 8GB DDR3 DRAM, hit latency 72ns 

On-chip 

network 

2D torus, 12 GB/s link bandwidth CPUs connected to each other via crossbar 

CPUs and GPUs fully connected to 

memory controllers  
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MTTOP cores.  The results dramatically confirm that optimizing the communication between 

the CPU and MTTOP cores offers opportunities for vastly greater performances and for profitably  

offloading smaller units of work to MTTOP cores, thus increasing their benefits. 

In Figure 6, we plot the log-scale runtime results for a different benchmark: all-pairs shortest 

path.  The algorithm is a triply-nested loop that fills out an adjacency matrix—each (x,y) entry of 

the adjacency matrix is the distance between nodes x and y in a directed graph—with the shortest 

path from each node to each other node.  The algorithm requires a barrier between each iteration 

of the outermost loop.  Because the APU’s synchronization is quite slow, the APU’s performance 

never exceeds that of simply using the CPU core.  As with the matrix multiplication benchmark, 

CCSVM/xthreads vastly outperforms the APU/OpenCL over a range of matrix sizes.  Even after 

factoring out the OpenCL compilation and initialization time, CCSVM outperforms the APU by 

approximately two orders of magnitude. 

5.3 Performance on “Atypical” General Purpose Benchmarks 

We now explore two benchmarks that highlight the ability of CCSVM/xthreads to extend the 

types of computations that can be performed on CPU/MTTOP chips. 

 
Figure 5.  Performance on Matrix Multiply.  Results show how CCSVM reduces overhead to launch 

MTTOP tasks. 

 

 
Figure 6.  Performance on All-Pairs Shortest Path.  Results show how CCSVM improves 

performance by avoiding multiple MTTOP task launches for each parallel phase. 
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5.3.1  Pointer-Based Data Structures, Recursion, and Frequent CPU-MTTOP Communication 

We ported the well-known barnes-hut n-body simulation benchmark from a pthreads version.  

This benchmark extensively uses pointers and recursion and, most problematically for current 

CPU/MTTOP chips, involves frequent toggling between sequential and parallel phases.  Ideally, 

we would like to use the CPU core for the sequential phases and the MTTOP cores for the parallel 

phases, but switching between them on current HMCs is too slow to be viable.  However, with 

CCSVM/xthreads, this switching between them and the associated CPU-MTTOP communication 

is fast and efficient.  In Figure 7, we show the runtime of CCSVM/xthreads compared to a single 

AMD CPU core.  We also compare to the pthreads version of the benchmark running with 4 

threads on the 4 CPU cores on the AMD APU.   We could not find or develop an OpenCL version 

of this benchmark against which to compare, so we could not exploit the APU’s GPU.  We are 

aware that there are techniques to perform the n-body problem without pointer-chasing [5], but we 

use the barnes-hut application as a “strawman” for parallelizable pointer-based applications. The 

results show that CCSVM/xthreads can outperform pthreads even for small problem sizes.  There 

is great potential to use MTTOP cores to accelerate important algorithms, and this potential is 

unlocked by an HMC with CCSVM running xthreads code that exploits it. 

5.3.2 Pointer-Based, Dynamically Allocated Data Structures 

CCSVM with xthreads enables programmers to use space-efficient, pointer-based, dynamically 

allocated shared data structures.  The only CPU-MTTOP software that partially provides this 

capability is CUDA 4.0 (released May 2011), which provides dynamic allocation for a subset of 

data types.  Unless using CUDA 4.0, programmers convert data structures that would typically be 

pointer-based and dynamically allocated into statically allocated array-based structures, often at a 

huge expense in storage.   

To support these types of benchmark, we added a mttop_malloc() function to the xthreads API.  

The mttop_malloc() function offloads the malloc to a CPU by having the CPU wait for the 

MTTOP threads to signal the CPU that they wish to dynamically allocate memory.  When the 

CPU receives these signals, it performs the malloc() functions on their behalf and returns pointers 

to the MTTOP threads.  This approach to dynamically allocating memory at the MTTOP is not 

particularly efficient or elegant, but it does demonstrate that it is possible; future work will involve 

optimizing this process. 

To demonstrate the viability of dynamic allocation on CCSVM/xthreads, we developed a 

sparse matrix multiplication benchmark.  For extremely large, sparse matrices, the only tractable 

way to represent them is with pointer-based data structures that link non-zero elements.  In Figure 

8, we plot the speedup of CCSVM/xthreads on this benchmark, relative to the performance on the  

 
Figure 7.  Barnes-Hut performance.  CCSVM/xthreads enables pointer chasing code. 
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AMD CPU.  As with barnes-hut, there is no OpenCL version.  The figure on the left has a fixed 

sparsity (1%) and varies the matrix size, and the figure on the right has a fixed matrix size and  

varies the sparsity.  We observe that CCSVM/xthreads obtains speedups until the matrix 

density increases to the point at which the mttop_malloc() calls constrain the performance 

CCSVM/xthreads.  Even where CCSVM has speedups, the speedups are not nearly as large as for 

the other benchmarks, due to the inefficiency of mttop_malloc() calls.  However, our primary goal 

was not to demonstrate huge speedups, but rather to show that it is possible to run code with 

dynamically-allocated pointer-based data structures on a CPU/MTTOP chip.   

 

5.1 Off-Chip Bandwidth 

CCVSM avoids the vast amount of off-chip traffic that current chips require for CPU-MTTOP 

communication.  On a CCSVM chip, as in today’s homogeneous all-CPU chips, the majority of 

communication is performed on-chip.  In this section, we compare the number of off-chip accesses 

for our CCVSM chip and the APU, and we use the (dense) matrix multiply benchmark from 

earlier in this section.  We obtain the results for the AMD system from its performance counters.  

We plot the log-scale results in Figure 9.  As with the performance results, the differences between 

the APU/OpenCL and CCSVM/xthreads are dramatic.  Furthermore, as the problem size 

increases, that ratio remains roughly the same, and the number of DRAM accesses from the AMD 

CPU core increases greatly as the working set outgrows the CPU core’s caches.  The CPU core, 

unlike the APU, cannot coalesce strided memory accesses, and thus its off-chip DRAM accesses 

increase far more than those of the APU. 

These DRAM access results have two implications.  First, the results help to explain the 

performance results.  The APU requires far more DRAM accesses, and these long-latency off-chip 

accesses hurt its performance, relative to CCSVM and its largely on-chip communication.  

Second, given both the importance of using DRAM bandwidth efficiently and the energy 

consumed by DRAM accesses, the results show that CCSVM/xthreads offers tremendous 

advantages for system design. 

6 Open Challenges in CCSVM for HMCs 

The results in the previous section show that an HMC with a tightly-coupled CCSVM memory 

system can perform much better on small problem sizes compared to a state-of-the-art commercial 

HMC with looser coupling of cores.  We now address some of the open challenges in achieving 

this performance benefit. 

6.1 Maintaining Graphics Performance 

Many current HMCs are CPU/GPU chips, and we must be careful to avoid harming the GPU 

performance on graphics. The coherence protocol for our HMC with CCSVM relies on a shared, 

inclusive L2 cache.  It may be difficult to share such a low-level cache or even any level of cache, 

because current CPU caches are optimized for latency and current GPU caches are optimized for 

throughput. Given the importance of graphics performance,  

 

Figure 8.  Performance of Sparse Matrix Multiplication 
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it seems unlikely that GPU caches will be modified to become more like CPU caches. Without 

sharing a cache, we would need an efficient technique to move data between the CPU and GPU 

cache hierarchies without accessing off-chip memory. A directory protocol with a stand-alone 

directory structure (i.e., not embedded in any cache) is a potential solution. 

Another potential challenge is that our HMC assumes write-back caches, even though current 

GPUs support write-through caches for reasons specific to graphics workloads.  Future HMC 

designs will either have to adapt to write-through caches for CPUs, adapt write-back caches for 

GPUs, or provide a mechanism to change the write-back versus write-through policy based on the 

workload. 

6.2 Scalability of Cache Coherence Protocol  

We do not claim that the protocol in our CCSVM HMC is optimal; we did not tailor it in any 

way for a HMC.  Future work will need to consider both tailored protocols as well as the 

scalability of such protocols to the vast number of cores (CPU and MTTOP) expected in future 

HMCs.  Recent work indicates that scalable coherence is achievable [28][10], but it is not clear 

how to maintain scalability with a protocol that performs well for HMCs. 

7 Related Work 

In addition to the AMD APU that we have already discussed, there is a vast space of possible 

HMC memory system designs.  In this section, we discuss a few other notable HMCs, plus we 

present other related work.   

7.1 IBM PowerEN 

IBM’s PowerEN chip [3] is a heterogeneous multicore processor with Power-ISA CPU cores 

and several accelerator coprocessors.  The coprocessors are fairly tightly coupled to the CPU cores 

and to each other, and all cores share virtual memory.  To share virtual memory, the coprocessors 

must be able to perform address translation, and thus the PowerEN provides the coprocessors with 

an MMU for this purpose.  Coprocessors are not full peers in the cache coherence protocol, but 

instead communicate with CPU cores via cache-coherent DMA. 

7.2 Intel Prototypes: EXO and Pangaea 

Intel’s EXO prototype [40] consists of a multicore x86 CPU chip and a GPU chip, with shared 

virtual memory across the CPU and GPU cores.  The paper focuses on the hardware prototype, 

which does not provide coherence, but later mentions a modeled but undescribed version of the 

 
Figure 9.  DRAM Accesses for Matrix Multiply.  CCSVM/xthreads avoids many off-chip 

accesses. 
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design that provides coherence.  Unlike typical homogeneous systems with CCSVM, the GPU 

cores do not have data caches. 

Intel’s Pangaea prototype [41] is a chip with CPU and GPU cores that share a virtual address 

space and share an L2 cache.  As in EXO, the GPU cores do not have data caches, thus avoiding 

many coherence issues.  Coherence between the GPU and the CPU cores’ writeback L1 caches is 

enforced only at the request of software.  Software can specify that a region of shared virtual 

memory is to be coherent, and only that region is kept coherent.  Using software to manage 

coherent regions of memory is a key difference between Pangaea and today’s CCVSM 

homogeneous chips which use hardware coherence. 

7.3 Evaluations of CPU/GPU Chips 

Researchers have recently compared the performance of workloads running on CPU/GPU chips 

and, in the process, have uncovered numerous performance issues.  Gregg and Hazelwood [14] 

experimentally showed that the time to transfer data between CPU and GPU cores must be 

considered to avoid misleading conclusions; their results inspire work, such as ours, to reduce the 

overhead of communication between CPU and GPU cores.  Similarly, Daga et al. [8] showed that 

the AMD APU’s performance is far better than previous designs in which the CPU and GPU cores 

communicated over PCIe.   Lee et al. [26] showed how certain performance evaluations have 

unfairly favored GPUs, with respect to CPUs. 

8 Conclusions  

We have demonstrated that the tight coupling of cores provided by CCSVM can potentially 

offer great benefits to an HMC.  We do not claim that our CCVSM architecture, chip 

microarchitecture, or xthreads programming model are “optimal,” assuming that optimality could 

even be defined.  Rather, our CCSVM architecture with the xthreads programming model is a 

functional and promising starting point for future research into new features (e.g., programming 

language extensions) and optimizations for performance and efficiency (e.g., coherence protocols 

and consistency models tailored for heterogeneous chips, OS support for CCSVM on non-CPU 

cores, etc.). 

9 Acknowledgments 

This material is based on work supported by AMD and by the National Science Foundation 

under grant CCF-1216695.   

10 References 

[1]  Advanced Micro Devices, Inc., AMD I/O Virtualization Technology (IOMMU) Specification. 

Publication #48882, Revision 2.00, 2011. 

[2]  N. Binkert et al., “The Gem5 Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, p. 1, 

Aug. 2011. 

[3]  J. D. Brown, S. Woodward, B. M. Bass, and C. L. Johnson, “IBM Power Edge of Network Processor: 

A Wire-Speed System on a Chip,” IEEE Micro, vol. 31, no. 2, pp. 76–85, Apr. 2011. 

[4]  B. Burgess, B. Cohen, M. Denman, J. Dundas, D. Kaplan, and J. Rupley, “Bobcat: AMD’s Low-

Power x86 Processor,” IEEE Micro, vol. 31, no. 2, pp. 16–25, Mar. 2011. 

[5]  M. Burtscher and K. Pingali, “An Efficient CUDA Implementation of the Tree-based Barnes Hut n-

Body Algorithm,” in GPU Computing Gems Emerald Edition, 2011, pp. 75–92. 

[6]  P. Conway and B. Hughes, “The AMD Opteron Northbridge Architecture,” IEEE Micro, vol. 27, no. 

2, pp. 10–21, Apr. 2007. 

[7]  P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache Hierarchy and 

Memory Subsystem of the AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Apr. 

2010. 

[8]  M. Daga, A. M. Aji, and W. Feng, “On the Efficacy of a Fused CPU+GPU Processor (or APU) for 

Parallel Computing,” 2011, pp. 141–149. 

[9]  E. Demers, “Summit Keynote: Evolution of AMD’s Graphics Core, and Preview of Graphics Core 

Next,” in AMD Fusion Developer Summit, 2011. 

[10]  M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo Directory: A Scalable Directory for 

Many-Core Systems,” in IEEE 17th International Symposium on High Performance Computer 

Architecture (HPCA), 2011, pp. 169–180. 



18 

 

[11]  D. Foley et al., “AMD’s ‘Llano’ Fusion APU,” in Hot Chips 23, 2011. 

[12]  H. Franke et al., “Introduction to the Wire-Speed Processor and Architecture,” IBM J. Res. Dev., vol. 

54, no. 1, pp. 27–37, Jan. 2010. 

[13]  I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W. W. Hwu, “An Asymmetric Distributed 

Shared Memory Model for Heterogeneous Parallel Systems,” in Proceedings of the International 

Conference on Architectural Support for Programming Languages and Operating Systems, 2010, vol. 

45, pp. 347–358. 

[14]  C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate CPU vs. GPU performance 

without the answer,” in Proceedings of the IEEE International Symposium on Performance Analysis of 

Systems and Software, 2011, pp. 134–144. 

[15]  B. A. Hechtman and D. J. Sorin, “Exploring Memory Consistency for Massively-Threaded 

Throughput-Oriented Processors,” in Proceedings of the International Symposium on Computer 

Architecture, 2013. 

[16]  Intel, “Intel® OpenSource HD Graphics Programmer’s Reference Manual (PRM), Volume 1, Part 1: 

Graphics Core (SandyBridge).” May-2011. 

[17]  J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy, “Introduction to the 

Cell Multiprocessor,” IBM Journal of Research and Development, vol. 49, no. 4.5, pp. 589–604, Jul. 

2005. 

[18]  S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the Future of Parallel 

Computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, Oct. 2011. 

[19]  J. H. Kelm et al., “Rigel: An Architecture and Scalable Programming Interface for a 1000-Core 

Accelerator,” in Proceedings of the 36th Annual International Symposium on Computer Architecture, 

2009, pp. 140–151. 

[20]  J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel, “Cohesion: A Hybrid Memory 

Model for Accelerators,” in Proceedings of the 37th Annual International Symposium on Computer 

Architecture, 2010, pp. 429–440. 

[21]  R. Krashinsky et al., “The Vector-Thread Architecture,” in 31st International Symposium on 

Computer Architecture, 2004, pp. 52–63. 

[22]  L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess 

Programs,” IEEE Transactions on Computers, vol. C–28, no. 9, pp. 690–691, Sep. 1979. 

[23]  H. Q. Le and others, “IBM POWER6 Microarchitecture,” IBM Journal of Research and Development, 

vol. 51, no. 6, 2007. 

[24]  J. Lee and H. Kim, “TAP: A TLP-Aware Cache Management Policy for a CPU-GPU Heterogeneous 

Architecture,” in High Performance Computer Architecture (HPCA), 2012 IEEE 18th International 

Symposium on, 2012, pp. 1 –12. 

[25]  J. Lee, J. Lee, S. Seo, J. Kim, S. Kim, and Z. Sura, “COMIC++: A Software SVM System for 

Heterogeneous Multicore Accelerator Clusters,” in 2010 IEEE 16th International Symposium on High 

Performance Computer Architecture (HPCA), 2010, pp. 1 –12. 

[26]  V. W. Lee et al., “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing 

on CPU and GPU,” in Proceedings of the 37th Annual International Symposium on Computer 

Architecture, 2010, pp. 451–460. 

[27]  K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz, “Smart Memories: A Modular 

Reconfigurable Architecture,” in Proceedings of the 27th Annual International Symposium on 

Computer Architecture, 2000. 

[28]  M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why On-chip Cache Coherence is Here to Stay,” 

Communications of the ACM, vol. 55, no. 7, pp. 78–89, Jul. 2012. 

[29]  S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: x86-TSO,” in Proceedings of the 

Conference on Theorem Proving in Higher Order Logics, 2009. 

[30]  B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “UNified Instruction/Translation/Data 

(UNITD) Coherence: One Protocol to Rule Them All,” in Proceedings of the Fifteenth International 

Symposium on High-Performance Computer Architecture, 2010. 

[31]  L. Seiler and et al., “Larrabee: A Many-Core x86 Architecture for Visual Computing,” in Proceedings 

of ACM SIGGRAPH, 2008. 

[32]  M. Shah et al., “UltraSPARC T2: A Highly-Threaded, Power-Efficient, SPARC SOC,” in IEEE Asian 

Solid-State Circuits Conferenec, 2007, pp. 22–25. 

[33]  I. Singh, A. Shriraram, W. W. L. Fung, M. O’Connor, and T. M. Aamodt, “Cache Coherence for GPU 

Architectures,” in Proceedings of the 19th IEEE International Symposium on High-Performance 

Computer Architecture, 2013, pp. 578–590. 

[34]  R. Singhal, “Inside Intel Next Generation Nehalem Microarchitecture,” in Hot Chips 20, 2008. 

[35]  D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and Cache Coherence, 

Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2011. 



19 

 

[36]  S. Steele, “ARM GPUs: Now and in the Future.” 

http://www.arm.com/files/event/8_Steve_Steele_ARM_GPUs_Now_and_in_the_Future.pdf, Jun-2011. 

[37]  P. Sweazey and A. J. Smith, “A Class of Compatible Cache Consistency Protocols and their Support 

by the IEEE Futurebus,” in Proceedings of the 13th Annual International Symposium on Computer 

Architecture, 1986, pp. 414–423. 

[38]  P. J. Teller, “Translation-Lookaside Buffer Consistency,” IEEE Computer, vol. 23, no. 6, pp. 26–36, 

Jun. 1990. 

[39]  V. Tipparaju and L. Howes, “HSA for the Common Man.” 

http://devgurus.amd.com/servlet/JiveServlet/download/1282191-1737/HC-4741_FINAL.pptx, 2012. 

[40]  P. H. Wang et al., “EXOCHI: Architecture and Programming Environment for a Heterogeneous Multi-

Core Multithreaded System,” in Proceedings of the 2007 ACM SIGPLAN conference on Programming 

language design and implementation, 2007, pp. 156–166. 

[41]  H. Wong et al., “Pangaea: A Tightly-Coupled IA32 Heterogeneous Chip Multiprocessor,” in 

Proceedings of the 17th international Conference on Parallel Architectures and Compilation 

Techniques, 2008, pp. 52–61. 

[42]  M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A Fully Integrated Multi-CPU, GPU and 

Memory Controller 32nm Processor,” in 2011 IEEE International Solid-State Circuits Conference, 

2011, pp. 264–266. 

 


