
USING LIGHTWEIGHT CHECKPOINT/RECOVERY TO IMPROVE THE

AVAILABILITY AND DESIGNABILITY OF SHARED MEMORY

MULTIPROCESSORS

by

Daniel J. Sorin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN - MADISON

2002

i
Abstract
ssors.

pond-

the

s. Des-

suf-

hich to

.

heck-

ory

ries—to

rmanent

ution is

para-

e and

t vali-

covery

on

-

tech-

m-wide

events,

ing
In this thesis, we address the issues of availability and designability for shared memory multiproce

While Moore’s Law has provided architects with faster and more numerous transistors, it has corres

ingly degraded availability and designability. Availability is increasingly difficult to achieve due to

combination of smaller devices and wires, along with more components in more aggressive design

ignability, which we define as the difficulty of designing and verifying a computer system, has also

fered as a result of these same trends. As computer architects are given more transistors with w

work, system designs generally become much more complicated and more difficult to verify correct

To address these downward trends in availability and designability, we propose using a lightweight c

point/recovery scheme calledSafetyNet. SafetyNetis a hardware-only scheme that allows a shared mem

multiprocessor to recover its system-wide state—including processor registers, caches, and memo

a previous checkpoint. Thus, in the case of an error due to a device fault or a design fault,SafetyNetallows

the system to recover to a pre-fault state and re-execute. In the case of transient faults and some pe

faults (i.e., those permanent faults that can be tolerated by reconfiguration), recovery and re-exec

sufficient to transparently tolerate the faults.

SafetyNethas three distinguishing features that enable it to provide error-free performance that is com

ble to that of an unprotected system. First, it coordinates the system-wide checkpoints in logical tim

leverages “logically atomic” cache coherence transactions. By using logical time,SafetyNetdoes not have

to quiesce the system or exchange synchronization messages at each checkpoint. Second,SafetyNetuses

an optimized logging scheme to reduce the amount of checkpoint state. Third, it pipelines checkpoin

dation—the process of determining that a checkpoint is error-free and can be made the new re

point—and keeps it entirely in the background.

We demonstrate thatSafetyNetcan be used in conjunction with a variety of existing error detecti

schemes to improve system availability. We also useSafetyNetto innovate in the areas of availability and

designability. To improve availability, we leverageSafetyNet’sability to tolerate long error detection laten

cies.SafetyNetcan tolerate latencies that are long enough to enable much stronger error detection

niques than are currently feasible. These techniques can use inter-node communication and syste

invariant checking. To improve designability, we useSafetyNetto enablespeculatively correct designs, as

well as to tolerate certain classes of unintentional design faults. For rare and complicated system

we demonstrate that we can fall back onSafetyNet(and treat these events as errors) instead of devot

ii

esign

ur

up-

gligible
design time and verification effort towards handling them. Speculative correctness can simplify the d

and/or enable otherwise infeasible design points.

We evaluateSafetyNetwith full-system simulation and commercial workloads running on Solaris 8. O

results show thatSafetyNethas negligible impact on error-free performance, while avoiding data corr

tion and system failures when errors are detected. We show thatSafetyNetcan provide this error recovery

with reasonable storage costs (512-kbyte buffers at each processor and each memory) and with ne

additional cache bandwidth.

iii
Acknowledgments
sh to

upport,

e I am

espite

pe to

this is

years,

nd for

other

hts I

to

h my

so for

tion

em-

e Uni-

him,

Wis-

for

e to

rsue my

e. My

help,

dis-

thank

i also
This thesis would not have made it to this point without the contributions of many people, and I wi

thank as many of them as I can remember. My parents and sister have been a wonderful source of s

inspiration, and encouragement throughout my education, and they deserve much credit for wher

today. Deborah, my lovely fiancee, is my inspiration, and she deserves all the thanks in the world, d

claiming not to understand what I do. I would not be who I am today without her, and I can only ho

make her as happy as she makes me.

The University of Wisconsin has been a wonderful place for me to pursue my Ph.D., and much of

because of its outstanding faculty. My advisor, Prof. David Wood, has mentored me for the past six

and I have learned how to perform research under his wise guidance. I thank David for his support a

forcing me, sometimes against my wishes at the time, to be a better researcher. Prof. Mark Hill, the

director of the Multifacet project, has been a joy to work with. Besides the many technical insig

gleaned from Mark, I thank him for his invaluable advice and for providing a terrific role model for how

be a researcher. Prof. Mary Vernon, with whom I worked early in my graduate career, led me throug

first research. I thank Mary not only for teaching me how to perform and present research, but al

pushing me to the limits of my abilities (which, I might add, are still well short of hers). My collabora

with Prof. Anne Condon taught me how to think more formally and precisely, while simultaneously d

onstrating that I better not switch areas into theory.

Other faculty at Wisconsin and beyond have contributed to where I am now. Prof. Derek Eager at th

versity of Saskatchewan has been a valuable collaborator, and I particularly enjoyed working with

even when I got stranded in Saskatoon. I thank Profs. Guri Sohi, Mikko Lipasti, and Kewal Saluja at

consin for their valuable insights into this thesis work. I thank Prof. Alvy Lebeck at Duke University

helping to convince me to go to Wisconsin, and I also thank Prof. John Board at Duke for inspiring m

pursue computer architecture in the first place.

The students at Wisconsin are the other reason that it has been such a wonderful place for me to pu

Ph.D. First and foremost, Milo Martin has been the best possible collaborator and partner in crim

research has benefited more from Milo than from anyone else, and I owe him many thanks for his

insights, support, and leftover pizza. I would like to thank Amir Roth (now Prof. Roth) for countless

cussions, some of which did not involve comparisons of our respective hometown sports teams. I

Craig Zilles and Ravi Rajwar, as well, for numerous valuable discussions of our research. Rav

lakal

r, my

ould

oject,

lot of

olks at

Com-

e com-

tive

ship
iv
deserves many thanks for always being willing to play tennis on a moment’s notice. I thank Manoj P

for his collaboration on more Lamport clock papers than we could have imagined. I thank Carl Maue

officemate, for putting up with me, particularly during ISCA seasons when a less saintly officemate w

have had me evicted. Lastly, I would like to thank the other members of the Wisconsin Multifacet pr

many of whose contributions have improved this research.

Research that depends on many compute-years of full-system simulation is not achieved without a

help. For supporting Simics and answering countless questions at all hours, I thank the industrious f

Virtutech, particularly Peter Magnusson, Bengt Werner, and Andreas Moestedt. At Wisconsin, the

puter Systems Lab and the Condor project (especially Erik Paulson) enabled me to soak up all thos

pute-years. I also thank Erin Miller and Alicia Walley for expertly solving the numerous administra

issues I encountered. Lastly, I thank Intel Corporation for providing me with an Intel Graduate Fellow

and my very own laptop.

 . . 3

. . . 4

.

. 7

. . . 9

. . 10

 . 11

. . 13

15

 .

 . 17

 . 17

 . 19

 . . 21

. . 22

 . . 23
v
Table of Contents

Abstract i

Acknowledgments iii

Table of Contents v

List of Figures ix

List of Tables xi

Chapter 1 Introduction 1

1.1 A Case for Supporting Availability .

1.2 A Case for Supporting Designability .

1.3 Background Material . 5

1.3.1 Availability . 5

1.3.2 Designability . 6

1.4 SafetyNet: Unifying the Support for Availability and Designability

1.5 Classification of Errors Due to Device and Design Faults .

1.5.1 Four Aspects of Error Characterization .

1.5.2 Classifying Errors in the Taxonomy .

1.5.3 Hardware Faults Not Tolerated .

1.6 Thesis Contributions .. . 14

Chapter 2 SafetyNet: Abstraction and Implementation

2.1 SafetyNet Abstraction . 15

2.1.1 Incremental Checkpointing Via Logging .

2.1.2 Creating Consistent Checkpoints in Logical Time .

2.1.3 Validating Checkpoints and Deallocating Checkpoint State

2.1.4 Recovering the System to a Consistent Global State .

2.1.5 Input/Output Commit Problems .

2.1.6 Other Classes of Coherence Protocols and Memory Models

. 24

. .

 . .

. .

. . 3

 . 33

. . . 35

. . 36

. . 38

 . .

1

. . 42

 . . 42

 . . 44

. . 45

. . 49

 . . 50

. . 51

. . 52

. . 53

. . 55
vi
2.1.7 Integrating SafetyNet with Other Levels of Checkpoint/Recovery

2.2 Implementing SafetyNet . 25

2.2.1 System Model . 26

2.2.2 Logical Time Base . 28

2.2.3 Logging . 30

2.2.4 Checkpoint Creation . 2

2.2.5 Checkpoint Validation and Deallocation of Checkpoint State

2.2.6 System Recovery and Restart .

2.2.7 Implementation Details .

2.2.8 Summary of Implementation .

2.3 SafetyNet Conclusions . 39

Chapter 3 SafetyNet Evaluation 4

3.1 High-Level Performance Model .

3.1.1 Error-Free Performance .

3.1.2 Performance in Presence of Errors .

3.2 Methodology . 44

3.2.1 Simulation Infrastructure and Target System .

3.2.2 Workloads .. . 47

3.3 Experiments . 49

3.3.1 Experiment 1: Error-Free Performance .

3.3.2 Experiment 2: Dropped Messages .

3.3.3 Experiment 3: Lost Switch .

3.4 Sensitivity Analyses . 51

3.4.1 Checkpoint Log Buffer Storage Cost .

3.4.2 Checkpoint Interval Length .

3.4.3 Register Checkpointing Latency .

. . 56

 . .

. . 60

. . 60

 . . 61

. . 61

. . . 6

 . . 62

 . 63

 . . 63

. . 64

. . 65

. .

. . 66

 . 67

 . 69

 . 69

 . 72

 .

. . 77

 78

. 81

 . 85
vii
3.4.4 Sensitivity to the Rate of Soft Errors .

3.4.5 Cache Bandwidth .57

3.5 Summary . 58

Chapter 4 Availability 59

4.1 Traditional Hardware Error Detection Mechanisms .

4.1.1 Interconnection Network Errors .

4.1.2 Coherence Protocol Errors .

4.1.3 Cache Hierarchy and Memory Errors .

4.1.4 Processor Core Errors . 2

4.1.5 SafetyNet Hardware Errors .

4.1.6 Device Faults Not Tolerated with SafetyNet .

4.2 Global Recovery versus Local Recovery .

4.2.1 General Discussion of FER vs. Global BER .

4.2.2 Interconnect Link Errors .

4.2.3 Processor Errors . 66

4.3 Innovations in Hardware Error Detection .

4.3.1 Detecting Errors with Signature Analysis .

4.3.2 Developing a Simplified Signature Analysis Example .

4.3.3 Checking Message-Level Invariants with Signature Analysis

4.3.4 Checking Coherence-Level Invariants with Signature Analysis

4.4 Summary of Availability . 74

Chapter 5 Designability 77

5.1 Errors due to Speculatively Correct Design .

5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design

5.1.2 Enabling Adaptive Routing in the Interconnection Network

5.1.3 Avoiding Pathological Mis-speculation .

. . 85

 . . 87

 . .

. .

. . 91

. . 92

 . . 93

. . 94

. . 95

 . 96

11
viii
5.2 Errors Due to Unintentional Design Faults .

5.2.1 An Example in the Cache Coherence Protocol .

5.2.2 General Properties . 89

5.3 Summary of Designability . 90

Chapter 6 Related Work 91

6.1 Availability . 91

6.1.1 Hardware Backward Error Recovery .

6.1.2 Software Backward Error Recovery .

6.1.3 Message Passing Backward Error Recovery .

6.1.4 (Hardware) Forward Error Recovery .

6.2 Designability . 95

6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes

6.4 Using Logical Time to Coordinate Multiprocessor Systems .

Chapter 7 Summary 99

References 101

Appendix A: Tabular Specification of SafetyNet Directory Protocol 1

 . . . 9

. . 2

. . 2

. . .

 .

 . . 30

. . 34

.

 . . 50

. . 52

. . 54

 . . 55

 . 55

 . . 56

. . . 5

 . 58

 . . 64

. . 79

. 82

 . . 84

. . 112
ix
List of Figures

1-1 SafetyNet abstraction . 7

1-2 Example SafetyNet system implementation .

2-1 SafetyNet abstraction . 16

2-2 Example of checkpoint coordination . 0

2-3 Checkpoint log buffer (CLB) structure . 6

2-4 SN-Snooping system model . 28

2-5 SN-Directory system model .. 28

2-6 Ensuring that logical time respects causality .

2-7 Logging at the cache . 31

2-8 Two-phase validation of checkpoint CPi .

2-9 Two-phase recovery/restart . . . 36

3-1 Performance comparison of SafetyNet with an unprotected system

3-2 Workload intensity (Apache workload) .

3-3 Performance vs. CLB size .. . 53

3-4 Performance as a function of checkpoint interval (512 kbyte CLBs)

3-5 Performance vs. CLB size for 500,000 cycle intervals .

3-6 Performance vs. CLB size for 1 million cycle intervals .

3-7 Performance as a function of register checkpointing latency .

3-8 SafetyNet performance vs. soft error rate . 7

3-9 Bandwidth vs. checkpoint interval (static web workload) .

4-1 Rough comparison of BER vs. FER .

5-1 Example of deadlock in interconnection network .

5-2 Violating point-to-point order with adaptive routing .

5-3 Performance of a system with adaptive routing .

A-1 Protocol state machines and their incoming queues .

x

 . . .

. . . 6

 . . . 73

. . . 78

. . . 86

.

 .

.

. . 117

. . 118

. . 119

. . 120

 .

.

 .

.

.

. .
xi
List of Tables

1-1 Classification of illustrative errors. 12

2-1 Modifications to SafetyNet cache behavior. .37

3-1 Target system parameters. 45

3-2 Workload execution behavior . 49

4-1 Classification of illustrative errors due to device faults. 0

4-2 Coherence-level signature update function (SN-Snooping) .

5-1 Classification of illustrative errors due to speculatively correct design

5-2 Classification of illustrative errors due to unintentional design faults.

A-1 SN-Directory - cache controller states. .. . 113

A-2 SN-Directory - cache controller actions . 114

A-3 SN-Directory - cache controller events .. 115

A-8 SN-Directory - directory controller states . 116

A-4 SN-Directory - cache controller transitions (part 1 of 4).

A-5 SN-Directory - cache controller transitions (part 2 of 4).

A-6 SN-Directory - cache controller transitions (part 3 of 4).

A-7 SN-Directory - cache controller transitions (part 4 of 4).

A-9 SN-Directory - directory controller actions. 121

A-10 SN-Directory - directory controller events . 122

A-11 SN-Directory - directory controller transitions .123

A-12 SN-Directory - network interface actions . 124

A-13 SN-Directory - network interface events . 125

A-14 SN-Directory - network interface transitions . 125

xii

1
Chapter 1
, such

ructure,

in turn,

as com-

ers are

y multi-

work-

e expo-

ce has

ce has

es that

at con-

ten

me

cor-

tion

sys-

ifest

s diffi-

e avail-

d that

evelop
Introduction

Computers are becoming increasingly important in our daily lives. We rely upon computer services

as electronic commerce and information delivery. These services are based upon software infrast

such as database management systems and web hosting software. This software infrastructure,

depends upon the hardware infrastructure provided by computer systems. These machines, known

mercial servers, have become an integral part of society’s infrastructure. These commercial serv

often systems with multiple processors that share a single memory address space. Shared memor

processors provide the performance necessary for running commercial applications, especially for

loads that exhibit abundant concurrency, such as databases and web servers.

Computer system performance, including that of shared memory multiprocessors, has harnessed th

nential trend described by Moore’s Law and complemented by architectural advances. Performan

traditionally been the focus of most research in computer architecture, and increasing performan

enabled qualitative improvements in computing. But beyond performance, there are other featur

contribute to the quality of a commercial server. This thesis addresses two other system aspects th

tribute towards system quality:availability anddesignability. Unfortunately, as we will discuss, Moore’s

Law presents increasing challenges for both of these issues.

Availability is the probability that a system is functioning correctly at a given time. Availability is of

confused withreliability, which is the probability that a system that is functioning correctly at a given ti

will continue to function correctly for a specified amount of time afterwards. A system may function in

rectly if a fault (“a physical defect, imperfection, or flaw” [80]) manifests itself as an error (“a devia

from accuracy or correctness” [80]). Availability is a function of both the frequencies of faults and the

tem’s ability to tolerate them—either by masking them or recovering from them—when they man

themselves as errors. A highly available system must thus avoid and/or tolerate faults. Avoidance i

cult, though, because the smaller and more numerous transistors enabled by Moore’s Law degrad

ability by increasing fault frequencies. Patterson argued recently that faults are a fact of life an

designers must learn to deal with them [72]. In Section 1.1, we further argue why architects should d

systems that provide improved availability by tolerating increasing numbers of faults.

ability,

itects

ortant

m and

Since

nfore-

month

worst-

urces

ould like

se for

in des-

its

ent of

t/recov-

es

se of

oint of

to seam-

-

detec-

fying

fault,

ative

hen

ance,

e case
2
We define designability as the ease with which a system can be designed and verified. As with avail

Moore’s Law causes designability to suffer. Having more transistors with which to work enables arch

to design more complicated systems that are more difficult to design and verify. Designability is imp

because it relates directly to cost, for two broad reasons. First, if it takes longer to design a syste

longer to verify that the system is correct, this increase in time translates to lost performance.

Moore’s Law has provided exponential increases in transistors and, in turn, performance over time, u

seen additional time to market incurs an exponential loss in performance. For example, an eighteen

product slip is roughly a factor of two in performance that has been lost. Second, systems that target

case scenarios, in an effort to simplify design and verification, are often far costlier, in terms of reso

and performance, than designs that could target the common case. For both of these reasons, we w

to be able to design systems more quickly and more efficiently. In Section 1.2, we present a ca

improving system designability.

There exists a large body of prior research in available systems and some limited current research

ignability. In Section 1.3, we present a brief overview of this existing work, in order to illustrate

achievements and limitations, thus motivating our research in these areas. We present a full treatm

the related work in Chapter 6.

To address the issues of availability and designability, this thesis presents a system-wide checkpoin

ery scheme calledSafetyNet. SafetyNet,described briefly in Section 1.4 and in depth in Chapter 2, unifi

the support for availability and designability by recovering the system to a pre-fault state in the ca

errors due to both device faults and design faults. The recovery point is a globally consistent checkp

the system state, including the memory system and cache coherence protocol, enabling the system

lessly resume execution after recovery. We describedSafetyNetin previous work [100], but that research

only addressed the use ofSafetyNetfor improving availability with conventional error detection tech

niques. This thesis not only explores this area in greater depth, but it also develops innovative error

tion mechanisms and addresses the issue of system designability.

To illustrate the similarities between availability and designability, we present a framework for classi

errors due to device and design faults in Section 1.5. We classify errors based on four aspects—

detection, recoverability with checkpoint/recovery, and resumability—and we classify several illustr

examples to show the utility of the framework. This framework will be used throughout the thesis, w

discussing particular error models.

The cornerstone of our philosophy is that we want to allocate our resources—transistors, perform

design effort, verification time—towards the common case of normal, error-free operation. In the rar

cov-

com-

hy of

7].

erfor-

esign-

igna-

iety’s

plica-

ta. How-

use a

]. The

both

supply

parti-

uced

on-criti-

odular

plica-

AID

100%

es to

—help

a crash

wn-
3
of an error, be it due to a transient device fault or a design fault, we will fall back on our checkpoint/re

ery mechanism. Moreover, error detection latency should be hidden, since finding a error is not the

mon case. This philosophy reflects both architectural common sense as well as the philosop

optimistic algorithms, including optimistic distributed protocols [74] and optimistic concurrency [5

Optimistic algorithms speed up the common case (or do not slow it down), while sacrificing some p

mance in the uncommon case that the optimistic assumption fails. In the context of availability and d

ability, the optimistic assumption is that the execution is error-free.

The primary contributions of this thesis, detailed in Section 1.6, are the improved availability and des

bility that are enabled bySafetyNet.

1.1 A Case for Supporting Availability
Availability becomes increasingly important as computer services are integrated more tightly into soc

infrastructure. This is particularly true for the shared-memory multiprocessor servers that run the ap

tion services and database management systems (DBMSs) that must robustly manage business da

ever, unless architectural steps are taken, availability will decrease over time as implementations

larger number of increasingly unreliable components in search of higher performance [21, 42, 109

high frequencies and small circuit dimensions of future systems will increase their susceptibility to

transient and permanent faults. For example, higher frequencies exacerbate crosstalk [5, 14] and

voltage noise [93], and smaller devices and wires suffer more from electromigration [114] and alpha

cle disruptions [89, 123]. Moreover, while DRAM cells have long been susceptible to radiation-ind

faults, now SRAM cells and combinational logic are also susceptible [52, 94].

Decades of research in fault-tolerant systems suggest a path toward addressing this problem. Missi

cal systems routinely employ redundant processors, memories, and interconnects (e.g., triple-m

redundancy [53] or pair-and-spare [117]) to tolerate a broad class of faults. However, for many ap

tions, the highly competitive commercial market will seek lighter-weight solutions. For example, R

level 5 [73] has been deployed widely because its overhead is 1/Nth (for N data disks) rather than the

overhead for mirroring. Commercial servers aim for high availability but will accept occasional crash

improve cost/performance. Software-visible techniques—including database logging and clustering

preserve data integrity in these cases. However, availability is compromised, because recovery from

takes hours, and “5 9s” of availability (i.e., 99.999% availability) translates to only five minutes of do

time per year.

codes

try

om-

ion and

ht

s due to

de

nt pro-

largely

cost-

f tran-

of rea-

timing

ms cor-

diffi-

t and

xity to

ch the

ry

e must

ust be

n, thus

tion

d

4
Current servers employ a range of hardware mechanisms to improve availability. Error correcting

(ECC), interconnection network link-level retry [36], RAID [73], and duplicate ALUs with processor re

[102] target specific, localized error models such as transient bit flips on memory, links, or ALUs. C

puter architects seeking system-wide coverage must integrate a patchwork of localized error detect

recovery schemes.

In this thesis, we propose using theSafetyNetcheckpoint/recovery scheme to provide a unified, lightweig

mechanism that provides end-to-end recovery from a broad class of transient and permanent error

device faults (which we refer to asdevice errors). This recovery mechanism can be combined with a wi

range of error detection mechanisms, including strong error detection codes (e.g., CRCs), redunda

cessors and ALUs [36, 102], redundant threads [91], and system-level state checkers [16]. By

decoupling recovery from detection, our approach allows a range of implementations with varying

performance. By providing a unified mechanism that can tolerate an increasingly important class o

sient and permanent errors, we hope to encourage pervasive use ofSafetyNet in commercial servers.

1.2 A Case for Supporting Designability
Shared memory multiprocessors are complicated systems that are difficult to design for a variety

sons. Most significantly, interprocessor communication and cache coherence protocols are prone to

races that result in rarely exercised corner cases. Not only is it a challenge to design these syste

rectly, it is even more difficult to do so without wasting hardware resources. For example, it is often

cult to design a cache coherence protocol that is not wasteful of buffering in the interconnec

coherence controllers, and it is tempting to employ worst-case buffering rather than to add comple

reduce this requirement. However, there are many design issues, including buffer sizing, for whi

worst-case requirements may be far worse than the requirements for the common case.

In this thesis, we propose usingSafetyNetto improve designability. With such a checkpoint/recove

mechanism, when a design fault manifests itself as an error (which we refer to as adesign error), we can

recover the system state to a pre-error checkpoint. Our proposal relies on two assumptions. First, w

be able to detect, in a timely fashion, that an error due to a design fault has occurred. Second, we m

able to ensure that, after recovery, the system will not immediately encounter this design fault agai

leading to livelock. In Chapter 4, we will discuss our fault model, error model, and error detec

schemes, as well as how to avoid livelock. We seek to leverage theSafetyNetmechanism that was propose

for availability to provide the additional benefit of improved designability.

. The

nition,

ss in

s like

dds

ry. We

prove

ing the

covery.

to

ents

sources

g these

nse that

detect,

gns in

rovide

der-

e point

rare

pro-

lated

either

catego-

s

5
There are two classes of situations in which we will fall back on our checkpoint/recovery mechanism

first class of situations are errors due to (unintentional) design faults. Since design faults are, by defi

unintentional, it can be difficult to devise detection schemes to catch all of them. As we will discu

Section 5.2,SafetyNetcan tolerate some unintentional design faults, because they manifest themselve

device faults. WhileSafetyNetcannot be relied upon to tolerate all design faults, we can improve our o

of both detecting the errors they cause and enabling the resumption of execution after recove

improve our chances of detection by employing more comprehensive (device) error detection. We im

our chances of being able to resume execution—and not livelock due to immediately re-encounter

error—by designing more adaptable and flexible systems that can change the execution path after re

The second, more profitable, class of situations in which we recover the system state are errors duespec-

ulatively correct design. Speculatively correct design can be useful in situations in which the requirem

to handle an infrequent event are far worse than the common case. Designers like to focus their re

on the common case, but resources often get allocated to uncommon cases, since not handlin

uncommon cases can cause system failure. Errors due to mis-speculation (i.e., speculation in the se

we optimistically predicted that a certain edge case would not get exercised) are much easier to

since the designer knows exactly where they are. We will present two speculatively correct desi

Section 5.1. In one example, we enable adaptive routing in an interconnection network that must p

(the illusion of) point-to-point ordering. When adaptive routing leads to violations of point-to-point or

ing that impact correctness(most re-orderings do not matter), the system falls back onSafetyNetand

resumes execution with the adaptive routing disabled until after execution has progressed beyond th

of the error. WithSafetyNetsupport, we can gain the advantages of adaptive routing while hiding the

occasions in which our optimistic assumption is violated.

1.3 Background Material
In this section, we briefly address related work in the areas of availability and designability, in order to

vide a context in which to discuss the contributions of this thesis. We provide a full treatment of re

work in Chapter 6.

1.3.1 Availability
Many availability schemes have been developed, but they have achieved availability at the cost of

degraded performance or significant additional hardware. These schemes can be classified into two

ries: forward error recovery(FER) andbackward error recovery(BER). Forward error recovery scheme

contin-

high

other

t/perfor-

g

-

e of an

d. BER

mes is a

m

crucial

have

anage-

eover,

the case

every

ts that

ds a

at is not

ducing

a device

excel-

plexity

proto-

curs a
6
use redundant hardware, such as triple modular redundancy (TMR) to mask errors while execution

ues running forward. IBM mainframes [96] are a prominent example of FER systems that achieve

availability. The primary cost of FER schemes is the redundant hardware. While the cost of TMR or

FER schemes may be acceptable for mission-critical systems, commercial servers seek better cos

mance.

Backward error recovery schemes, includingSafetyNet, use a combination of checkpointing and/or loggin

to enable the system to recover to a pre-error state, therecovery point, in the case of an error. Checkpoint

ing schemes periodically save the state of the system and recover to the recovery point in the cas

error. Logging schemes log changes to the system state and then undo the logs if an error is detecte

schemes have been developed in both hardware and software, and the primary cost of these sche

degradation in system performance. BeforeSafetyNet, coordination of checkpoints/logs across the syste

and the checkpointing of system state have tended to be inefficient. While performance may not be

for mission-critical systems, it is an important factor for commercial systems and, as such, they

tended not to employ hardware BER. Software BER is still used in applications such as database m

ment systems, but the latency of software checkpointing determines that it must be infrequent. Mor

the latency of software recovery determines that errors cannot be a frequent occurrence, as may be

in the near future. Even an error rate as low as one error per trillion cycles is equivalent to an error

seventeen minutes at a clock rate of 1 GHz or an error every ten seconds for a 100 GHz clock.

1.3.2 Designability
Little research exists in the area of designability, but recent research in dynamic verification sugges

this topic is attracting interest. DIVA [6] is the primary example of a designability scheme. DIVA ad

simple, provably correct checker processor at the retirement stage of an aggressive processor th

formally verifiable. The checker processor dynamically verifies that the aggressive processor is pro

correct results. In the case that the aggressive processor exhibits an error (due to a design fault or

fault), the checker processor masks this error at the cost of degraded performance. While DIVA is an

lent approach for processor designability, it does not address multiprocessor designability. The com

of everything beyond the processors—including the interconnection network and cache coherence

col—is increasing, and recent research in dynamic verification of cache coherence protocols [16] in

large hardware cost and an appreciable degradation in performance.

eme

-

wer-

mories

reover,

stem

ween

e at

ng.

nse

ver

an
7

1.4 SafetyNet: Unifying the Support for Availability and Designability
This thesis improves availability and designability with a lightweight global checkpoint/recovery sch

calledSafetyNet.As illustrated in Figure 1-1,SafetyNetperiodically creates system-wide (logical) check

points.SafetyNetcheckpoints can span thousands or even millions of execution cycles, permitting po

ful detection mechanisms with long latencies. If an error is detected, all processors, caches, and me

revert to (and resume execution from) a consistent system-wide checkpoint state, therecovery point. Safe-

tyNetis a hardware-only scheme that requires no changes to any software or the instruction set. Mo

SafetyNethas limited impact on the processor, coherence protocol, and input/output (I/O) subsy

design.

SafetyNet’s basic approach is to incrementally checkpoint system state by using logging. In bet

checkpoints,SafetyNet(logically) logs all changes to the architected state by saving the before imag

each change.

There exist three main challenges for a lightweight checkpoint/recovery scheme that employs loggi

• Naively saving previous values before every register update, cache write, and coherence respo

would require a prohibitive amount of storage (i.e., multiple megabytes).

FIGURE 1-1. SafetyNetabstraction

Processor

Processor

Current

State of

System (1) }

Checkpoints Waiting
To Be Validated (3)

Recovery Point (2)

In SafetyNet, (1) processors operate on the current state of the system, (2) the system can reco

to the recovery point if an error is detected, and (3) some number of non-current checkpoints c

be pending validation.

sistent

of each

ck-

ck is

A

tercon-

ence

r two

ipe-

ence

com-

ure 1-2

rs and

Regis-

As cur-

may

or these

ls, but

nisms.

1.5,

discus-
8
• All processors, caches, and memories in a shared-memory multiprocessor must recover to a con

point. For example, recovery must ensure that all nodes agree on the ownership and data values

memory block.

• SafetyNet must determine when it is safe to advance the recovery point (i.e., validate a new che

point), without degrading performance to wait for slow error detection mechanisms. The bottlene

the slowest error detection mechanism, which is likely to be a timeout on a coherence request.

coherence timeout would likely be set to elapse after the latency of a couple traversals of the in

nection network plus some slack for worst-case contention.

SafetyNetefficiently meets these challenges. By doing so,SafetyNetcheckpoint/recovery achieves high

performance while maintaining a low hardware cost. There are three keys toSafetyNet’s efficiency.

• Optimized logging: Logging is reduced by checkpointing at a coarse granularity (e.g., 100,000

cycles). Only the first change to a piece of architectural state—register, memory block, or coher

permission—within a checkpoint interval requires a log entry, reducing the log overhead by one o

orders of magnitude.

• Logical time checkpoint coordination: SafetyNetefficiently coordinates checkpoint creation usingglo-

bal logical time andlogically atomic coherence transactions, ensuring a consistent recovery point.

• Pipelined validation: Checkpoint validation is pipelined and overlapped with normal execution. P

lining validation allowsSafetyNet to tolerate long latency error detection mechanisms in the back-

ground.

We develop twoSafetyNetimplementations—one for a system with broadcast snooping cache coher

and one for a system with directory coherence—that minimize runtime overheads for actions in the

mon case of fault-free execution, including memory operations and coherence transactions. Fig

depicts, for a directory system, the hardware used to hold logged state—register checkpoint buffe

Checkpoint Log Buffers (CLBs)—that is added to processor-memory nodes in the directory system.

ter checkpoints, CLBs, caches, and memories are deemed “stable storage” and protected by ECC.

rently defined,SafetyNetcannot recover from uncorrectable errors to these structures, which

encourage the use of stronger ECC codes [28] or fault tolerance schemes that provide redundancy f

structures [82]. Future work could address this class of faults, including processor-cache chip kil

solutions will necessarily trade some performance to provide availability in this case.

SafetyNetis a recovery mechanism that is largely decoupled from any specific error detection mecha

SafetyNetreduces the problem of fault tolerance to the simpler problem of error detection. In Section

we present a framework for classifying errors due to both device and design faults, but we postpone

pter 5,

uble

l

ot to a

large

cles of

ce

t/recov-

talk).

error

bility
9

sion of our specific fault models, error models, and error detection schemes until Chapter 4 and Cha

when we describe the wide variety of faults and error detection mechanisms compatible withSafetyNet.

Like most prior work, we focus on tolerating all single faults plus coverage for many but not all do

faults.

In Chapter 3, we evaluate an implementation ofSafetyNetwith full-system simulations and commercia

workloads. Our results show that, in the common case of error-free execution,SafetyNetdoes not increase

execution time (relative to an unprotected system) by a statistically significant amount. Moreover,Safety-

Netcontinues to run after the injection of faults. Recovery time is reduced from a system crash/rebo

performance “speed bump” of less than one millisecond. We also show that 512-kbyte CLBs are

enough, for our commercial workloads, to tolerate error detection mechanisms with over 100,000 cy

latency.

1.5 Classification of Errors Due to Device and Design Faults
The difference betweenSafetyNetsupport of availability and designability is equivalent to the differen

between errors due to device faults and errors due to design faults. When designers use checkpoin

ery to improve availability, they target errors (e.g., a bit flip) due to device faults (e.g., electrical cross

Designers specify a particular fault model and corresponding error model, and then they design

detection schemes accordingly. The fault and error models for designability differ, but our designa

approach leverages the same checkpoint/recovery mechanism to recover from design errors.

FIGURE 1-2. ExampleSafetyNet system implementation

Checkpoint

Buffer
Log

Checkpoint

Buffer
Log

Network
Interface

Switch
Half

 Cache Memory

register
checkpoints

CPU

Node

Switch
Half

nd then

r-

rk.

very.

ese

n the

le of a

e inter-

amount

xam-

tected

Thus,

time-

why the

t if the

around

system

agnosis

s could

switch

t,

,

10
In this section, we classify hardware errors based on several aspects. We first define the aspects a

classify some illustrative error examples within theerror space. We then discuss faults that are not cu

rently tolerated bySafetyNet, why they are not tolerated, and how they might be tolerated in future wo

1.5.1 Four Aspects of Error Characterization
We characterize hardware errors based on four aspects: fault, detection,SafetyNetrecoverability, and

resumabilitymechanisms. Resumability mechanisms allow for the resumption of execution after reco

We define a fault to betolerable if it is both recoverable and resumable. We now discuss each of th

aspects in turn.

Fault. An error can be caused by any number of faults. For example, a transient bit flip on a link i

interconnection network might be caused by crosstalk with a neighboring wire. Or, to give an examp

design error, a system deadlock might be caused by speculatively underdesigning the buffering in th

connection network, as will be explained in Section 5.1.1.

Detection.This aspect of the error space specifies how an error can be detected (in a reasonable

of time). For example, a bit flip on a link can be detected by an error detecting code (EDC). For the e

ple error of a message lost in a dead switch in the interconnection network (ICN), the error can be de

by a time-out at the requestor.

A system does not detect a fault; rather, it detects the error that is the manifestation of the fault.

detecting that an error occurred is not necessarily sufficient for diagnosing the fault. For example, a

out on a coherence request detects that a response was not received, but it does not diagnose

response was not received (e.g., dead switch in the interconnection network). Diagnosis is importan

fault requires that some action be taken after it occurs (e.g., reconfiguring the interconnect to route

a dead switch). Diagnosis can be performed in two stages. The first time an error is detected, the

assumes that the fault is transient. If the error is detected repeatedly, the system then invokes di

mechanisms in hardware and/or software. For example, multiple time-outs on coherence request

invoke a diagnosis mechanism in the interconnection network. Such a mechanism could force each

to ping its neighbors and thus enable the interconnect to determine if a switch is dead.

SafetyNetRecoverability. This aspect specifies whetherSafetyNetcan be used to recover from the faul

assuming we can detect its resultant error in the first place.SafetyNetcan recover from a wide variety of

detected faults by recovering to a pre-fault state. Moreover,SafetyNethides the latency of error detection

ce. In

able in

tee

execu-

peci-

. Such

rk) and

ue to

istance

nclud-

e 1-1.

vice

e mes-

l device

but the

ough it

lts (not

of

pter 5.

e type

as will

voiding

orrect
11
enabling stronger error detection mechanisms that would otherwise negatively impact performan

Section 1.5.3, we will discuss unrecoverable/unresumable faults and how they might be made toler

future work.

Resumability Mechanisms.If SafetyNetcan be used to recover from an error, it must also guaran

that execution can resume after the recovery, if this error is to be tolerable. For example, if resuming

tion will lead immediately back to the error, then livelock is possible. This aspect of the error space s

fies what, if any, techniques are needed to resume execution after recovering from the error

techniques include reconfiguration (e.g., to route around a dead switch in the interconnection netwo

“slow-start” execution after recovery (e.g., to avoid the same timing race that manifested a fault d

speculatively correct design). For some errors, resumption of execution may require software ass

(e.g., if reconfiguring the routing in the interconnect cannot be performed entirely in hardware).

1.5.2 Classifying Errors in the Taxonomy
Using the four aspects described in Section 1.5.1, we will now characterize some illustrative errors, i

ing errors due to both device and design faults. A tabular classification of them is shown in Tabl

Errors that are not currently tolerated bySafetyNetare shaded in the table.

Errors due to device faults.The first three errors in Table 1-1 are examples of errors due to de

faults. The three examples are: dead switch in the interconnection network (ICN), dropped coherenc

sage, and processor-cache chipkill. The unifying thread for these errors is their causes, which are al

faults, although one is transient and two are permanent. All of these errors are detectable and all

processor-cache chipkill are recoverable. Resumability mechanisms depend on the fault model, alth

is instructive to note that a system can resume execution after all errors due to transient device fau

just the example here) without using any special mechanism.

Errors due to speculatively correct design faults.The next two errors in Table 1-1 are examples

errors due to speculatively correct design faults, and these two examples will be elaborated in Cha

These errors share more in common than the other two categories. First, they all derive from the sam

of “fault,” which is speculative correctness. Second, they are all detectable (and easily diagnosed,

be discussed later) and recoverable. Third, each of them requires a resumability mechanism for a

livelock after recovery. A speculatively correct design that cannot ensure livelock avoidance is not c

and cannot be employed.

rs

herence

ut it

ever,

d lead

uld
12

Errors due to unintentional design faults.The last two errors in Table 1-1 are examples of erro

due to unintentional design faults. The two examples are: an unspecified edge case in the cache co

protocol and Intel’s FDIV bug [13]. The FDIV bug would not currently be detected in hardware, b

could be detected by a self-checking program [12]. If it was detected, it would be recoverable. How

execution could not resume without software intervention after recovery, since the execution woul

straight back to this fault and thus livelock. A software routine to perform floating point division wo

solve this problem.

TABLE 1-1. Classification of illustrative errorsa

a. We shade the faults thatSafetyNetcannot tolerate either at all or without software support.

Error Fault Detection
Recoverable
with SafetyNet

Resumability
Mechanism

er
ro

rs
 d

ue
to

 d
ev

ic
e

fa
ul

ts dead switch in ICN hard device fault timeout on request yes reconfiguration

dropped coherence
message

soft device fault timeout on request yes none needed

proc-cache chipkill hard device fault watchdog timer no not available

er
ro

rs
 d

ue
 to

 s
pe

cu
la

tiv
el

y
co

rr
ec

t d
es

ig
n

deadlock due to insuf-
ficient buffering in
ICN (Section 5.1.1)

speculative
underdesign

timeout on request yes slow-start exe-
cution after
recovery

out of order message
arrivals on “in-order”
ICN (Section 5.1.2)

speculative use
of adaptive
routing

invalid transition in
protocol engine

yes disable adap-
tive routing dur-
ing re-execution

er
ro

rs
 d

ue
 to

 u
ni

nt
en

tio
na

l
de

si
gn

 fa
ul

ts

unspecified edge case
in coherence protocol
(Section 5.2.1)

unintentional

design fault

invalid state in pro-
tocol engine

yes slow-start
execution after
recovery

Intel’s FDIV bug [13] unintentional

design fault

self-checking
program

yes software FP
routine

r

esum-

p to

and

ill not

el, par-

agreed

uld be

ed. The

data is

fter the

ery

is

buffers

rrect-

ould

t

would

em.

would

ss of a

sing

re exe-

faulty
13
1.5.3 Hardware Faults Not Tolerated
Certain hardware faults are not currently tolerable usingSafetyNet. Faults can be unrecoverable and/o

unresumable for one of several reasons, which we will now discuss. Recoverability, even without r

ability, is still useful in that it avoids the loss or corruption of data. After recovery, the system could tra

software to gracefully exit.

Resultant error is undetected.A checkpoint/recovery scheme is only as good as its fault model

associated error detection schemes. For example, using parity detects all single-bit errors, but it w

detect double-bit errors. Thus, if faults that cause double-bit errors are to be added to the fault mod

ity is not a sufficient detection mechanism. The system validates a checkpoint after all nodes have

that it is error-free according to their error detection mechanisms. Thus, an undetected error wo

included in the validated state of the recovery point. Once this has occurred, system state is corrupt

execution may still execute correctly, if this erroneous data is not used again (i.e., the erroneous

dead), but this is good fortune rather than good planning. Note also that an error that is detected a

erroneous state has been validated is equivalent to an undetected error.

Fault corrupts recovery point state.Certain faults can corrupt state associated with the recov

point, which violates an integralSafetyNetassumption.SafetyNetassumes that its recovery point state

protected. Recovery point state includes processor register checkpoints, caches, checkpoint log

(CLBs), and memory/directory state. This state can be protected from many soft faults with error co

ing codes (ECC). However, an uncorrectable soft fault or a hard fault that corrupted any of this state c

be unrecoverable. An important area of future work is extendingSafetyNetto handle these harder faul

models. For example, a hard fault (e.g., a short circuit) that results in a processor-cache chipkill

destroy all of the state on the chip and partition that node’s memory banks from the rest of the syst

Cannot resume execution after recovery.Certain faults that are recoverable withSafetyNetdo not

permit resumption of execution after the recovery. For example, an fault that partitioned the system

not permit execution to resume after recovery. Our hard fault model includes faults that cause the lo

half-switch, but not the loss of a whole switch (i.e., the switch was not split into two half-switches). Lo

a whole switch causes the switch’s node to be partitioned from the rest of the system.SafetyNetcan pro-

vide a recovery that preserves system data without any corruptions, but intervention is required befo

cution can resume. In this example, resumption requires manual intervention to replace a

component.

ock

pecific

cution

ed to

cula-

iled in

red

-

r

tial

tional

—and

future
14
Other faults are recoverable withSafetyNetbut are unresumable because there is no way to avoid livel

after recovery. For example, an unintentional design fault in the processor core that affected a s

instruction in a specific circumstance (e.g., Intel’s FDIV bug [13]) could be tolerated bySafetyNet(assum-

ing its resultant error was detected) without corruption of system data. However, resuming exe

would lead immediately back to that fault and result in livelock. In this case, the system would ne

invoke a higher level recovery mechanism, likely a software routine, to handle the problem. If a spe

tively correct design fault falls into this category and it occurs frequently, then the system designer fa

her use of speculative correctness.

1.6 Thesis Contributions
This thesis makes the following contributions:

• We developSafetyNet, a globally-consistent, hardware-only checkpoint/recovery scheme for sha

memory multiprocessors. (Chapter 2)

• We evaluateSafetyNet’s performance and cost using full-system simulation and commercial work

loads, and we compare it to an unprotected system. (Chapter 3)

• We show how to useSafetyNet to improve system availability. In the process, we innovate stronge

error detection techniques, based on system-wide signature analysis, that are enabled bySafetyNet’s

tolerance of detection latency. (Chapter 4)

• We show how to useSafetyNetto improve system designability. In the process, we describe poten

avenues for speculatively correct design, and we show how to tolerate a certain class of uninten

design faults. (Chapter 5)

In Chapter 6, we discuss related research—in availability, designability, and logical time schemes

compareSafetyNetto this work. Chapter 7 concludes this thesis and outlines some potential areas of

work.

15
Chapter 2
int/

e,

n of the

nt

covery:

teracting

k-

oint and

,

e would

ck-

s, and

ample,

To effi-

.2)

tection.

heck-

umption
SafetyNet: Abstraction and Implementation

In this chapter, we developSafetyNet, a hardware-only mechanism for globally consistent checkpo

recovery of shared memory multiprocessors.1 SafetyNetallows for the recovery of the global system stat

in the case that an error occurs and is detected. We begin in Section 2.1 by describing an abstractio

SafetyNet interface, and then we develop one specific implementation ofSafetyNet in Section 2.2.

2.1 SafetyNet Abstraction
This section presents a high-level overview of theSafetyNetabstraction that is illustrated in Figure 2-1

(identical to Figure 1-1). The purpose ofSafetyNetis to allow the system to recover its state to a consiste

previous checkpoint, where a checkpoint includes all state necessary to resume execution after re

processor registers, memory values, and cache coherence permissions. While the processors are in

with the active state of the system,SafetyNetis periodically taking system-wide checkpoints. The chec

point most recently validated as being error-free is the system’srecovery point, i.e., the checkpoint to

which the system recovers in the case that an error is detected. Between the recovery point checkp

the active state of the system, some number of checkpoints may be pending validation.

Three challenges for logging schemes were raised in Chapter 1, andSafetyNetaddresses all three. First

naively saving previous values before every register update, cache write, and coherence respons

require a prohibitive amount of storage.SafetyNetaddresses this challenge by exploiting a coarse che

point granularity to reduce the amount of logging (Section 2.1.1). Second, all processors, cache

memories in a shared-memory multiprocessor must be able to recover to a consistent point. For ex

recovery must ensure that all nodes agree on the ownership and data values of each memory block.

ciently solve this problem,SafetyNetcreates consistent global checkpoints in logical time (Section 2.1

such that all processors and memories can recover to a consistent recovery point upon error de

Third, SafetyNetmust determine when it is safe to advance the recovery point (i.e., validate a new c

1. Checkpoint/recovery is performed entirely in hardware, although system reconfiguration between recovery and res

(e.g., reconstructing interconnect routing to avoid a dead switch) of execution might require software assistance.

goal,

es of

the

discuss

how

nsis-

-

rectory

e

16

point), without degrading performance to wait for slow error detection mechanisms. To achieve this

SafetyNetenables pipelined checkpoint validation that is off the critical path and hides the latenci

error detection mechanisms (Section 2.1.3).

Beyond the three key features ofSafetyNet, we discuss several other important issues. We describe

recovery process and how in-flight coherence transactions are handled (Section 2.1.4). We also

how SafetyNetadopts standard solutions for interacting with input/output devices (Section 2.1.5),

SafetyNetcould be implemented with different cache coherence protocols and different memory co

tency models (Section 2.1.6), and howSafetyNetinteracts with other levels of checkpoint/recovery in com

puter systems (Section 2.1.7).

In the rest of this section, we will assume that the system implements cache coherence with a di

protocol and that the system supports a sequentially consistent memory model. In general,SafetyNethas

only a small impact on the underlying cache coherence protocol, andSafetyNetdoes not affect the imple-

mentation of a sequentially consistent system. In situations in whichSafetyNetaffects the cache coherenc

protocol, we will highlight the impact and explain why modifications are necessary.

Processor

Processor

Current

State of

System (1) }

Checkpoints Waiting
To Be Validated (3)

Recovery Point (2)

FIGURE 2-1. SafetyNet abstraction

In SafetyNet, (1) processors operate on the current state of the system, (2) the system can recover

to the recovery point if an error is detected, and (3) some number of non-current checkpoints can

be pending validation.

hich

tate can

e will

essors

state

stead,

s and

to the

at the

with

-

local

oint. A

ncy, for

at they

sactions

g has

s [31],

until a

2] for

other

tected
17
2.1.1 Incremental Checkpointing Via Logging
Logically, SafetyNetcheckpoints contain a complete copy of the system’s architectural state, w

includes processor, cache, memory, and coherence state.SafetyNetexplicitly checkpoints a processor’s

state by saving a copy of the processor’s architected registers. Checkpointing of processor register s

be done in many ways, including shadow register copies or writing the registers into the cache, and w

discuss implementations of register checkpointing in Section 2.2. We only assume that the proc

implement precise interrupts [97], since this assumption simplifies the checkpointing of architected

and all current processors maintain precise interrupts.

Explicitly checkpointing memory state, including cache and coherence state, would be inefficient. In

SafetyNetincrementally checkpoints memory state by logging the previous values of memory block

coherence permissions. Conceptually, cache controllers and memory controllers log every change

memory/coherence state (i.e., save theold copy of the block) whenever anupdate-action(i.e., a store or a

transfer of ownership) might have to be undone. To reduce storage and bandwidth requirements

caches, where storage and bandwidth are more expensive than at memory,SafetyNetcache controllers only

log a block on its first such update-action per checkpoint interval. By combining this optimization

coarse checkpoint intervals (e.g., 100,000 cycles),SafetyNetsignificantly reduces logging overhead (evalu

ated in Chapter 3). Implementations of logging will be discussed in Section 2.2.

2.1.2 Creating Consistent Checkpoints in Logical Time
All of the components (processors, cache controllers, and memory controllers) coordinate their

checkpoints, so that the collection of local checkpoints represents a consistent global recovery p

consistent checkpoint is necessary for memory values and coherence permissions. Without consiste

example, recovery could revert the system to a checkpoint state in which two nodes both believe th

own the same block. For a checkpoint to be consistent, all nodes must agree which coherence tran

occurred before the checkpoint and which occurred after it. Coordinated system-wide checkpointin

two advantages over independent checkpointing. First, it avoids the problem of cascading rollback

whereby recovering one node leads to recoveries on other nodes that cascade backwards in time

consistent checkpoint line can be determined. Second, it eliminates an output commit problem [3

inter-node communication. With coordinated global recovery, nodes can exchange data with each

without having to first perform error correction, since the system can be recovered if an error is de

later.

a

causal-

ple,

al time

xplicit

intain

oose.

s clock

make

ints of

e

quest to

f logi-

e num-

create

a

we

hich

l time

onents

uestor to

r) and

check-

cache

ted,

ction’s

SMP with
18
Checkpoints are coordinated across the system inlogical time to avoid either quiescing the system or

potentially costly exchange of synchronization messages. Logical time is a time base that respects

ity [58]. If Event A causes Event B, then Event A occurs earlier in logical time than Event B. For exam

the sending of a message occurs earlier in logical time than the reception of that message. Logic

coordination can be made efficient, since logical time synchronization can be performed without e

communication beyond what is needed to maintain logical time itself. Moreover, systems can ma

logical time without impacting performance, as will be explained for the logical time bases that we ch

Each node maintains its own logical clock and decides when to take a local checkpoint based on thi

(e.g., everyTc logical cycles). Thus we need a logical time base that allows nodes to independently

the same decisions about which coherence transactions occur in which checkpoint intervals.

First, we solve the easier problem of developing a logical time base that enables consistent viewpo

when individual coherencerequests(not coherencetransactions, which include the request as well as th

response and any other messages incurred by the request) occur in logical time. We consider a re

occur when it is processed by the owner, for reasons that will become clear later. Many valid bases o

cal time exist. A simple example in a broadcast snooping system is for each component to count th

ber of coherence requests it has processed and use that as its logical time. If components

checkpoints everyTc logical cycles, it is trivial for all components to agree on the interval in which

coherence request occurred.2 Directory protocols, however, require a different logical time base. If

could distribute a perfectly synchronous physical clock, we would have a viable logical time base in w

logical and physical time are the same. In Section 2.2, we relax this requirement by deriving a logica

base from a loosely synchronized (in physical time)checkpoint clock.

Beyond ordering individual coherence requests, the logical time base also must ensure that all comp

can independently determine the checkpoint interval in which anycoherence transaction(not just its

request) occurs. Snooping cache coherence protocols employ two-hop coherence transactions (req

owner to requestor), and directory protocols employ both two-hop (requestor to directory to requesto

three-hop coherence transactions (requestor to directory to owner to requestor). To determine the

point interval to which each transaction belongs, we exploit the key insight that, in retrospect, a

coherence transaction appearslogically atomiconce it has completed. Before a transaction has comple

however, no point of atomicity exists. For snooping and directory protocols, a coherence transa

point of atomicity occurs when the owner of the requested block processes the request.

2. SMPs do not need to be synchronous, i.e., a request does not need to arrive at every node at the same time. Thus, an

this logical time base could have skew in logical time between nodes [65].

know

ed in

g with

. More-

artici-

ctory

ato-

ed (i.e.,

questor

ansac-

pears

o that

-

check-

the

check-

ot yet

made

onents

can be

CN3

must

. Once

ll of its

er, the

l other
19
Implementations ofSafetyNetmust ensure that all nodes that participate in a coherence transaction

its point of atomicity. Solving this problem is implementation-specific and the details will be discuss

Section 2.2. Logically, though, the owner must send the checkpoint number of the transaction alon

the data in response to the request, so that the requestor knows the transaction’s point of atomicity

over, in a three-hop transaction, the requestor must then notify the directory, as well, since it also p

pated in the transaction and must know its point of atomicity. Figure 2-2 illustrates how a dire

protocol withSafetyNetdetermines this point. Note that the requestor does not learn the location of the

micity point until it receives the response that completes the transaction.

To avoid having to checkpoint transient coherence state,SafetyNetexploits logical atomicity and disallows

recovery to the middle of a coherence transaction before that transaction has successfully complet

appears atomic). To ensure that the system never recovers to the “middle” of a transaction, the re

does not agree to validate a checkpoint (i.e., advance the recovery point) until all of its outstanding tr

tions issued prior to that checkpoint complete successfully. After completion, the transaction ap

atomic, so there is no “middle.” Furthermore, by waiting for all outstanding transactions issued prior t

checkpoint to complete before validating the checkpoint,SafetyNetavoids checkpointing transient coher

ence states and in-flight messages.

Since logical atomicity only exists in retrospect, at the time a component creates a checkpoint, the

point only defines whatwill be in that component’s checkpoint. The component may not yet have seen

data responses that occur later in physical time but which will appear to have occurred before this

point in logical time. That is, the coherence transaction already occurred in logical time, but it has n

completed in physical time.

2.1.3 Validating Checkpoints and Deallocating Checkpoint State
Checkpoint validation is the process of determining that a checkpoint is error-free and now can be

the new recovery point. Processors and memories coordinate checkpoint validation so that all comp

recover to the same checkpoint number on a recovery. For example, checkpoint number 3 (CN3)

validated only if every component agrees that it could be the recovery point, i.e, all execution prior to

was error-free. For a checkpoint interval to be error-free, every transfer of ownership in that interval

complete successfully, by which we mean that the data was transferred error-free to the receiver

every component has independently declared that it has received error-free data in response to a

requests in the interval before the checkpoint, the recovery point is ready to be advanced. Howev

recovery point cannot be advanced until a reduction is performed and all nodes are notified that al

rive

o

r

ac-

.

e

3,

e

N)

n

20

Processor Memory

Checkpoint #1

Checkpoint #3

Checkpoint #4

Checkpoint #5

<data,CN3>

<request B>

Checkpoint #2

FIGURE 2-2. Example of checkpoint coordination

In this example, physical time flows downwards, and the following assumptions are made:

• Logical time respects causality, so a message cannot be sent in one checkpoint interval and ar

in an earlier interval.

• Checkpoint lines in logical time are not necessarily horizontal, since logical time is not equal t

physical time.

• A recovery to checkpoint numbers 2-5 (the duration of the transaction) is not possible until afte

the transaction, since the processor would not validate any of these checkpoints until the trans

tion completed successfully att3.

• In practical situations, checkpoint intervals are much longer than typical transaction durations

At t1, the processor issues a request for ownership of block B to the memory, which is currently th

owner of the block. The memory processes the request att2, between checkpoints 2 and 3, and

defines the transaction’s point of atomicity. The directory sends the checkpoint number (CN), CN

to the requestor, to inform it of the checkpoint to which this transaction belongs. In retrospect, th

transaction appears to have occurred atomically at this point. A recovery to checkpoint number (C

2 or before would restore ownership to the memory. A recovery to CN 3 or later would maintai

ownership at the processor.

physical
time

t1

t2

t3

point of atomicity

kpoint

an be

, off

lined

two

int,

cond,

des).

l it has

detec-

ny tra-

ency,

nge of

ery

-

emories

asso-

nition,

etwork

int. For

many

nfigu-

tably,

ry. We
21
nodes are also ready to advance the recovery point. At this point, all transactions prior to this chec

have had their points of atomicity determined. After validation, state for the previous recovery point c

deallocated lazily.

A key to SafetyNetperformance is that validation can be pipelined and performed in the background

the critical path. Not only can validation be pipelined with the active execution, it can also be pipe

with the validation of other non-active checkpoints. Keeping validation off the critical path requires

features. First,SafetyNetmust provide more than two available checkpoint contexts—recovery po

active point, and some number of checkpoints pending validation—as illustrated in Figure 1-1. Se

error detection must use dedicated hardware resources (e.g., hardware to check error detecting co

Validation latency depends on error detection latency, since a checkpoint cannot be validated unti

been verified error-free. For the example error of a dead switch in the interconnection network, the

tion latency must be at least as long as the requestor’s timeout latency. Timeout latency can be ma

versals of the interconnect, plus some slack built in for contention delays. Adding to validation lat

validation cannot occur until all nodes have coordinated their validations, and this involves an excha

messages. Since validation latency may be long, it is important forSafetyNetefficiency that it be per-

formed in the background and off the critical path.

2.1.4 Recovering the System to a Consistent Global State
If an error is detected,SafetyNetrestores the globally consistent recovery point checkpoint. The recov

point represents the consistent state of the system at thelogical timethat this checkpoint was taken. Recov

ery itself requires that the processors restore their register checkpoints and that the caches and m

unroll their logs to recover the system to the consistent state at the pre-error recovery point. All state

ciated with transactions in progress at the time of recovery is discarded, since this state is, by defi

unvalidated state that occurs logically after the recovery point. The system can thus either reset the n

or sink and discard all active coherence messages.

After recovery, the system reconfigures, if necessary, and resumes execution from the recovery po

the lost switch example, reconfiguration involves routing around the erroneous switch, as is done in

interconnection networks, such as that of the Compaq Alpha 21364 [68]. For transient faults, no reco

ration is necessary.

SafetyNet’s ability to recover to a consistent state relies upon a couple of assumptions. First, most no

we assume that the recovery point state is protected. Corruption of this state would prevent recove

discuss how we protect this state in Section 2.2.1. Second, we assume that theSafetyNetmechanisms

alidation

evices,

), since

tside

disks if

deter-

olution

g I/O

et

ctice,

n-vali-

but not

do not

ictate

emes

l that

s to

om

adopt
22
themselves are protected. These mechanisms include the communication of messages regarding v

and recovery, and we discuss these error models and how to tolerate them in Section 4.1.

2.1.5 Input/Output Commit Problems
Since real computer systems interact with the outside world,SafetyNetmust deal with interactions that go

beyond itssphere of recoverability. A shared memory multiprocessor protected bySafetyNetcan recover

processor state, memory state, and coherence state. However, it cannot recover input/output (I/O) d

such as disks, displays, printers, and networks (beyond the system’s local interconnection network

these devices are beyondSafetyNet’s scope.

Theoutput commit problem[32] requires that only validated, error-free data can be communicated ou

of the sphere of recovery. For example, the system cannot communicate unvalidated data with the

the effects of this communication cannot be undone through recovery. Thus, checkpoint validation

mines when the system can interact with the outside world of input/output devices. The standard s

to the output commit problem is to delay all output events until a validated checkpoint. Implementin

with InfiniBand (www.infinibandta.org) is a good match forSafetyNet, because I/O transactions are s

up in memory and then committed with a “doorbell ring.”SafetyNetwould need to delay only the door-

bell ring, which should be acceptable to many types of I/O (e.g., to disks and the Internet). In pra

not all I/O devices need to be treated as carefully. For example, the display could be updated with u

dated state if the recovery latency is shorter than could be perceived by the user. Writes to disks (

disk control registers) might also be performed speculatively, since these actions are idempotent and

have side effects.

For higher performance I/O, such as cluster communication, the required I/O performance could d

the validation latency, rather than vice versa. In turn, this would determine the error detection sch

used and perhaps even the fault model. Once again, though, I/O systems that enableSafetyNetto extend

its sphere of recoverability would help alleviate this constraint. Infiniband or some other protoco

allows SafetyNetto encompass the high performance I/O device, such as QPIP [15] would allow u

hide longer error detection latencies without hurting critical performance needs.

The complementaryinput commit problemstates that a system that recovers must deal with the input fr

the outside world that it received between the recovery point and the time at which it recovered. We

the standard solution of logging input from the outside world and replaying it after recovery.

le-

only as

models

ndepen-

are

oping

city as

f logical

same

uld have

en-

of log-

rmin-

nsis-

ifferent

ust be

n-

precise

e these

r IA-32

visible

he same

ts PC’s
23
2.1.6 Other Classes of Coherence Protocols and Memory Models
Thus far, we have assumed thatSafetyNetis being applied to a shared memory multiprocessor that imp

ments sequential consistency with a directory-based cache coherence protocol (referred to comm

just a directory protocol). Other classes of cache coherence protocols and memory consistency

exist, and we now address the issues involved with implementingSafetyNetin these different contexts,

respectively. These issues are orthogonal to each other, so we can address different protocols i

dently from different memory consistency models.

Cache Coherence Protocols.Besides traditional directory and broadcast snooping protocols, there

numerous hybrid protocols. These include multicast snooping [11, 101], bandwidth adaptive sno

[66], and the Compaq AlphaServer GS320 [37]. All of these protocols share the same point of atomi

directories and broadcast snooping: when the owner processes the request. Determining the basis o

time, though, may differ from protocol to protocol. For example, multicast snooping cannot use the

logical time basis as broadcast snooping, since not every node observes every request, so nodes wo

different views of which request occurs at which logical time. In Section 2.2.2, we will discuss implem

tations of logical time bases for both directory protocols and broadcast snooping protocols.

Hierarchical multiprocessor organizations use coherence protocols that may require different bases

ical time. Systems like Wildfire [45] and Profusion [115] have hierarchical coherence domains. Dete

ing a basis of logical time in such systems is likely to vary by system.

Memory Consistency Models.We have thus far assumed that our system supports sequential co

tency [59], and that assumption has determined what architectural state needs to be checkpointed. D

consistency models, however, may enable hardware optimizations that can add to the state that m

checkpointed. Thus, implementingSafetyNetin the context of a system with a more relaxed memory co

sistency model may require additional effort. However, these systems are still assumed to maintain

interrupts, which facilitates checkpointing of the processor’s architected state. For example,SafetyNetdoes

not need to checkpoint store queues (for holding stores that have not been committed yet), sinc

stores are not yet part of the architected state.

Systems that enforce processor consistency (PC), such as SPARC Total Store Order (TSO) [113] o

[50], enable the use of FIFO store buffers to hold stores that have committed but not yet been made

to other nodes3, and these store buffers comprise architectural state. As such,SafetyNetwould need to

checkpoint them, too. In processor consistent systems, two nodes can have store buffer entries for t

block, and the values of the stores can be different. Thus, the checkpoint of consistent state reflec

ther

ch as

ation.

com-

ch as

vels,

m

e pen-

quent

hard-

sure that

ctions

database

ability,

stem

e-

-

ple,

rocessor
24
allowance of different concurrent block values (i.e., values visible within a node but not visible to o

nodes).

ImplementingSafetyNeton top of systems that support more relaxed memory consistency models, su

Alpha [95] and IA-64 [51], may require saving additional state, depending on the system implement

For example, the Alpha memory model allows for coalescing store buffers, and these store buffers

prise architectural state that would need to be checkpointed bySafetyNet.

2.1.7 IntegratingSafetyNetwith Other Levels of Checkpoint/Recovery
Checkpoint/recovery techniques are used at many different levels in a computer system, andSafetyNet

must interact with them. At the lowest level, a microprocessor can recover from mis-speculation, su

might occur due to a branch misprediction. This level of checkpoint/recovery is invisible to higher le

includingSafetyNet. We would not want to have to useSafetyNetto recover the state of the entire syste

just because of a localized branch misprediction. Branch mispredictions are too frequent to incur th

alty of SafetyNetrecoveries, even if these recoveries are adequately short for handling more infre

events such as hardware errors.

At the highest level, software-only techniques provide heavyweight availability in the presence of

ware and even software errors. For example, database management systems use software to en

vital database state is never lost or corrupted, even if the computer system fails. Logging of transa

(database transactions, not cache coherence transactions) and two-phase protocols for committing

state to disks help to avoid corruption of data. Preservation of data, however, does not provide avail

since the system may still fail and thus be unavailable. Software-only schemes are oblivious toSafetyNet

(and all other lower-level schemes).

SafetyNetis complementary to other levels of checkpoint/recovery in a computer system. Different sy

levels require different approaches, and we do not claim thatSafetyNetis the answer to all checkpoint/

recovery needs. We do, however, claim thatSafetyNetserves an important role at the level of hardwar

only, system-wide checkpoint/recovery.SafetyNetworks in conjunction with these other levels of check

point/recovery to provide the appropriate cost/performance tradeoff for each level.

3. While a relaxed memory consistency modelallowsfor optimizations, implementations do not have to use them. For exam

a sequentially consistent system implementation is a valid implementation of more relaxed memory models, such as p

consistency.

lti-

ution

eper

to the

false

al

ant to

limita-

dding

est for

e local

ulation

funda-

n the

ase of

the

e cache

oint of

out of
25
The development ofSafetyNetinvolved the creation of another level of checkpoint/recovery, called Mu

version Memory (MVM), that could be a useful basis for future work in supporting speculative exec

[99]. MVM only permitted local (intra-node) checkpoint/recovery. This local recovery permitted de

speculation than possible with intra-core recovery (e.g., for branch prediction), since it extended out

node’s memory hierarchy. MVM could be used for speculating on multiprocessor values, such as with

sharing prediction. MVM would be preferable toSafetyNet, because local recovery is quicker than glob

recovery, and speculation would lead to far more recoveries than errors. Moreover, we would not w

recover the entire system due to a localized misprediction. Local checkpoint/recovery has several

tions, though. First, it subjects all inter-node communication to the output commit problem, thus a

error detection latency to the critical path of inter-node communication. Second, an external requ

speculative data requires either stalling or recovering. Third, it does not tolerate errors outside of th

node. However, it may be interesting in the future to pursue a multi-leveled approach, wherein spec

is supported by local checkpoint/recovery, and availability is supported by the globalSafetyNetpresented

in this thesis.

2.2 ImplementingSafetyNet

In this section, we will discuss two particular implementations of theSafetyNetabstraction. The two imple-

mentations differ in the cache coherence protocol that they use, and they help to distinguish what is

mental toSafetyNetimplementations and what is protocol-specific.SN-SnoopingimplementsSafetyNetin

a system with a broadcast snooping cache coherence protocol, andSN-DirectoryimplementsSafetyNetin a

system with a directory protocol. Both implementations reflect the goal of incurring low overhead i

common case of error-free execution, while not allocating resources towards optimizing the rare c

recovery.

All SafetyNetimplementations have to address two requirements.

• Point-Of-Atomicity Requirement: All of the participants in a cache coherence transaction—

requestor, the owner, and perhaps other components (e.g., the home directory) depending on th

coherence protocol—must agree on when a coherence transaction logically occurs, i.e., its p

atomicity.

• Sufficient-Log-Storage Requirement: The system must be able to avoid deadlock due to running

space to hold logged changes to the system state.

ion net-

which

r hold-

CLB is

m

h as the

ystem

state.

ce cor-

h error

a

quests
26

2.2.1 System Model
SafetyNetsystems are composed of some number of nodes connected together by an interconnect

work. All nodes contain a CPU, two levels of cache, and a portion of the system’s shared memory (

may be separate from the processors). Each CPU has a table of transaction buffer entries (TBEs) fo

ing state regarding in-progress coherence transactions. ACheckpoint Log Buffer (CLB), associated with

each cache hierarchy and memory controller, stores logged state. During error-free execution, the

simply a last-in-first-out (LIFO) write-only buffer. The CLB is illustrated in Figure 2-3. During syste

recovery, the CLBs are read, but this is the uncommon case.

The system also includes redundant system service processors (which exist in many servers, suc

UltraEnterprise E10000 [18]), which help coordinate advancement of the recovery point as well as s

restart after recovery. Recall from Section 2.1.4 that we assume protection of the recovery point

Recovery point state includes processor registers, caches, CLBs, and memory/directory state. Sin

ruption of this state would prevent recovery to a error-free consistent state, we protect this state wit

correcting codes (ECC).

SN-Snooping Specifics.Figure 2-4 illustrates theSN-Snoopingsystem. The nodes are connected in

hierarchical switched interconnection network. Such an interconnect can provide the total order of re

FIGURE 2-3. Checkpoint log buffer (CLB) structure

log entries added at tail

start of checkpoint k+1 log entries

start of checkpoint k log entries

} log entries for checkpoint k-1

} log entries for checkpoint k

head

tail

dition-

o vir-

no such

n, Get-

ilar to

s that

ffers a

addi-

net-

ts: Get-

d-Get-

s are

mes-

].

ade so

both

sage, it

l-Ack

icity.

entry

ck (or

y to

atively

equire-
27
necessary for snooping, but it does not suffer from the limitations of the shared bus that has been tra

ally used in snooping systems.

The snooping protocol is based on a typical MOSI broadcast snooping protocol. The protocol uses tw

tual networks: Request and Response. The Request network must be totally ordered, but there are

constraints on the Response network. There are four types of requests: Get-Shared, Get-Instructio

Exclusive, and Put-Exclusive. Responses are always Data.

SN-Directory Specifics.Figure 2-5 (identical to Figure 1-2) illustrates theSN-Directorysystem. The

system’s multiple nodes communicate through a two-dimensional torus interconnection network, sim

that used in the Compaq Alpha 21364 interconnection network [68]. One difference worth noting i

switches are composed of two half-switches, one for each direction. Splitting the switches this way o

redundant path from a node to the rest of the system if one of the half-switches dies, but it results in

tional latency to change directions.

The directory protocol is based on a typical MOSI directory protocol. The protocol uses four virtual

works: Request, Forwarded-Request, Response, and Final-Ack. There are four types of reques

Shared, Get-Instruction, Get-Exclusive, and Put-Exclusive. Forwarded requests are either Forwarde

Shared, Forwarded-Get-Instruction, Forwarded-Get-Exclusive, or Put-Exclusive-Ack. Response

either Data, Ack, or Nack. The Final-Ack network, discussed later, carries Final-Ack and Final-Nack

sage types. In Appendix A, we specify the protocol in a tabular format developed by Sorin et al [101

SafetyNethas only a slight impact on the directory cache coherence protocol. Three changes are m

thatSN-Directorysatisfies the two requirements established in Section 2.2, with the first two changes

addressing the Point-Of-Atomicity Requirement. First, when the owner sends a data response mes

labels it with a checkpoint number that defines the transaction’s point of atomicity. Second, a Fina

network is used in three-hop transactions to notify the directory of the transaction’s point of atom

When the directory forwards a Get-Exclusive request to the owner, it allocates a transaction buffer

(TBE).4 When the requestor receives data (or a nack) from the owner, the requestor sends a Final-A

Final-Nack) to the directory, informing the directory of the point of atomicity and allowing the director

free its TBE for this transaction. Third, both the directories and processor owners are allowed to neg

acknowledge (nack) requests or forwarded requests, so as to satisfy the Sufficient-Log-Storage R

ment, as will be discussed in Section 2.2.3.

4. If a TBE cannot be allocated, the directory nacks the request.

check-

erence

t trans-

most
28

2.2.2 Logical Time Base
As discussed in Section 2.1, we use logical time to address the primary challenge of coordinating

points across a system, which is keeping checkpoints consistent with respect to memory and coh

state. All components must agree, for every coherence transaction, in which checkpoint interval tha

action occurred. Assigning a transaction to a checkpoint interval is protocol-dependent, and it is the

Checkpoint

Buffer
Log

Checkpoint

Buffer
Log

Network
Interface

Switch
Half

 Cache Memory

register
checkpoints

CPU

Node

Switch
Half

FIGURE 2-5. SN-Directory system model

FIGURE 2-4. SN-Snooping system model

,

es the

ctory

count

s create

ns-

us

it. All

in

skew

is not

k-

with

o nodes

ase of

com-

e skew

llow-

request

of the

itly

es

imple-
29
significant difference in implementingSafetyNeton top of different classes of protocols. A similarity

though, is that the point of atomicity in both protocols occurs when the owner of the block process

request. Note that the ordering point in a directory protocol is different, and it occurs when the dire

processes the coherence request (even for a three-hop transaction).

SN-Snooping.A simple logical time base in a broadcast snooping system is for each component to

the number of coherence requests it has processed and use that as its logical time. If component

checkpoints everyTc logical cycles, it is trivial for all components to agree on the interval in which a tra

action’s request occurred. Moreover, unlikeSN-Directory, the data response message from the previo

owner does not need to include the CN of the point of atomicity, since the requestor already knows

nodes can agree that theTc+1th transaction happened after the checkpoint and theTc-1
th transaction hap-

pened before it, soSN-Snoopingeasily satisfies the Point-Of-Atomicity Requirement established

Section 2.2.

SN-Directory.In Section 2.1.2, we discussed how a perfectly synchronous physical clock with zero

would be a viable basis of logical time for our system with directory coherence. Since that solution

implementable, we use a loosely synchronous (in physical time)checkpoint clockthat is distributed redun-

dantly to ensure no single point of failure. On each edge of this clock5, each component creates a chec

point and increments itscurrent checkpoint number (CCN). While it might be difficult to distribute a

synchronous clock across a system with near-zero skew, it is not nearly so difficult to distribute one

the same frequency and some amount of skew between nodes. As long as the skew between any tw

is less than the minimum communication time between these nodes, the checkpoint clock is a valid b

logical time, since no message can travel backwards in logical time and thus violate causality. Since

municating messages between nodes entails sending multiple bytes, this time is easily longer than th

in distributing the edge of a clock. Figure 2-6 illustrates this property. Without this guarantee, the fo

ing inconsistency could arise. Consider the case in which processor P1 has a CCN of 3 and sends a

to the owner, P2, while P2’s CCN is still 2. Thus, checkpoint 3 would appear to include the reception

request but not the sending of the request!

To satisfy the Point-Of-Atomicity Requirement, the CN of the point of atomicity must be explic

exchanged, since nodes cannot infer it as inSN-Snooping. Thus, an owner’s response to a request includ

5. The frequency of the checkpoint clock is much slower than that of the system clock (e.g., 10 kHz), which simplifies its

mentation. We will address this issue in more detail in Section 2.2.4.

to the

i-

ches and

covery,

n

null.

ith

orms

e not

ubse-

trans-

a

30

the CN of the point of atomicity and, in a three-hop transaction, the requestor sends a Final-Ack

directory to inform it of the point of atomicity.

2.2.3 Logging
SafetyNetusesCheckpoint Log Buffers (CLBs)to hold incrementally checkpointed memory state. Log

cally, SafetyNetwrites a memory block to a CLB whenever anupdate-action(i.e., store or transfer of own-

ership) might have to be undone in the case of a recovery. Since caches perform stores and both ca

memories can transfer ownership of blocks, each of these components has a CLB. Except during re

the CLBs are write-only and off the critical path.

To reduce storage and bandwidth requirements,SafetyNetcaches (but not memories) only log a block o

the first update-action per checkpoint interval. To detect this case,SafetyNetadds acheckpoint number

(CN) to each block in the cache, denoting to which checkpoint it belongs. Initially, all CNs are set to

On each update-action,SafetyNet(1) compares the component’s current checkpoint number (CCN) w

the block’s CN, (2) logs the block, if necessary, (3) updates the block’s CN to CCN+1, and (4) perf

the update-action. Blocks must be logged to the CLB if the block’s CN=null or CCN≥ CN. For example, a

store by a processor with CCN=3 to a block with CN=4 need not be logged. Blocks with null CNs hav

been written or transferred recently, and they implicitly belong to the recovery point as well as all s

quent checkpoints. Having CNs on blocks enables logic to determine whether logging of a store or

ferring ownership to another node would be redundant.6 Figure 2-7 illustrates an example of logging at

physical time

FIGURE 2-6. Ensuring that logical time respects causality

checkpoint

checkpoint

send

receive

send
receive

Valid Invalid

are not

ation

sends

by a

(i.e.,

sary,

d per-

Even

e over-

ership

ttled by

r this.

t could

re

nack)

c-
31

cache. In Section 2.2.7, we discuss efficient ways to store and manipulate CNs at the caches. CNs

needed on CLB blocks, but they are shown in Figure 2-7 for illustrative purposes. A CLB implement

only requires a head and tail pointer for each checkpoint number, as was shown in Figure 2-3.

When giving up ownership of a block, a component performs logging (as described above) and then

the blockwith the updated CNto the requestor. This policy follows from a key insight from Wu et al.

[120]: a transfer of ownership is just like a write, in that we cannot be sure that it will not be undone

recovery. Consider the case in which P1 transfers ownership of block B to P2 with B’s CN set to 3

P1’s CCN is 2) and P2 wishes to then perform a store to it while its CCN is still 2. Logging is unneces

since P2 was not the owner at checkpoint 2. This is the same as if P1 owned block B with CN=3 an

formed a store to it while its CCN is still 2.

The CLBs can be sized for performance and not correctness, sinceSafetyNetcan avoid situations in which

the CLB fills up and violates the Sufficient-Log-Storage Requirement established in Section 2.2.

when it appears that an entry must be logged in the CLB, logging can be avoided. In the case of stor

writes, we can throttle requests from the CPU, thus stalling the CPU. In the case of coherence own

transfers, there are two situations. First, there are acquisitions of ownership, and these can be thro

the requestor. The tougher situation is relinquishing ownership, since the owner has no control ove

For SN-Snooping, where checkpoint intervals are knowna priori to beTc transactions long, the solution is

to throttle stores when CLB space reaches the minimum necessary for all possible transactions tha

still occur in the current interval. ForSN-Directory, where a component does not know how many mo

transactions could arrive in an interval, the solution is for the owner to negatively acknowledge (

6. There are other optimizations for reducing logging due toattainingownership, but they are less important. The key is redu

ing logging due to store overwrites.

FIGURE 2-7. Logging at the cacheTime

Store A <- 10

Store A <- 15

Store A <- 20

CLB
A: 5

A: 10

A: 15

A: 20

Cache
CNData

CCN 2

CCN 1
2

2

3

null

A:5:CN1

A:5:CN1

A:15:CN2 A:5:CN1

ntry. In

While

se, the

questor.

been

ception

ion and

nction

tinct

ctions

trieved

date-

on the

es not

tores

d if for-

comes

ill be

detec-

d in

of the

incre-

her-

ckpoint
32
coherence requests. Nacking avoids the transfer of coherence ownership and its associated log e

SN-Directory, either the directory or another cache can be the owner that needs to nack a request.

directory nacks are common in many directory protocols, nacks from caches are rarer. In this ca

directory has forwarded the request to the owner cache, and the owner cache sends a nack to the re

The requestor then must send a Final-Nack to the directory to inform it that the transaction has

nacked. This Final-Nack uses the same virtual network used to carry Final-Ack messages. Upon re

of a Final-Nack, the directory then reverts its state back to the state from before the nacked transact

deallocates its TBE.

To the first order, CLB occupancy is unrelated to cache size or memory size. CLB occupancy is a fu

of the workload intensity. More specifically, it is a function of the number of update-actions to dis

blocks per checkpoint interval. It might appear that a smaller cache would cause more update-a

because of additional cache replacements. However, even if a block is replaced to memory and re

from memory multiple times in an interval, each of which is an update-action, only the first such up

action per interval is logged. It also might appear that a larger memory would place more pressure

CLBs. However, the parameter that matters is the amount of memory touched in an interval.

Having to stall stores or acquisitions of ownership due to a full CLB degrades performance, but it do

affect correctness or lead to deadlock or livelock. Livelock would occur if execution was stalled—s

were stalled and all cache coherence requests were nacked—and execution could only be un-stalle

ward progress was made. The key to avoiding livelock is that CLB space will free upindependentlyof exe-

cution. CLB space is freed when an old, pending checkpoint is validated. When this checkpoint be

the new recovery point, the old recovery point state (including CLB entries) can be discarded, as w

discussed in Section 2.2.5. Thus, the freeing of CLB space is tied to checkpoint validation (i.e., error

tion) and not active execution. The performance impact of stalls due to full CLBs will be evaluate

Section 3.4.1.

2.2.4 Checkpoint Creation
Checkpoint creation is kept lightweight, since it is a common-case event that occurs on each edge

checkpoint clock. A processor checkpoints its non-memory architectural state (i.e., registers) and

ments its CCN. A memory controller simply increments its CCN. Checkpointing of memory and co

ence state is achieved through logging, so no checkpointing of that state is necessary at che

creation.

mplete)

that is

covery,

period

null

t-

four

or

due to

ly

stor-

e, the

of

error-

ensure

d. We

questor,

ay be

uld pre-

ur bits to
33
Since checkpoint numbers are encoded in a finite number of bits, sayk, we can only have2k checkpoint

contexts. In all experiments shown later,k is two (i.e., we can only have four checkpoint contexts).7 CN

wraparound can only occur if validation ceases (i.e., because a coherence transaction does not co

while checkpoint creation continues. We avoid wraparound by choosing a request timeout latency

shorter than the latency to wraparound. Thus, a request would timeout, and thus trigger a system re

before it could stall validation to the point at which wraparound could occur.

Checkpoint creation policy is simply choosing a suitable checkpoint period,Tc. For SN-Snooping, the

checkpoint period is the number of coherence transactions per checkpoint interval. To keep the

bounded in physical time and limit output commit latency, the service processor periodically injects

coherence requests if it observes that no requests are being made. ForSN-Directory, the checkpoint period

is the reciprocal of the checkpoint clock frequency,fc. As fc decreases (given a constant number of ou

standing checkpoints),SafetyNetcan tolerate longer error detection latencies. For example, we allow

outstanding checkpoints and choosefc equal to 10 kHz (i.e.,Tc is 100,000 processor cycles at a process

clock of 1 GHz) to enable 400,000 cycles (0.4 msec) of detection latency tolerance.

The cost of increasing tolerable detection latency is more pressure on the CLBs and longer delays

the output commit problem. While increasingTc allows for more compression of logged data, since on

the first of multiple writes or ownership transfers in a checkpoint interval requires logging, total CLB

age is a function both of logging frequency and interval length. However, given sufficient CLB storag

value ofTc has little effect on common-case performance, as will be shown in Chapter 3. The choiceTc

has a greater impact on I/O performance, as was discussed in Section 2.1.5.

2.2.5 Checkpoint Validation and Deallocation of Checkpoint State
Checkpoint validation requires that all components agree that execution up until that checkpoint was

free. For a given error model and associated error detection mechanisms, each component waits to

that the error detection mechanisms report no errors for activity prior to the checkpoint to be validate

now address the error model of a lost/corrupted message that is detected with a timeout at the re

since this is likely to be the longest latency detection mechanism. Other long latency mechanisms m

implemented, including strong error detecting codes applied to incoming messages, but these sho

sumably be shorter than timeouts.

7. As will be discussed in Section 2.2.7, we use unary encoding of checkpoint numbers at the caches. Thus, we need fo

encode the four possible checkpoint numbers.

terval

deter-

n vali-

ded a

tor must

hat the

of the

sumes

forms

formed

asts the
34

A cache controller only agrees to validate a checkpoint once every transaction it initiated in the in

before that checkpoint completed successfully. Thus, if a cache controller checks its TBE table and

mines that none of its outstanding requests were issued in the checkpoint to be validated, then it ca

date that checkpoint.

A directory controller only agrees to validate a checkpoint once every transaction for which it forwar

request to a processor owner (i.e., three-hop transaction) completed successfully. Thus, the reques

send a Final-Ack (or Final-Nack) to the directory after its request has been satisfied (or nacked), so t

directory can deallocate its TBE for the transaction. Any lost message will prevent advancement

recovery point. If the recovery point cannot be advanced after a given amount of time, the system as

an error has occurred (such as a lost message) and triggers a system recovery.

We coordinate global validation with a two-phase scheme illustrated in Figure 2-8. A component in

the service processor that it is ready to advance the recovery point. Once every component has in

the service processor that it is ready to advance the recovery point, the service processor broadc

Local
Validation

service processor

node

Wait for
All Nodes

Deallocate
CPi-1 State

node

Local
Validation

node

agree to
validate CPi

agree to
validate CPi

validate

Deallocate
CPi-1 State

nodevalidate

Phase 1 Validation Phase 2 Validation

FIGURE 2-8. Two-phase validation of checkpointCPi

l-

the

r-

n

y mes-

proceed

insight

. First,

rogress

. Sec-

lly undo

the

Pro-

lidated

Sim-

o the

t of the

oved

e-used

f the

handle

lock

double
35
newrecovery point checkpoint number (RPCN).8 Execution does not slow down while checkpoints are va

idated in the background, similar to a fuzzy barrier [43].

Processor and memory controllers deallocate a checkpoint, say CPi, by discarding their now unneeded

architectural checkpoints for checkpoint CPi-1. We discard the state for the before images that enable

system to recover from CPi to CPi-1, since we will never need to recover to CPi-1 now that CPi is the recov-

ery point. A processor discards its register checkpoint for CPi-1. Caches deallocate a checkpoint by clea

ing the CN of all blocks that had CN set to CPi-1. We discuss how to implement this feature i

Section 2.2.7. Caches and memories discard logged data at their CLBs from CPi-1.

2.2.6 System Recovery and Restart
If a component detects an error, it notifies the service processor to trigger a recovery. The recover

sage, which includes the RPCN, is broadcast (redundantly) by the service processor, and all nodes

to recover to the recovery point. The process of recovery involves several steps, and it leverages the

that the state of any transactions in progress, by definition, is unvalidated state that is now discarded

the interconnection network is drained, and all state related to coherence transactions that were in p

at the time of the recovery, including TBE state for blocks the node is trying to acquire, is discarded

ond, processors, caches, and memories recover the RPCN checkpoints. Memories just sequentia

the logged update-actions in their CLBs. Undoing the memory CLB involves copying the blocks from

CLB to the memory, traversing the CLB from the tail to the head (i.e., in reverse order of insertion).

cessors restore their register checkpoints. Caches invalidate all blocks written or sent in an unva

checkpoint interval (i.e., blocks with non-null CNs), and they undo the logged actions in their CLBs.

ilar to memory, undoing the cache CLB involves copying the blocks in reverse order from the CLB t

cache.

At recovery time, the TBEs may also hold validated state that cannot be discarded because it is par

recovery point. During normal execution, on a cache replacement of an owned block, the block is m

from the cache to the TBE while the Put-Exclusive is pending, so that the cache frame can be r

immediately. Thus, the only copy of the block is in the TBE. If this block is validated state, it is part o

recovery point, and it must be retained during the system recovery process. During a recovery, we

this block by re-issuing a Put-Exclusive for it and leaving it in the TBE. Trying instead to push the b

back into the cache is legal but more difficult.

8. Communication of coordination messages (which are infrequent) can be made reliable through redundancy, if this

fault model is to be tolerated. We will discuss this issue in Section 4.1.5.

at they

oordi-

s the

e restart

far in

roces-
36

After recovery and reconfiguration (if needed), a restart message is broadcast to inform the nodes th

can resume operation. The restart cannot begin until every node has finished its recovery. As with c

nation to validate checkpoints, we implement a two-phase coordination in which every node inform

system service processor once it is ready to restart and then the service processor broadcasts th

message. This two-phase restart is illustrated in Figure 2-9.

2.2.7 Implementation Details
In this section, we discuss some of the implementation details that have been omitted thus

Section 2.2, including how to maintain checkpoint numbers at the cache and how to checkpoint the p

sor register state.

Local
Recovery

service processor

node

Wait for
All Nodes

Restart
Execution

node

Local
Recovery

node

agree to
restart

agree to
restart

restart

Restart
Execution

noderestart

Phase 1 Recovery/Restart Phase 2 Recovery/Restart

FIGURE 2-9. Two-phase recovery/restart

rs at

is cru-

t lower

ted at

of the

,

e stored

gs (but

.

onstant

coding

ent the

invali-

ister

rmance

at we

gn that
37

Checkpoint Numbers at Cache.We now describe how to store and manipulate checkpoint numbe

the caches. Caches maintain checkpoint numbers to enable optimized logging of update-events. It

cial to optimize logging at the L1 cache, since stores are so frequent, but optimizing update-events a

levels of the cache hierarchy is less crucial. Thus, the following cache modifications could be elimina

caches below the L1, if the cost of implementation is deemed to be not worth the benefit.

Cache operation is conventional, with three important exceptions: (1) a store hit may trigger logging

block that would be overwritten, (2) a validation of checkpointi must find blocks with CN=i and then set

CN=null, and (3) a recovery must invalidate blocks with CN≠null. Since we always recover to RPCN

there are no partial rollbacks. Case (1) can be detected by comparing the processor’s CCN and th

block’s CN in parallel with a standard tag comparison. A store to the cache thus reads the cache ta

not the data) before writing it, but this is also true for normal stores, since they require a tag lookup

Checkpoint validations and system recoveries can be made to operate globally on the caches in c

time with two changes. First, we store checkpoint numbers encoded as one-hot bit vectors. This en

requiresk bits to supportk active checkpoints, which is not a problem for the smallk we envision (e.g.,

four). Second, we keep the checkpoint numbers in the same SRAM with the cache tags and augm

cache tags with a flash clear on each CN bit column, similar to the mechanism in caches with flash

dation [61].

We summarizeSafetyNetmodifications to cache behavior in Table 2-1.

Register Checkpointing.We now discuss specific details of how to checkpoint the processor reg

state. There are many possibilities for doing this, and the best design choice depends on the perfo

required and the cost of implementation. In Section 3.4.3, we will demonstrate thatSafetyNetperformance

is quite insensitive to register checkpointing latency for the checkpoint interval of 100,000 cycles th

consider, since checkpointing occurs so infrequently. Thus, we choose a simple, unoptimized desi

TABLE 2-1. Modifications to SafetyNet cache behavior

Operation Action

Load nothing

Store If CN=null or CCN≥CN, then log old copy of block in CLB

Coherence Transfer If CN=null or CCN≥CN, then log old copy of block in CLB

Checkpoint Validation Clear CN bit for all blocks in cache

System Recovery Invalidate all blocks with non-null CNs

le by the

py the

cts the

tional

shadow

sary to

e cost

ssue in

nularity

he sys-

eck-

error

st be able

is not

need

ons of

ut we

ercial

. Add-

e add

nt of ato-

oid fill-

-hop

curred
38
leverages existing datapaths. A processor maintains register checkpoint contexts that are accessib

load/store functional unit. On a checkpoint, the processor uses the load/store unit to sequentially co

architected registers into a register checkpoint context. On a recovery, the load/store unit extra

recovery point register checkpoint and copies it into the architected registers. Unlike more tradi

shadow registers, these do not require extra datapaths between the architected registers and the

registers. Nor do these shadow registers require low-latency accessibility.

For shorter checkpoint intervals, a more optimized register checkpointing scheme may be neces

avoid performance degradation. We could employ more traditional (i.e., fast) shadow registers, at th

of adding this datapath and using valuable space near the register file, but we do not explore this i

this thesis.

2.2.8 Summary of Implementation
We have developed two particular implementations of theSafetyNetabstraction. The implementations

address the three challenges that were raised for logging schemes. First, we exploit checkpoint gra

to reduce the amount of logging necessary. Second, we efficiently coordinate checkpoints across t

tem in logical time, with a different logical time base for each implementation. Third, we enable ch

point validation to be performed in the background, thus hiding the potentially lengthy latency of

detection (e.g., for timeouts on coherence requests).

These implementations require three changes to the processor and caches. First, the processor mu

to checkpoint its register state. While modifying the core may be undesirable, register checkpointing

performance-critical, since it is uncommon, and copying out registers is straightforward if it does not

to be fast (we will assume 100 cycles in later results). Second, we must be able to copy old versi

blocks out of the cache before overwriting or transferring them. This increases cache bandwidth, b

will show in Chapter 3 that the increase is a small fraction of cache bandwidth used for our comm

workloads. Third, we add CNs to cache blocks (at least at the L1 cache), to enable optimized logging

ing CNs to cache blocks requires customization of the cache design in order to support flash clear.

SN-Directoryalso requires three changes to the underlying directory coherence protocol. First, w

checkpoint numbers on data response messages, so that the requestor knows the transaction’s poi

micity. Second, we allow both directories and processors to nack coherence requests, in order to av

ing a CLB. Third, we add a Final-Ack (or Final-Nack) from the requestor to the directory on three

coherence transactions, so that the directory knows in which checkpoint interval the transaction oc

(or was nacked).

t/

log-

ack-

ated.
39
Other implementations ofSafetyNetare certainly possible, butSN-Snoopingand SN-Directorydemon-

strate thatSafetyNetcan be applied to the two primary classes of cache coherence protocols.

2.3 SafetyNetConclusions
In this chapter, we developed a scheme, calledSafetyNet, that enables globally consistent checkpoin

recovery. We also describe two specific implementations ofSafetyNet. In developingSafetyNet, we make

three contributions which provide the intuition for why Chapter 3 will showSafetyNetto be efficient in the

common case of error-free execution.

• SafetyNetefficiently coordinates the creation of checkpoints across the system in logical time.

• SafetyNetminimizes the amount of state that must be checkpointed through the use of optimized

ging.

• SafetyNethides the latency of error detection by pipelining the validation of checkpoints in the b

ground. The system can continue to execute while it determines if old checkpoints can be valid

40

41
Chapter 3
ng

ee

re how

not only

ance

unrea-

lity of

r

te the

g the

loads,

hesis,

rison,

are

hat:

ifi-

ensitiv-

n

SafetyNet Evaluation

In this chapter, we evaluateSafetyNet. Our primary focus is on the performance impact of implementi

SafetyNet, sinceSafetyNetis more likely to be widely used if it does not significantly degrade error-fr

performance. Performance is a function of many system and workload parameters, and we explo

these parameters affect performance. The exploration of the system parameter space sheds light

on performance but also on hardware cost. For example, CLB sizing is important to achieving perform

and it also contributes directly to cost. If the only way to achieve acceptable performance was to use

sonably large CLBs, which is fortunately not the case, then that cost would decrease the viabi

deployingSafetyNet. There are other costs of implementingSafetyNet,such as extra cache bandwidth fo

logging, and we explore the system parameters that constitute the primary costs.

In Section 3.1, we develop a qualitative model of system performance. The model serves to illustra

system and workload parameters and how they contribute toSafetyNetperformance. While the model is

not intended as a tool for quantitatively predicting performance, we will refer back to the model durin

quantitative analysis to provide insight into the results.

In Section 3.2, we describe our methodology for quantitatively evaluatingSafetyNet. Since this thesis

addresses commercial servers, we use full-system simulation in order to run commercial work

including database and web server workloads. While we focus on commercial workloads in this t

SafetyNetcan also be applied to other workloads. We evaluate one scientific benchmark, for compa

and we discuss issues involved in supporting other types of workloads.

In Section 3.3, we determineSafetyNetperformance by running three experiments in which we comp

the performance ofSafetyNetversus that of a system unprotected from faults. The two key results are t

• Differences in performance betweenSafetyNetand an unprotected system are statistically insign

cant.

• SafetyNetcontinues to run in the presence of hard and soft faults.

To ensure that the design is not overly sensitive to specific implementation parameters, we present s

ity analysis in Section 3.4. This analysis will show thatSafetyNetperformance is somewhat dependent o

ting.

to

mance

.3 and

nded

ters are

lding

valua-

, cache

ted in

tem,

rval

for
42
CLB sizing and the checkpoint interval, but it is not sensitive to the latency for register checkpoin

Analysis will also demonstrate that the additional cache bandwidth required bySafetyNetis negligible.

Lastly, analysis will illustrate howSafetyNetperforms as a function of the soft error rate.

3.1 High-Level Performance Model
In this section, we present a high-level model ofSafetyNetperformance. The purpose of the model is

reveal the system and workload parameters that play important roles in determining system perfor

and to illustrate qualitatively how they interact. In the quantitative performance analyses in Section 3

Section 3.4, we will refer back to this model to provide insight into the results. This model is not inte

to serve as a tool for evaluating detailed design decisions.

The equations for performance are functions of system and workload parameters. The key parame

the following:

• checkpoint period (Tc)

• CLB size(CLBSize)

• workload intensity, i.e., frequencies of stores and coherence requests(WorkloadIntensity)

• processor register checkpointing latency(CheckpointLatency)

• error rate(ErrorRate)

Much of the sensitivity analysis in Section 3.4 will involve varying one of these parameters while ho

the others constant. Other significant parameters exist, but we will consider them to be fixed in this e

tion. These parameters include the number of checkpoint contexts (fixed at 4), processor speed

sizes, and interconnection network bandwidth. All of these parameters and their values will be lis

Section 3.2.1.

3.1.1 Error-Free Performance
Error-free SafetyNetruntime would be equivalent to the error-free runtime of an unprotected sys

except for the three issues illustrated in the following equation:

(EQ 1)

The first issue is stall time due to filling a CLB. CLB stall time, in turn, is directly related to the inte

length (Tc) and workload intensity, and it is inversely related to the CLB size. The following function

Runtime SN() Runtime Unprotected() CLBStalls CPOverhead MiscOverhead+ + +=

ect

e

gging.

even

ge is

y log-

here is

B is

nefit.

ls.

ten-

rimary

irectly

res that

. Vari-

kpoint

n-lin-
43
CLB stall time is non-linear (fNL), but we place variables in the numerator and denominator to refl

whether the function is directly proportional or inversely proportional to the variables.

(EQ 2)

The non-linearity in this function has a couple of causes. First, asTc or workload intensity increases, ther

are more update-events in the interval, although this is not a linear relationship due to optimized lo

Workload intensity is also not stationary, and bursts in intensity can cause bursts of CLB stalls,

though the CLB size may be sufficient for the mean workload intensity. However, since CLB stora

dynamically allocated to checkpoints (i.e., each ofN checkpoint contexts isnotstatically assigned1/Nthof

the CLB), a burst of high frequency logging could be counterbalanced by a stretch of lower frequenc

ging. Second, as CLB size increases, there are fewer CLB stalls, yet the relationship is non-linear. T

an inflection point in the curve of CLB stalls as a function of CLB size, at the point at which the CL

large enough to not fill often. Once the CLB size is sufficiently large, increasing it further offers no be

However, if the CLB size is particularly small, the system is highly susceptible to bursts of CLB stal

The second issue is overhead due to checkpointing. This overhead is a linear function (fL) of the processor

register checkpointing latency divided byTc.

(EQ 3)

The third issue incorporates all otherSafetyNetoverheads. These overheads include many negligible la

cies (e.g., extra latency due to extra congestion from checkpoint coordination messages), but the p

potential component is extra latency for stores that require logging in the CLBs. The overhead is d

related to the workload intensity, since an increased rate of stores leads to an increased rate of sto

require logging, although the latter increase is less than the former due to optimized logging of stores

ance in the workload intensity is less important The overhead is inversely proportional to the chec

interval, since a longer interval contributes to more optimized logging of stores. The overhead is a no

ear function of these two parameters.

(EQ 4)

CLBStallTime f
NL

Tc WorkloadIntensity×
CLBSize

--- 
 =

CheckpointOverhead f
L

CheckpointLatency
Tc

-- 
 =

MiscOverhead f
NL

WorkloadIntensity
Tc

-- 
 =

rease

ation

e of

timi-

ity in

l.

ime.

e state

y, and

-time

ay lost

rk is

o at the

ne

loads

te our

commit
44
The non-linearity can be explained with two extreme examples. First, the workload intensity can inc

without any corresponding increase in the rate of stores that require logging, if the logging optimiz

hides the additional stores. Second,Tc can increase without any corresponding decrease in the rat

stores that require logging, if the longer checkpoint interval does not contribute at all to the logging op

zation. While neither of these extreme examples is likely, they still illustrate the potential non-linear

this overhead function.

3.1.2 Performance in Presence of Errors
When errors occur, the unprotected system fails andSafetyNetcontinues to perform at a degraded leve

The impact uponSafetyNetperformance due to errors is a function of the error rate and the recovery t

The effects are captured in the following equation:

(EQ 5)

Recovery latency consists of four components: discarding unvalidated checkpoint state, restoring th

from the recovery point, re-configuring (e.g., changing the routing to avoid a dead switch) if necessar

re-executing the work that was lost between the recovery point and the fault.

(EQ 6)

We do not evaluate reconfiguration latency since it is both difficult to estimate and it is only a one

penalty, although it could be a large penalty. The latencies to restore the recovery point and to repl

work are both functions of the checkpoint interval and the workload intensity. Re-executing lost wo

likely to dominate, since the recovery point can be hundreds of thousands of cycles in the past.SafetyNet

can tolerate longer error detection latencies with less frequent (i.e., larger) checkpoints, but it does s

cost of more potential lost work.1 Nevertheless, even a one million cycle recovery latency is still only o

millisecond (i.e., much shorter than a failure and reboot).

3.2 Methodology
In this section, we describe both our full-system simulation infrastructure and the commercial work

with which we evaluateSafetyNet. Since this research addresses commercial servers, we must evalua

1. The most significant costs of larger checkpoint intervals are the additional CLB size requirements and longer output

penalty.

Runtime WithErrors() Runtime NoErrors() ErrorRate RecoveryTime×+=

RecoveryTime Discard Restore Reconfigure ReplayWork+ + +=

quires

ulator

odi-

which

suffi-

nd it

), but it

ould

eyond.

f com-

lues of

g pro-

es.

r

45
work using important commercial workloads. To simulate systems that can run these workloads re

full-system simulation.

3.2.1 Simulation Infrastructure and Target System
We simulate a 16-processor target system with the Simics full-system, multiprocessor, functional sim

[64], and we extend Simics with a memory hierarchy simulator to compute execution times.

Simics.Simics is a system-level architectural simulator developed by Virtutech AB that can boot unm

fied commercial operating systems and run arbitrary unmodified applications. We use Simics/sun4u,

can simulate Sun Microsystems’s SPARC V9 platform architecture (e.g., used for Sun E6000s) in

cient detail to boot an unmodified copy of Sun Solaris 8. Simics is a functional simulator only, a

assumes that each instruction takes one simulated cycle to execute (although I/O may take longer

provides an interface to support detailed memory hierarchy simulation.

Processor Model.We use Simics to model a processor core that, given a perfect memory system, w

execute four billion instructions per second and generate blocking requests to the L1 cache and b

We use this simple processor model to enable tractable simulation times for full-system simulation o

mercial workloads. While an out-of-order processor model might have an impact on the absolute va

the results, it would not qualitatively change them (e.g., whether a failure is avoided). For evaluatin

cessor/cache overhead for checkpointing register state, we model a conservative latency of 100 cycl2 We

2. If checkpointing was a more frequent event (e.g., if we were usingSafetyNetto support speculation), we could optimize registe

checkpointing latency by using shadow register copies. As explained in Section 2.2.7 and evaluated in Section 3.4.3,SafetyNet

performance is insensitive to this latency, so we do not need to optimize it.

TABLE 3-1. Target system parameters

L1 Caches (I and D) 128 KB, 4-way set associative

L2 Cache 4 MB, 4-way set associative, 4ns

Memory 2 GB, 64 byte blocks, 80ns

Miss From Memory 180 ns (minimum, uncontended, 2-hop)

Checkpoint Log Buffer 512 kbytes total, 72 byte entries

Interconnection Network 2D torus, link bandwidth = 6.4 GB/sec

Checkpoint Interval 100,000 cycles = 100µsec

ocks),

nt

e

rs. We

aches

With a

ntion

. The

osed

n pro-

pth in

called

artin

y pro-

ns of

ing and

ation

our

cur is

vides

in the

ulator
46
conservatively charge eight cycles for logging store overwrites (8 bytes/cycle for 64 byte cache bl

but store overwrites that require logging comprise only about 0.1% of instructions.

Memory Model. While we have developed two implementations ofSafetyNet, we only evaluateSN-

Directory in this section. We have evaluatedSN-Snooping, but the results are similar enough not to warra

their presentation here. We have implemented a memory hierarchy simulator that supports theSN-Direc-

tory protocol as well as a comparable protocol withoutSafetyNetsupport. The simulator captures all stat

transitions (including transient states) of our coherence protocols in the cache and memory controlle

simulate a two-level cache hierarchy with a split L1 cache. We enforce exclusion between the L1 c

and the L2 cache. In Table 3-1, we present the design parameters of our target memory systems.

checkpoint interval of 100,000 cycles and four checkpoint contexts,SafetyNetcan tolerate error detection

latencies up to 400,000 cycles (0.4 msec at 1GHz).

We model a two-dimensional torus interconnection network, and we model link latency and conte

within this interconnect, including contention due to checkpoint validation coordination messages

interconnection network’s routing is statically determined. The switches within the network are comp

of two half-switches, one for the north/south direction and one for the east/west direction. This desig

vides sufficient redundancy in the case that a half-switch is lost (as will be explored in greater de

Section 3.3.3), but it incurs extra latency to change directions in a switch.

The memory system, including the coherence protocol, was specified in a domain specific language

SLICC (Specification Language for Implementing Cache Coherence) that was developed by Milo M

at the University of Wisconsin. Protocols were developed using the tabular specification methodolog

posed by Sorin et al [101]. To further exercise the protocol implementations, we drove them for billio

cycles with a random tester that injected errors and stressed corner cases by exploiting false shar

reordering messages [119]. We did not perform more formal verification ofSafetyNetprotocols, but we

have performed manual formal verification of other related protocols [22, 77, 101], and this verific

work has influenced the design of theSafetyNetprotocols.

I/O Model. As will be discussed in Section 3.2.2, our workloads are scaled down in size to run on

simulator. In particular, our workloads are scaled to run mostly in memory. The I/O that does still oc

not handled by our memory system simulator. Instead, it is handled strictly by Simics, which pro

functionality but little timing fidelity.

Recovery.Since Simics cannot currently be recovered to a point hundreds of thousands of cycles

past, we must emulate its behavior after recovery. During normal execution, our memory system sim

while

simu-

ng the

ffect

unt-

sions.

ildly

eduling

esign

native

sent one

luate

e., fre-

alls, as

work-

s, and

cal-

ming

ds to

ms may

feed-

like

nsistency

e check-
47
logs memory requests (but not I/O requests) from Simics. If a recovery occurs, we stall Simics

replaying requests from our memory system logs. Since we do not handle I/O in our memory system

lator, we do not replay I/O requests. Thus, the simulation does not obey the rules for correctly handli

output commit problem. However, I/O is infrequent in our workloads, and we do not believe that its e

would be substantial.

Methodology.Commercial workloads running on real operating systems exhibit instability in their r

imes, and the simulation methodology must account for this effect or risk coming to incorrect conclu

While our simulator is perfectly deterministic, even small perturbations of the workloads can cause w

divergent execution paths, perhaps due to reorderings of lock acquisitions or operating system sch

decisions. We account for this instability as outlined by Alameldeen et al. [4]. We simulate each d

point multiple times with small, pseudo-random perturbations of memory latencies to cause alter

executions. When presenting performance results, we plot the mean values and error bars to repre

standard deviation in each direction (i.e.,).

3.2.2 Workloads
Commercial applications are an important workload for high availability systems. As such, we eva

SafetyNetwith four commercial applications and one scientific application, for comparison.SafetyNetper-

formance depends on the application, because applications have different workload intensities (i.

quencies of update-events). More intense workloads are more likely to fill up the CLBs and cause st

shown in Equation 2 in Section 3.1.1. Conversely, to get equivalent performance for a more intense

load may require larger CLBs. Also, more intense workloads have greater rates of store overwrite

this effect can degrade performance, as shown in Equation 4.

The worst-case workload forSafetyNetwould have both a high frequency of update-events and poor lo

ity (thus reducing the benefits of optimized logging). An example of such a workload would be a strea

multimedia application. Fortunately, these two factors are often inversely related. Poor locality lea

more cache misses, and cache misses incur latency that delays future update-actions. While syste

allow for multiple outstanding requests, this optimization does not completely alleviate the negative

back loop due to cache misses.3 Larger cache sizes may be used to reduce miss rates, so a workload

3. Store latency also can be at least partially hidden by more relaxed memory consistency models, such as processor co

(PC). As discussed in Section 2.1.6, implementations of PC hold the state of these stores in a store buffer that must b

pointed bySafetyNet.

µ̂ σ̂±

t more

ly, the

char-

aptive

That

out their

d avoid

a sys-

h-

atabase

sers per

cludes

e. Our

actions,

We use

r. We

.

er pro-
48
successive over-relaxation (SOR) that performs many writes and fits in the larger cache could exer

pressure on the CLBs. However, larger caches will make the CLBs look relatively smaller. Converse

CLBs could be made larger, to match the prior ratio of cache size to CLB size.

While this evaluation focuses on commercial workloads, other classes of workloads exist with other

acteristics. Other workloads, such as data-intensive scientific applications, may stressSafetyNetmore than

commercial workloads. If these workloads are important for the system,SafetyNetimplementations may

want to reduceTc, in order to reduce CLB pressure (as suggested by Equation 2). Moreover, an ad

approach to settingTc could be useful for systems that run a variety of workload types.

All of the workloads used in this evaluation are described in greater detail by Alameldeen et al. [4].

paper addresses the setup, tuning, scaling, and warm-up of these workloads, as well as details ab

performance characteristics. The workloads are all sized and warmed up to be memory-resident an

disk I/O. We now briefly describe each workload, and we characterize their execution behaviors (for

tem unprotected bySafetyNet) in Table 3-2.

Online Transaction Processing (OLTP).Our OLTP workload is based on the TPC-C v3.0 benc

mark using IBM’s DB2 v7.2 EEE database management system. We use a 1 GB 10-warehouse d

stored on five raw disks and an additional dedicated database log disk. There are eight simulated u

processor. We warm up for 10,000 transactions, and we run for 500 transactions.

Java Server.SPECjbb2000 is a server-side Java benchmark that models a 3-tier system and in

driver threads to generate transactions. We used Sun’s HotSpot 1.4.0 Server Java Virtual Machin

experiments use 24 threads and 24 warehouses (~500 MB of data). We warm up for 100,000 trans

and we run for 50,000 transactions.

Static Web Server.We use Apache 1.3.19 (www.apache.org) for SPARC/Solaris 8, configured to use

pthread locks and minimal logging as the web server. We use SURGE [8] to generate web requests.

a repository of 2,000 files (totalling roughly 50 MB). There are ten simulated users per processo

warm up for 80,000 requests, and we run for 5,000 requests.

Dynamic Web Server.Slashcode is based on a dynamic web message posting system used byslash-

dot.com . We use Slashcode 2.0, Apache 1.3.20, and Apache’smod_perl 1.25 module for the web server

MySQL 3.23.39 is the database engine. The database is a snapshot ofslashcode.com , and it contains

3,000 messages. A multithreaded driver simulates browsing and posting behavior for three users p

cessor. We warm up for 240 transactions, and we run for 50 transactions.

t

parison

phase,

1.

per-

rm

ode,

work-

o per-

over-

ycles) is

a-
49

Scientific Application. We usebarnes-hutfrom the SPLASH-2 suite [118], with the 64K body inpu

set. This scientific application places much less stress on the memory system, and it serves as a com

to the commercial workloads. We begin measurement of this application at the start of the parallel

in order to avoid measuring thread forking.

3.3 Experiments
We perform three experiments to evaluateSafetyNetperformance, and we show their results in Figure 3-

For each of our five workloads, we plot five bars: two bars for systems unprotected bySafetyNetand three

bars for systems withSafetyNet.

3.3.1 Experiment 1: Error-Free Performance
In this experiment, we run two systems,SafetyNetand unprotected bySafetyNet, in a error-free environ-

ment. In Figure 3-1, the first and the third bars (from the left) for each workload reflect the normalized

formances of the unprotected system andSafetyNet, respectively. We observe that the two systems perfo

statistically similarly for three out of the five workloads. For the other two workloads, jbb and slashc

there is a small performance degradation. With 512-kbyte CLBs, stalls occur often enough in these

loads to impact performance. However, if CLBs are increased to 1-Mbyte, these workloads suffer n

formance penalty withSafetyNet.4

Inspecting Equation 1 in Section 3.1.1 provides insight into the similarity betweenSafetyNetperformance

and the performance of the unprotected system. First, CLB stalls occur rarely, so they contribute little

head. Second, overhead due to processor register checkpointing (100 cycles out of every 100,000 c

4. Mean performance results for OLTP incorrectly suggest thatSafetyNetoutperforms an unprotected system. Statistical examin

tion of the results reveals that performance is comparable.

TABLE 3-2. Workload execution behavior

Workload

Dynamic
Instruction
Count

Instruction
Footprint
(Mbytes)

Data
Footprint
(Mbytes)

L1I Cache
Misses/
1000 Instrs

L1D Cache
Misses/
1000 Instrs

L2 Cache
Misses/
1000 Instrs

SpecJBB 3.7 billion 1.6 221 0.9 9.0 4.5

Apache 10.5 billion 1.1 84 1.1 2.8 2.4

Slashcode 7.3 billion 2.7 144 1.2 3.2 1.1

OLTP 8-10 billion 2.0 50 2.8 2.0 1.8

Barnes-Hut 11.4 billion 0.5 21 0.3 3.0 1.6

com-

riggers

rth bar

ce-

s that

ing to

0,000

s)

error
50

within the noise. Third, overhead due to stores that require logging is negligible, since such stores

prise 0.1% of all instructions.

3.3.2 Experiment 2: Dropped Messages
In this experiment, we periodically inject transient errors into the system by dropping a message5 every

one hundred million cycles (i.e., ten times per second). The requestor times out on its request and t

a system recovery. The second “bar” reflects the unprotected system performance (failure). The fou

from the right representsSafetyNetbehavior, and we see that it is statistically similar to the error-free s

nario.

Inspecting Equation 5 and Equation 6 in Section 3.1.2 helps to explain this result. Equation 5 show

recovery cost is proportional to the error rate. The dominant cost of recoveries in Equation 6 is hav

replay the lost work. Thus, the lack of performance impact is not surprising, since recovering even 40

cycles of work (i.e., the very worst case for a system withTc=100,000 cycles and four checkpoint context

is a small fraction of the hundred million cycle error period (i.e., error period is the reciprocal of the

5. We abstract the fault itself (e.g., a cosmic ray uncorrectably garbles a message) for generality.

0.0

0.5

1.0

1.5

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

fa
ilu

re

fa
ilu

re

fa
ilu

re

fa
ilu

re

fa
ilu

re

Unprotected error-free

Unprotected with error

SafetyNet error-free

SafetyNet with 10 transient errors per second

SafetyNet with a hard error

jbb apache slashcode oltp barnes

FIGURE 3-1. Performance comparison ofSafetyNet with an unprotected system

).

or

or rate

itch,

alf-

e loss

system

half-

perfor-

recov-

model-

te and a

system
51
rate). Moreover, the exact system recovery latency is not critical, sinceSafetyNet’s recovery latency is

orders of magnitude shorter than the latency of failing and rebooting (while preserving data integrity

In Section 3.4.4, we exploreSafetyNet’s sensitivity to changing the frequency of soft errors, including err

frequencies as high as one per ten million cycles. As the model would suggest, increasing the err

will, at some point, cause a visible degradation in performance.

3.3.3 Experiment 3: Lost Switch
In this experiment, we inject a hard error into an interconnection network switch, killing a half-sw

after 5 million cycles.6 Recall from Section 3.2.1, that each switch in the torus is comprised of two h

switches, which provides sufficient redundancy in the case that a single half-switch dies. However, th

of the half-switch causes the loss of its buffered messages, which must be tolerated. Moreover, the

must reconfigure the interconnection network to route around the dead half-switch.

The second “bar” reflects the failure of the unprotected system. The fifth bar reflectsSafetyNetperfor-

mance, and we observe that, most importantly,SafetyNetavoids a failure. Its performance is slightly

degraded, with respect to the error-free scenario, due to the restricted post-error bandwidth.7

Given a system with enough bandwidth not to be overly impacted by losing some of it due to a dead

switch, which is the case in this experiment, the same discussion as in Section 3.1.1 explains why

mance is not degraded. In a system that was more bandwidth-starved, the loss of bandwidth after the

ery would have a more pronounced effect, but here it has only a small impact on performance.

3.4 Sensitivity Analyses
In this section, we perform sensitivity analyses to gain a better understanding of howSafetyNetperforms

for different system parameters and different workload behaviors.

6. We do not model the diagnosis of this error. While we discuss diagnosis for this error earlier in the thesis, the details of

ing it are system-specific and do not help to illustrate this example.

7. We do not model the latency to reconfigure the interconnection network, because this latency is both difficult to estima

one-time penalty. The more important result is that the system does not fail and that the long-term performance of the

may be affected by the loss in interconnect bandwidth.

-

heck-

try is

s to the

web

the

ts that

hese

spatial

e 3-2

ugh the

nterval

e) as

B size

-byte
52

3.4.1 Checkpoint Log Buffer Storage Cost
As described in Section 2.2.3, an implementation ofSafetyNetseeks to size the CLBs to avoid perfor

mance degradation due to full CLBs. Total CLB storage is proportional to the number of allowable c

point contexts and the number of entries per checkpoint. We allow for four checkpoints and a CLB en

72 bytes (8-byte address and 64-byte data block). The number of entries per checkpoint correspond

logging frequency which is, in turn, a function of the workload intensity. In Figure 3-2, for the static

server workload, we plot logging frequencies as a function of the checkpoint interval. We scale bothx

andy axes logarithmically. Distinguishing between all stores/requests and only those stores/reques

require logging, we notice the striking drop-off in the latter as the checkpoint interval increases. T

trends are the same for the other workloads, and the intuition explaining this phenomenon is that

and temporal locality reduce the number of distinct blocks touched per checkpoint interval. Figur

shows that, on average, only about 100-150 CLB entries are created per 100,000 instructions (altho

variance in this rate requires more storage). Starting at intervals of 10,000 cycles, increasing the i

length by a factor of ten only increases CLB occupancy by a factor of between five and seven.

Equation 2 in Section 3.1.1 suggests that performance will improve (i.e., CLB stall time will decreas

CLB size increases, but the relationship is non-linear. For example, at some CLB size, increasing CL

further will have no effect. In Figure 3-3, we plot the performance ofSafetyNetas a function of CLB size.

While 1-Mbyte CLBs produce statistically comparable performances across the workloads, 512

10000 100000 1000000
checkpoint interval (in cycles)

0

1

10

100

ev
en

ts
 p

er
 1

00
0

in
st

ru
ct

io
ns

all stores
stores that use CLB
all coherence requests
coherence requests that use CLB

FIGURE 3-2. Workload intensity (Apache workload)

antly

val

when a

d in

lidated.

impor-

tion to

tion,

-

erfor-

ill only

signifi-

eside in
53

CLBs slightly degrade the performances of two of our workloads, and 256-kbyte CLBs signific

degrade the performances of all of our workloads.

3.4.2 Checkpoint Interval Length
The checkpoint interval,Tc, is an importantSafetyNetparameter for several reasons. First, a longer inter

allows for greater tolerance of error detection latencies. Second, the checkpoint interval determines

system withSafetyNetcan interact with the outside world. Due to the output commit problem, discusse

Section 2.1.3, the system cannot send data outside its sphere of recoverability until it has been va

Since validation latency depends on the checkpoint interval, the checkpoint interval thus plays an

tant role in I/O. For low-performance I/O, such as disks and external networks, delaying communica

wait for validation is a negligible cost. However, for high performance I/O, such as cluster communica

the maximum allowable checkpoint interval may be a function of the required I/O performance.

To gauge the impact of varying the checkpoint interval8, we plotSafetyNetperformance versus the check

point interval length in Figure 3-4, normalizing to the base case of 100,000 cycle intervals. The p

mance model in Section 3.1.1 suggests two trends. First, Equation 3 shows that shorter intervals w

hurt performance if they are so short that the 100 cycle register checkpointing overhead becomes

8. We do not study its affect upon the output commit penalty, since our workloads are scaled and warmed up so as to r

memory and avoid disk I/O.

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

1 Mbyte
512 Kbyte
256 Kbyte

jbb apache slashcode oltp barnes

FIGURE 3-3. Performance vs. CLB size

s CLB

erform

0 cycles

of

inter-

th (and

ized

e entire

age of

iking

s was

f each

size.

per-

e. For

e, as
54

cant. Second, Equation 2 shows that longer intervals will eventually start to degrade performance a

stalls become more frequent.

What we see in Figure 3-4 are two trends. First, smaller checkpoint intervals perform the best and p

comparably to each other, because 100 cycles is in the noise even for intervals as short as 10,00

(i.e., 100 cycles is 1% of this interval length).9 Our second observation about Figure 3-4 is that intervals

500,000 cycles and longer perform significantly worse than smaller interval lengths. As checkpoint

vals lengthen, the pressure on the CLBs increases, since CLB usage is a function of interval leng

workload intensity). While the pressure does not increase linearly with interval length, due to optim

logging, the increase can be significant. Consider the extreme case in which one interval spans th

execution—in this case, CLB usage (distributed across the system) is proportional to the memory im

the execution.

To further validate this hypothesis, we re-ran this experiment with larger CLBs and noticed str

improvements in performance. With large enough CLBs, we can attain the same performance a

achieved with smaller checkpoint intervals. In Figure 3-5 and Figure 3-6, we plot the performance o

workload with intervals of 500,000 cycles and one million cycles, respectively, as a function of CLB

For the 500,000 cycle checkpoint intervals, CLBs of two Mbytes or greater appear sufficient to avoid

formance degradation. There is a steep drop-off in performance, though, for CLBs less than this siz

the one million cycle checkpoint intervals, even two-MByte CLBs sacrifice considerable performanc

9. OLTP’s performance advantage for 50K checkpoint intervals is a statistical anomaly.

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

10K
50K
100K
500K
1M

jbb apache slashcode oltp barnes

FIGURE 3-4. Performance as a function of checkpoint interval (512 kbyte CLBs)

ytes

tes.

r a new

e-offs
55

evidenced by the performance improvement achieved with four-MByte CLBs. However, four Mb

appears sufficient in this case, since there is no performance gain evidenced by going to eight MBy

3.4.3 Register Checkpointing Latency
In Chapter 2, we discussed how processors must be able to checkpoint their register state wheneve

checkpoint is created. There are numerous ways to implement this capability, with varying trad

0.0

0.5

1.0
no

rm
al

iz
ed

 p
er

fo
rm

an
ce

4 Mbyte
2 Mbyte
1 Mbyte
512 Kbyte

jbb apache slashcode oltp barnes

FIGURE 3-5. Performance vs. CLB size for 500,000 cycle intervals

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

8 Mbyte
4 Mbyte
2 Mbyte
1 Mbyte
512 Kbyte

jbb apache slashcode oltp barnes

FIGURE 3-6. Performance vs. CLB size for 1 million cycle intervals

under-

s

mat-

-

ycles.

e from

done

n-

sence

dware

g error
56

between speed and complexity. Designers only want to implement what is necessary, so we wish to

stand how fast checkpointing must be so as not to perceptibly degrade performance.

To explore the impact of register checkpointing latency onSafetyNetperformance, we plot performance a

a function of register checkpointing latency in Figure 3-7. Equation 3 shows that this latency will only

ter if it is an appreciable fraction of the checkpoint interval length,Tc. Unsurprisingly, we observe that reg

ister checkpoint latency has a negligible effect on performance for checkpoint intervals of 100,000 c

The infrequency of checkpoint creation causes this overhead to be lost in the noise. We conclud

these results that optimizing register checkpointing is not worthwhile, unless checkpointing is to be

far more frequently. Thus, the simple but not optimized solution presented in Chapter 2 will suffice.

3.4.4 Sensitivity to the Rate of Soft Errors
In Section 3.3.2, we demonstrated thatSafetyNet’s performance in the presence of one soft error per hu

dred million cycles (i.e., ten times per second) was statistically equivalent to its performance in the ab

of errors. In this section, we explore the performance impact of higher error rates. While these har

error rates may seem exorbitant for today’s technology, the trends are leading towards ever-increasin

rates, and it is instructive to testSafetyNet’s ability to keep up with these trends.

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

10 cycles

100 cycles

500 cycles

1,000 cycles

jbb apache slashcode oltp barnes

FIGURE 3-7. Performance as a function of register checkpointing latency

eri-

ssage.

ce only

hundred

time

vide a

sys-

These

trans-

e read

0,000

t the

and log-
57

In Figure 3-8, we graphSafetyNetperformance as a function of the soft error rate. We perform this exp

ment similarly to the experiment in Section 3.3.2, by periodically dropping a cache coherence me

Equation 5 shows that performance will degrade as error rates increase. We observe that performan

begins to suffer, as compared to the error-free case, once soft error rates reach the rate of one

errors per second. At this rate, which is equal to one error every ten million cycles, the recovery

becomes non-negligible. This experiment uses a deterministic, periodic distribution of errors to pro

worst-case stress test. Any clustering of errors would improveSafetyNetperformance by overlapping

recovery latencies.

3.4.5 Cache Bandwidth
SafetyNet’s additional consumption of cache bandwidth (i.e., bandwidth not used by an unprotected

tem) depends on the workload intensity, particularly the frequencies of stores that require logging.

stores consume additional cache bandwidth for reading out the old copy of the block. Logging due to

ferring cache ownership, however, does not incur additional bandwidth, since the cache line must b

anyway. As shown in Figure 3-2, for the static web server workload and a checkpoint interval of 10

cycles, only 2-3% of stores (less than 0.1% of all instructions) require logging. In Figure 3-9, we plo

percentage of cache bandwidth used by cache hits, cache fills, responding to coherence requests,

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

error-free

1 error per second

10 errors per second

100 errors per second

jbb apache slashcode oltp barnes

FIGURE 3-8. SafetyNet performance vs. soft error rate

perfor-

com-

he

rs.

rkload

e

58

ging due to store overwrites. The additional cache bandwidth used bySafetyNetranges from 0.3% for mil-

lion cycle intervals up to 4% for short 5,000 cycle intervals.

3.5 Summary
In this chapter, we have evaluatedSafetyNet. We developed a qualitative analytical model forSafetyNet

performance, and this model illustrates the system and workload parameters that influence system

mance. We discussed our evaluation methodology, which incorporates full-system simulation and

mercial workloads. We then quantitatively evaluatedSafetyNetperformance, comparing it to an

unprotected system. We discovered thatSafetyNetperforms comparably to an unprotected system if t

CLBs are sized appropriately. Moreover,SafetyNetavoids failures in the presence of hardware erro

Lastly, we explored several sensitivity analyses to determine the impact of varying system and wo

parameters. Sensitivity analysis showed thatSafetyNetperformance is relatively robust, although it can b

degraded significantly if the CLBs are not sized sufficiently.

checkpoint interval (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 b

an
dw

id
th

Logging
Coherence
Cache Fills
Cache Hits

10k 50k 100k 500k 1M

FIGURE 3-9. Bandwidth vs. checkpoint interval (static web workload)

59
Chapter 4
ction.

covery

sence).

r

ssibly

prise

d in prac-

l error

l path.

r error

overy

local

e per-

or

ts pro-

e, by

echa-
Availability

This chapter discusses how to improve system availability withSafetyNet. Given a checkpoint/recovery

mechanism, the challenge of providing availability is reduced to the easier problem of error dete

SafetyNet can tolerate any device fault, provided that:

• The fault does not corrupt ECC-protected architectural state or other state that maintains the re

point (e.g., CLB state).

• A system can be augmented with a mechanism to detect the resultant error (or determine its ab

• The resultant error is detected whileSafetyNetstill maintains an error-free recovery point. An erro

that is not detected promptly can become latent and unrecoverable.

• The fault is transient or it is a permanent error that permits execution to resume after recovery, po

after system reconfiguration.

We highlight a few example errors due to device faults in Table 4-1 (in which the first three rows com

the first three rows of Table 1-1).

Numerous error detection schemes have been proposed in the literature and several have been use

tice. In the absence of a global recovery scheme, only localized error detection is applicable. Loca

detection schemes, for the most part, are optimized for latency, since error detection is on the critica

Thus, they often trade some detection rigor to avoid degradation of performance (e.g., using shorte

detecting codes).

SafetyNetcan tolerate much longer error detection latencies, for two reasons. First, it is a global rec

scheme, so error detection is off the critical path for inter-component communication. With only

recovery, there is an output commit problem between components that forces error detection to b

formed before communication. Second,SafetyNetpipelines checkpoint validation, and thus hides err

detection latency equal to the product of the checkpoint period and the number of checkpoint contex

vided by the system.SafetyNetcan maintain a recovery point as long as necessary, in the worst cas

stalling execution. However, error-free performance is best if, in the average case, error detection m

or 0.1

.2, we

lop

t

tion to

y)

s parts

signifi-

n-tra-

ated

le, or

single

Cur-

bytes),
60

nisms validate checkpoints error-free in one or a few checkpoint intervals (e.g, in 100,000 cycles

milliseconds).

We begin in Section 4.1 by describing previously developed error detection techniques. In Section 4

compare global recovery withSafetyNetto localized error recovery schemes. In Section 4.3, we deve

innovations in error detection that are enabled bySafetyNet’s tolerance of long detection latencies. Mos

notably, we can innovate in hardware error detection by using long-latency, inter-node communica

periodically assert that certain system properties hold.

4.1 Traditional Hardware Error Detection Mechanisms
This section considers errors thatSafetyNetcould tolerate using traditional (i.e., localized and low-latenc

error detection mechanisms. Section 4.1.1 to Section 4.1.5 focuses on errors due to faults in variou

of the system and how they can be detected. We do not focus on error diagnosis, since it does not

cantly affect this discussion, but we will address diagnosis in later sections when it interacts with no

ditional uses ofSafetyNet. We conclude in Section 4.1.6 with a discussion of errors that cannot be toler

with SafetyNet.

4.1.1 Interconnection Network Errors
A typical interconnection network error model focuses on link errors, trying to detect single, doub

burst errors. Link errors are normally detected with error detecting codes (EDC), such as parity,

error correcting double error detecting (SECDED), or cyclic redundancy check (CRC) [30, 75, 80].

rent systems, such as the SGI Origin’s Spider router [36], use short codes (e.g., on eight or sixteen

TABLE 4-1. Classification of illustrative errors due to device faultsa

a. We shade the device faults thatSafetyNetcannot tolerate.

Error Fault Detection
Recoverable
with SafetyNet

Resumability
Mechanism

er
ro

rs
 d

ue
 to

 d
ev

ic
e

fa
ul

ts dead switch in ICN hard device fault timeout on request yes reconfiguration

dropped coherence
message

soft device fault timeout on request yes none needed

proc-cache chipkill hard device fault watchdog timer no not available

bit flip on ICN link soft device fault error detecting code yes none needed

bit flip in switch buffer soft device fault error detecting code yes none needed

bit flip in CPU core soft device fault redundant thread yes none needed

stuck bit in CPU hard device fault redundant thread yes not available

as dis-

ct tech-

mes-

y toler-

d be

choose

s some

e.g.,

tency

/recov-

or send-

ors are

it twice.

happen

incorrect

ler. For

lusive, it

ork. An

d we

poten-

sing a

oci-
61
since the code must be checked before the data is forwarded or used.SafetyNetpermits the use of longer

and inherently stronger codes [76] because of its ability to tolerate long error detection latencies,

cussed in Section 4.2. Stronger codes may become more necessary for optical and RF interconne

nology, since these interconnects must use more power to achieve lower bit error rates [46].

SafetyNetis also compatible with other interconnection network error models. Lost and misrouted

sages can be detected with time-outs. Time-out latency must be less than the error detection latenc

ated bySafetyNet(i.e., the checkpoint period times the number of checkpoint contexts), yet it shoul

long enough to avoid false positives (i.e., time-outs due to bad congestion). In our experiments, we

a time-out latency that encompasses two or three congestion-free hops through the interconnect plu

slack for congestion.SafetyNetcan also be used to recover from corrupted internal switch state (

detected with internal EDC) and switch controller malfunction (e.g., detected with internal consis

checks).

4.1.2 Coherence Protocol Errors
There are numerous soft errors in the protocol engine that can be tolerated with global checkpoint

ery. Transient faults in the protocol engine can produce errors such as sending the wrong message

ing duplicate messages, as well as errors in the reception of messages. Many of these err

undetectable with error detecting codes, such as sending the wrong type of message or sending

These messages are self-consistently correct and will not be flagged as errors by EDC even if they

not to be the correct messages. These errors can, however, be detected by other mechanisms. An

message or a duplicated message will always lead to an invalid transition at a coherence control

example, if a processor in a broadcast snooping protocol issues a Get-Shared instead of a Get-Exc

will not be prepared to observe its own Get-Shared request when it arrives back on the address netw

invalid transition, such as the one in this example, will trigger a system recovery.

4.1.3 Cache Hierarchy and Memory Errors
Fault tolerance schemes for memory, both SRAM and DRAM, are already well-established, an

present the error model and prior detection techniques for completeness. A system withSafetyNethas to

protect the cache hierarchy and memory with ECC, since they contain memory blocks that could

tially be the only valid copies in the system, so an uncorrectable error could be unrecoverable.SafetyNet

might thus encourage stronger error correcting codes. Memory chip kills can be tolerated by u

RAID-like scheme for DRAM [28]. Unfortunately, a processor-cache chipkill partitions that chip’s ass

error

ds [98]

ct errors

ndant

ant cost

r errors.

7, 106,

overy

ggres-

readed

e FER

se

m-

calized

having

xplore

nsure

nother

s a

f

form

and

ggers a
62
ated memory from the rest of the system, even if that memory itself is error-free. Tolerating this

model could be achieved with distributed parity techniques similar to those used by ReVive [82].

4.1.4 Processor Core Errors
Processor errors can be detected with numerous schemes. Re-computation with shifted operan

detects errors due to transient faults as well as some permanent faults. Redundant processors dete

in high-availability systems, such as IBM mainframes [102] and Stratus machines [117]. These redu

processor schemes can tolerate processor faults, as well as detect their resultant errors, for a signific

in replicated hardware. Recently, redundant threads have been used to detect transient processo

AR-SMT [91] was the first proposal, and subsequent research has further developed these ideas [8

69].

SafetyNetmay not be the best solution for handling processor errors, since localized forward error rec

(FER) schemes can also tolerate processor faults. DIVA [6] implements dynamic verification of an a

sive processor core using a simple, verifiable checker core. Simultaneously and Redundantly Th

processors with Recovery [110] tolerates processor faults using redundant threads. While thes

schemes could be used instead ofSafetyNet, SafetyNetprovides a unified mechanism that tolerates the

faults, as well as others. Moreover,SafetyNetdoes not suffer a performance penalty due to the output co

mit problem between processors, whereas error detection and correction is on the critical path for lo

FER schemes. With coordinated global recovery, nodes can exchange data with each other without

to first perform error correction, since the system can be recovered if an error is detected later. We e

this issue further in Section 4.2.

4.1.5 SafetyNet Hardware Errors
TheSafetyNethardware itself is also susceptible to faults, and we target single fault instances. We e

that the service processor is not a single point of failure by using redundant service processors. A

possible single point of failure is the checkpoint clock inSN-Directory, so we distribute it redundantly.

Most other faults in theSafetyNethardware only manifest themselves during a recovery, which implie

double fault situation. While many double faults are tolerated bySafetyNet, a comprehensive coverage o

them would require heavier-weight hardware support. One important error model that results from a

of double fault is the situation in which a cache or memory controller fails to log a block in the CLB

then another fault soon thereafter (i.e., before that unlogged block would have been deallocated) tri

recovery.

ted with

caches,

bit of a

t, but

ch node

ges over

multi-

cor-

these

ed in

mech-

seem

g error

e. Such

kill of

t toler-

r

er, they

onent

lobal

echa-

rently

e two
63
Checkpoints of architectural state—processor registers, caches, CLBs, and memories—are protec

ECC, since an error in this state is unrecoverable if we have to restore a checkpoint. The CNs in the

however, cannot be protected with ECC, since a flash clear operates independently on a single

word. Thus, we can protect the CNs by storing them redundantly. More efficient solutions may exis

we do not pursue this issue further.

The mechanism for communicating messages regarding checkpointing (e.g., a message telling ea

to validate a checkpoint) must tolerate faults. We assume a redundant transmission of these messa

the existing interconnection network. One possibility is time redundancy, in which a message is sent

ple times, possibly over different paths. Triple modular redundancy (TMR) with voting can mask a

rupted or lost message in any of the redundant transmissions. Performance is not critical for

messages, but reliable delivery is crucial.

4.1.6 Device Faults Not Tolerated withSafetyNet

SafetyNet, as currently specified, does not tolerate certain fault models. As previously discuss

Section 1.5.3, there are three primary reasons why a fault would be unrecoverable. First, if detection

anisms do not exist to detect the resultant error, then the fault cannot be tolerated. While this may

obvious, it is important to realize that an fault tolerance scheme is only as good as its correspondin

detection scheme. Second, if the fault corrupts the recovery point state, the system is unrecoverabl

faults result in an error model that includes uncorrectable errors in architectural state as well as chip

a processor-cache chip. Third, a fault that prevents the resumption of execution after recovery is no

ated. For example, a fault that partitioned the interconnection network would not be tolerated.

4.2 Global Recovery versus Local Recovery
In this section, we compare global recovery withSafetyNetand local error detection to localized erro

recovery schemes. Local recovery schemes may be simpler and faster than global recovery. Howev

place error detection on the critical path, since there is an output commit problem for inter-comp

communication if global recovery is not available. Thus, error detection mechanisms must be fast. G

recovery takes error detection off the critical path, thus enabling longer latency error detection m

nisms. Global recovery exchanges the problem of local errorcorrection to the simpler problem of local

errordetection.

In Section 4.2.1, we illustrate a general tradeoff between forward error recovery (FER), which is inhe

a local recovery scheme, and global backward error recovery (BER). In Section 4.2.2, we illustrat

. In

o-

laces

ks), we

ER,

uperior

ER is

occurs.

me

ccur,

the
64

examples of trading local recovery for global recovery on links in the interconnection network

Section 4.2.3, we discuss a similar tradeoff at the processors.

4.2.1 General Discussion of FER vs. Global BER
As a global checkpoint/recovery scheme,SafetyNetallows the system designer to trade FER for BER. Gl

bal BER avoids the output commit problem for communication between components. In some p

where FER schemes are used to correct errors on transient or non-architectural (e.g., ECC on lin

can replace error correction with the inherently simpler task of error detection. Trading FER for B

however, reveals a performance tradeoff that depends on error rates. If errors are frequent, FER is s

to a BER scheme which requires a costly recovery for each error. However, if errors are infrequent, B

superior, since it optimizes the case of error-free execution and only pays a penalty when an error

This tradeoff is illustrated with a very rough model in Figure 4-1.

FER
BER

Legend

0

0.2

0.4

0.6

0.8

1

1.2

1.4

performance

0.2 0.4 0.6 0.8 1
fault rate

FIGURE 4-1. Rough comparison of BER vs. FER

We use a very simple linear model (with non-specific units) to compare BER and FER. FER runti

overhead is assumed to be 10% more than BER error-free performance. However, when errors o

BER performance degrades by a constant recovery cost times the error rate. At the point where

two curves intersect, FER’s runtime overhead equals BER’s overhead due to error recoveries.

tercon-

e, and

to

CC for

after

ted the

ror

rates.

ber of

s, we

proces-

n this

lure and

high.

r, even

, while

tects

at-

data

rror

ill be

yer. If,
65
4.2.2 Interconnect Link Errors
There are numerous local recovery schemes for tolerating faults that cause errors on links in the in

nection network. We discuss two examples of local recovery, one FER scheme and one BER schem

we compare them to using local error detection in conjunction withSafetyNet.

Local Recovery with Error Correcting Codes.Many systems use error correcting codes (ECC)

tolerate faults that cause bit errors on links. Since this state is non-architectural, we can trade E

EDC/SafetyNet. With global recovery, the system can detect (not correct) errors in the background,

having speculatively—in the sense that the data is predicted to be error-free—used or communica

data. There are two advantages to this approach:

• Taking ECC off the critical path improves error-free performance and allows for longer latency er

detection. This advantage is a specific case of BER’s general advantage over FER for “low” error

• Error detection is inherently easier than error correction. That is, an EDC code with a given num

redundant check bits,k, can detect more errors than an ECC code withk check bits will correct. For

example, to detectn bit errors with a Hamming code requires a Hamming distance ofn+1, while cor-

rection of n bit errors requires a Hamming distance of2n+1.

One caveat of using EDC instead of ECC is that we can only do this for non-architectural state. Thu

must still use ECC to protect the trusted architectural state in the caches and memories (and in the

sors’ register checkpoint state, if that is not mapped to memory). With EDC instead of ECC, a fault i

state would produce a detectable error, but it would be unrecoverable and necessitate a system fai

reboot.

Another caveat of using EDC instead of ECC is that ECC is preferable if the error rate is sufficiently

This issue is just a specific case of FER’s general advantage over BER for high error rates. Howeve

then, a combination of the two schemes may be preferable. A short ECC masks the “easy” errors

long EDC is performed in the background. For “tough” errors that ECC does not correct, EDC de

them and the system recovers withSafetyNet.

Local Recovery with Link-Level Retry. Besides EDC, other local recovery schemes exist for toler

ing faults that cause link errors. The Spider router [36] in the SGI Origin uses link-level retry in the

link layer to handle errors on links. Link-level retry is a local BER scheme that only partially takes e

detection off the critical path. Error detection does not slow down data link execution, but it must st

performed before data can be provided to the next highest layer in the protocol, the message la

instead of link-level retry, we used EDC/SafetyNet, we would not have to wait for local error detection.

R or a

-

aggres-

ror-free

n

t faults.

ance

g

ed to

tech-

etec-

perties

-wide

onsis-

stency

) for

vari-

possi-

rs not

high-

error
66
4.2.3 Processor Errors
Two choices for tolerating faults in a processor are to use either a recent scheme for localized FE

combination of processor error detection andSafetyNet. DIVA [6] is a localized FER scheme for proces

sors that uses a provably correct checker processor to gate possibly erroneous data from leaving an

sive processor. The checker processor is on the critical path, but it does not significantly degrade er

performance for quickly-detected errors.

Instead of using DIVA, we can use local error detection andSafetyNet. Recent processor error detectio

mechanisms, such as AR-SMT [91], have used redundant threads to detect errors due to transien

Combining AR-SMT withSafetyNetprovides transient fault tolerance comparable to DIVA1 without put-

ting a checker processor on the critical path. Since DIVA’s checker processor is not a major perform

problem, the decision to use DIVA versus AR-SMT/SafetyNetdepends mainly on other factors, includin

cost and complexity.

4.3 Innovations in Hardware Error Detection
SinceSafetyNetis a global BER scheme that takes error detection off the critical path, we no longer ne

optimize error detection for latency. Tolerating detection latency enables the use of error detection

niques that would otherwise be too costly in terms of performance. Most importantly, it allows for d

tion techniques that involve inter-node communication to determine whether end-to-end system pro

are being maintained. The power of end-to-end error detection is appealing, if we can develop system

invariants that can be checked at a reasonable hardware cost.

Ideally, we would like to check that the system’s memory consistency model is maintained, since c

tency is the highest level of memory system correctness, but dynamic verification of memory consi

is a difficult problem (in fact, it is NP-complete in theory [38], although perhaps easier in practice

future work. In this chapter, we will present two schemes for checking slightly lower-level system in

ants. Verifying system-wide properties enables us to catch errors that are more difficult (or even im

ble) to detect with localized error detection. Moreover, a higher-level error model can catch erro

specified in lower-level error models, and we will demonstrate examples of this property. However, a

level error model does not necessarily help to diagnose the low-level error, similar to how a low-level

1. DIVA also tolerates permanent faults and design faults in the aggressive processor.

.2, we

of sig-

nts. In

ates and

e

sed in

spe-

duction

i-

g-

omenon

odel.
67
model does not necessarily help to diagnose the fault that caused it.2 Thus, if a high-level invariant fails

repeatedly, the system must undertake a somewhat general diagnostic check.

In Section 4.3.1, we first discuss how to check system invariants, in general, withsignature analysis. Com-

ponents compute local signatures and perform a global reduction to detect errors. In Section 4.3

sketch a simplified example of a signature analysis scheme. We then describe two realistic examples

nature analysis schemes. In Section 4.3.3, we describe how to check message-level invaria

Section 4.3.4, we develop a technique for checking coherence-level invariants.

4.3.1 Detecting Errors with Signature Analysis
In this section, we describe in general how to usesignature analysisto detect violations of system invari-

ants due to errors. Signature analysis takes a large amount of input data—in this case, system st

events—and produces a small output, called asignature, that almost-uniquely characterizes the larg

amount of input data. The idea of signature analysis has existed for a long time, and it is widely u

built-in self-test (BIST) [1]. We will now discuss signature analysis, in general, before delving into the

cifics of our signature analysis schemes.

All components in a signature analysis scheme maintain a local signature,S(i), wherei is the identity of the

component. The local signature is updated for every event of interest, where thekth event at componenti is

denotedE(i,k). When obvious, we will denote an event simply asE, for clarity of notation. Signatures are

updated according to an update functionU that takes two parameters:S(i) andE(i,k). Thus,S(i) = U[S(i),

E(i,k)]. We assume that events are processed in order of occurrence. To check for errors, a global re

of the local signatures is performed. The checking function,C, takes all of the local signatures as its var

ables, and produces a boolean result of the formC[S(0), S(1), ... , S(N-1)] = {true, false}, wheretrue

denotes that a error was detected.

There are certain properties that are desirable inU. The functionU should be chosen so that the same si

nature almost never characterizes two different input streams (i.e., sequences of events), a phen

known asaliasing. We say that aliasing occurs if:

(EQ 7)

2. A useful analogy is that a high-level error model is to a low-level error model what a low-level error model is to a fault m

A higher-level model can detect a wide range of lower-level faults, but it cannot diagnose them.

S i() S j()=() k∃ E i k,() E j k,()≠∧

. In

,

ensure

adically

igna-

.3.3 will

tative

a-

o func-

eck-

system

yload of

ng

e do

ype of

naly-

e alias-

often

fault

further.
68
With perfect anti-aliasing inU, C will not miss any errors detected by the signature analysis scheme

practice, however, engineering restrictions limit signatures to a finite number of bits, sayb, andb bits can

only represent2b sequences of events. Since systems will have more than2b possible sequences of events

different sequences will necessarily map to the same signature. A goal of signature analysis is to

that sequences that are almost identical do not map to the same signature, at the cost of allowing r

different sequences to map to the same signature.

In addition to anti-aliasing,U is also chosen to achieve certain properties that depend on the specific s

ture analysis scheme that is being used. For example, the signature analysis scheme in Section 4

requireU to be a commutative function, and the scheme in Section 4.3.4 will require a non-commu

function. A functionU is considered commutative if:

(EQ 8)

To perform signature analysis inSafetyNet, all cache and memory controllers will maintain local sign

tures, update their local signatures with functionU, and then the reduction check,C, will be performed at

each checkpoint to detect errors. Thus, designing a signature analysis scheme entails choosing tw

tions,U andC. The reduction can be implemented on top of the existing mechanism for validating ch

points. In Section 2.2.5, we explained how all cache and memory controllers send a message to the

service processor when they are ready to validate a checkpoint. We now add a signature as the pa

that message (i.e., componenti sendsS(i)), and the service processor performs the checking reductionC. If

the check detects no errors (i.e.,C=false), the service processor completes the validation by notifyi

every node. Otherwise, the service processor triggers a system recovery.

Signature analysis will detect the targeted errors unless one of three aliasing situations arises.

• Aliasing could occur due to finite resources for implementing the signature analysis scheme. W

not address this issue further in this thesis, since it is simply an engineering tradeoff, and this t

aliasing can be made arbitrarily small at the cost of additional hardware. Many typical signature a

sis functions convolve the input stream with a pseudo-random number generator so as to reduc

ing to an arbitrarily small probability. In hardware, pseudo-random number (PRN) generation is

implemented with a linear feedback shift register (LFSR) [40].

• Aliasing could occur because of a fault in the signature analysis hardware itself. This is a double

scenario, and it could be tolerated with additional mechanisms, but we do not address this issue

U U S i() E i m,(),() E i n,(),[] U U S i() E i n,(),() E i m,(),[]=

,

hich it

nting

ince it

cheme

-5

nection

hat the

gle desti-

n and

func-

e mes-

analysis

stem.
69
• Aliasing could occur because the chosen update function,U, inherently suffers from aliasing. For

example, if an update function adds the address of an incoming message toS(i)and the address is zero

then the occurrence of this event (the incoming message) is indistinguishable from the case in w

did not occur. As such, aliasing could occur even with infinite hardware resources for impleme

the signature analysis. We address this form of aliasing in our examples of signature analysis, s

is a fundamental property of the schemes and not an implementation artifact.

4.3.2 Developing a Simplified Signature Analysis Example
In this section, we develop a simplified signature analysis scheme for purposes of illustration. The s

is based on the “Kirchoff’s Current Law” (KCL) reduction performed by the Thinking Machines CM

[62]. The CM-5 check ensured that the number of data messages entering any region of the intercon

network equaled the number of messages leaving the region. We simplify this invariant and check t

sending of each message has a corresponding reception. We assume that all messages have a sin

nation. An event,E, is the sending or reception of a data message. If sending corresponds to additio

reception corresponds to subtraction, a system-wide reduction should sum to zero.

The update function,UKCL, is:

(EQ 9)

Note that function arithmetic uses a finite number of bits with wraparound. The corresponding check

tion, CKCL, is:

(EQ 10)

Aliasing can occur here for a variety of reasons. For example, if a double fault occurred such that on

sage was dropped in the network and another message was accidentally sent twice, this signature

scheme would not detect the error.

4.3.3 Checking Message-Level Invariants with Signature Analysis
In this section, we develop a signature analysis scheme for detecting message-level errors inSN-Snooping.

We will detect all errors that lead to the loss, corruption, or reordering of messages in the snooping sy

UKCL S i() E,[]
S i() 1 if E is a send,+

S i() 1, if E is a receive– 
 =

CKCL S 0() S 1() … S N(),,,[]
true, if S i() 0≠

i
∑

false, otherwise 
 
 =

et-

che or

,

r-

as the

rdered

t causes

simple

such

.

n many

rather as

poten-

sed on

age B

liasing
70
We now develop a simplified update function,UML, for detecting message-level errors in the address n

work, and we will gradually describe a more sophisticated example. For each checkpoint that a ca

memory controller agrees to validate, it computes a signature based on theTc coherence requests (i.e.

address messages) it processed in that checkpoint interval. An eventE(i,k) is the processing of thekth

incoming coherence request at componenti. A simple update function,UML, adds the address of the cohe

ence request,Address(E), to the current value of the signature,S(i).

(EQ 11)

The check function,CML, detects if any component did not observe the same sequence of broadcasts

rest of the components:

(EQ 12)

CombiningCML with this simpleUML detects corrupted messages, some lost messages, and no reo

messages. First, we discuss aliasing that hides lost messages. Imagine the case in which a faul

cache controlleri to lose an incoming address message for address 22, and this was theTc
th message.

Moreover, theTc+1th message is also for address 22. At this point, cache controlleri computes the “cor-

rect” signature and sends it to the service processor, and the error is not detected due to aliasing. A

solution to this problem is to computeUML based on more fields of the message than just the address,

as the requestor (Requestor(E)) or request type, for example. We denote concatenation with a comma

(EQ 13)

The scheme described thus far still suffers from aliasing that may not detect reordered messages. I

broadcast snooping systems, the totally ordered address network is not implemented as a bus, but

a collection of buses [18] or a hierarchy of switches. In these interconnection networks, a fault can

tially lead to reordering of messages, which violates the required total order. An update function ba

addition, which is commutative, will not detect these errors, since adding Message A before Mess

produces the same signature as if they had been added in the other order. To avoid this form of a

requires a non-commutative functionUML. An example of such a function is:

(EQ 14)

So far, we have established two necessary qualities forUML:

UML S i() E,[] S i() Address E()+=

CML S 0() S 1() … S N(),,,[] false if S 0() S 1() … S N()===,
true, otherwise 

 =

UML' S i() E,[] S i() Address E() Requestor E(),()+=

UML'' S i() E,[] 2 S× i()() Address E() Requestor E(),()+=

can mask

nd

could

utative

ter anti-

lass of

ges.

age at

cheme

sis

st nota-

does

detect

ing sys-

as the

ing the

-

g corrup-
71
• The input per message must be more than just the address, since otherwise repeated addresses

dropped messages.

• UML must be non-commutative, since otherwise re-ordered messages will not be detected.

The function that we choose,UML’’’ , is a variant ofUML’’ that is easier to implement in hardware.UML’’’

shifts S(i) one bit to the left (denoted byS(i) << 1) and then Exclusive-ORs (XORs) the address a

requestor of the incoming coherence request:

(EQ 15)

This function satisfies our two requirements and is also easy to implement in hardware. Similarly, we

have implemented a function using an LFSR, since signature analysis based on LFSRs is non-comm

and will therefore detect reordering errors, as well as corrupted or lost messages. LFSRs have bet

aliasing properties (in terms of implementation-limited aliasing) than the function we chose.UML’’’ is

intended more for illustrative purposes than as a final design point.

This signature analysis scheme avoids inherent aliasing, which enables it to reliably detect a wide c

errors. We detect all single instances of corrupted messages3, dropped messages, and reordered messa

We detect many multiple fault situations, although any fault that affects the reception of the mess

every node in the same way will elude detection.

We implemented this signature analysis detection scheme on top ofSN-Snooping. To further test its capa-

bility to detect errors in this error model, we injected them into the system. The signature analysis s

successfully detected the errors and triggeredSafetyNetrecoveries of the system. This signature analy

scheme catches some errors that are difficult to detect with localized error detection schemes. Mo

bly, it is difficult to detect in a broadcast snooping system if a node with shared permission to a block

not receive a Get-Exclusive for that block. In most directory protocols, lost messages are easy to

because requests must be acknowledged. However, if this error is not detected in a broadcast snoop

tem and that shared node continues to load from the block, then a violation of coherence as well

memory consistency model is possible.

The primary cost of this signature analysis scheme is extra hardware, since the latency of perform

signature analysis is hidden. Extra hardware is required to holdS(i), but this hardware is simply a shift reg

3. To be more precise, we detect all message corruptions in which the Address or Requestor field is corrupted. Detectin

tions of other fields simply requires computing updates based on those fields, too.

UML''' S i() E,[] S i() 1«[] Address E() Requestor E(),[]⊕=

ol. With

of the

k after

are met

t a con-

. This

n of

con-

onstant,

L

he

e owner

ade can

ber of

g this
72
ister. Hardware is also required for performing the update function,UML’’’ . Since the signature is held in a

shift register, computation of the new signature only requires XOR logic.

4.3.4 Checking Coherence-Level Invariants with Signature Analysis
In this section, we develop a scheme for testing coherence invariants in a cache coherence protoc

update and check functions different from those in Section 4.3.3, we can check high-level invariants

coherence protocol. For example, we can detect if a sharer did not downgrade permission to a bloc

an invalidation was received. Unlike the message-level scheme, we want a commutative functionUCL,

since there are no ordering requirements for coherence. We just care that the coherence invariants

within the checkpoint interval, but there are no ordering requirements within the interval itself.

The cache coherence invariant we choose to test is that every upgrade of coherence permissions a

troller (cache or memory) is reflected in an appropriate downgrade at one or more other controllers

invariant is somewhat similar to an invariant that was statically checked off-line during the verificatio

the Alpha 21264 microprocessor [108]. At a high level, if an upgrade is considered an addition of a

stant times the number of downgraders, and a downgrade is considered a subtraction of the same c

the global reduction should sum to zero at the end of every checkpoint interval.

The check function,CCL, is the same asCKCL in Section 4.3.2, since this invariant is similar to the KC

invariant checked in that example:

(EQ 16)

The update function,UCL, operates on the address of the coherence request,Address(E), i.e.,Address(E)is

the constant that is added/subtracted for each upgrade/downgrade event.4 An upgrade addsAddress(E)to

S(i), and a downgrade subtractsAddress(E)from S(i). For Get-Shared and Put-Exclusive requests, t

update process is simple, since there is one upgrader and one downgrader. For a Get-Shared, th

who satisfies the request is considered the downgrader. However, since a single Get-Exclusive upgr

cause multiple downgrades, we would need to multiply the address that is to be added by the num

controllers that should downgrade as a result. There are different issues involved in implementin

analysis in snooping and directory coherence protocols, and we discuss both now.

4. To avoid aliasing due to situations in whichAddress(E)=0, we can use more sophisticated constants, such asAddress(E) || 1. To

simplify notation, though, we simply useAddress(E) in this discussion.

CCL S 0() S 1() … S N(),,,[]
true, if S i() 0≠

i
∑

false, otherwise 
 
 =

xist.

an be

gment)

ols do

g the

home

by the

ve the

-Shared

A Put-

ess now

on for

ges, and

essage-
73

SN-Snooping.In SN-Snooping, the upgrader does not necessarily know how many downgraders e

Ignoring the possibility of silent downgrades from Shared (Put-Shared requests), this problem c

solved by having the response from the owner to the upgrader (i.e., the data or the acknowled

include the number of downgraders, since the owner can keep track of this. However, most protoc

allow silent Put-Shared requests, so we solve this problem differently. Our solution to not knowin

number of downgraders for a Get-Exclusive is to assume that all other cache controllers and the

memory controller are downgraders. As shown in Table 4-2, a Get-Exclusive requestor increments

request’s address multiplied by the number of nodes in the system (N), and every other cache controller (N-

1) plus the home memory controller decrements by the address (regardless of whether they ha

block). A Get-Shared requestor increments by the address, and the owner who satisfies the Get

request (either the memory controller or a cache controller in O or M) decrements by the address.

Exclusive requestor decrements by the address and the memory controller increments by the addr

that it is the owner. All of these transactions sum to zero if no errors occur, as shown in the equati

CCL.

We implemented this coherence-level signature analysis error detection scheme on top ofSN-Snooping.

We injected errors into the system, including dropped messages and incorrectly processed messa

the signature analysis indeed detected all of these errors. This signature analysis scheme, like the m

TABLE 4-2. Coherence-level signature update function (SN-Snooping)a

a. Shaded entries reflect updates that have no effect onS(i).

Event E Controller State UCL[S(i), E]

ca
ch

e
co

nt
ro

lle
r

Own Get-Shared I->S S(i) + Address(E)

Own Get-Exclusive I or S -> M S(i) + N*Address(E)

Own Put-Exclusive O or M -> I S(i) - Address(E)

Other Get-Shared I or S S(i)

O or M S(i) - Address(E)

Other Get-Exclusive I, S, O, or M S(i) - Address(E)

Other Put-Exclusive I, S, O, or M S(i)

m
em

or
y

co
nt

ro
lle

r

Get-Shared I or S S(i) - Address(E)

O or M S(i)

Get-Exclusive I, S, O, or M S(i) - Address(E)

Put-Exclusive O or M S(i) + Address(E)

address not at home S(i)

more

nother

nd the

other

orming

is also

to per-

heme,

on and

t

d-Get-

initial

s to the

s pro-

check-

s that

point

oblems

worth-

in-

grades.

aused
74
level scheme presented in Section 4.3.3, can also detect errors that would be difficult to detect with

localized error detection schemes. If a Shared node processed an incoming Get-Exclusive from a

node but did not invalidate its copy of the block, then the system can violate both cache coherence a

memory consistency model. This error example differs from the one in Section 4.3.3 in which the

node’s Get-Exclusive was dropped before it could arrive at the Shared node.

The primary cost of this signature analysis scheme is also extra hardware, since the latency of perf

the signature analysis is hidden. The current value of the signature is held in a register. Hardware

required for re-computing the signature upon the arrival of every coherence request. The hardware

form this computation is more complicated than that required for the message-level signature sc

since the coherence-level signature function requires either subtraction or the combination of additi

multiplication. Thus, an adder and a multiplier are needed.

SN-Directory.While SN-Directoryhas less trouble thanSN-Snoopingwith silent Put-Shared requests, i

has two different problems. First, in three-hop transfers, a sharer that gets invalidated by a Forwarde

Exclusive does not know the associated request’s point of atomicity. In a three-hop transfer, the

request is sent to the directory, which then forwards the request to the owner and sends invalidation

sharers. The request’s point of atomicity, however, is not determined until the forwarded request i

cessed by the owner. Second, it is difficult for a node to determine that it can send its signature for

point CP to the service processor, since there could be Forwarded-Get-Exclusives in-flight toward

node. If these Forwarded-Get-Exclusives are part of a transaction with a point of atomicity in check

CP, then the node would have needed to include them in its signature computation. Both of these pr

can be solved with additional messages and complexity, but this brute force solution may not be

while. Finding a more attractive solution is an open problem.

Summary of Coherence-Level Signature Analysis.This signature analysis scheme detects all s

gle instances in which a transaction incurs a mis-matched number of coherence upgrades and down

It also detects many multiple error situations, although not all. For example, a byzantine fault that c

an upgrader to downgrade and a downgrader to upgrade would cause an undetectable error.

4.4 Summary of Availability
In this chapter, we have addressed the issue of availability and how to improve it withSafetyNet. We first

described some traditional error detection mechanisms and how they interact withSafetyNet. We then

developed some innovative error detection techniques that are enabled bySafetyNet’s ability to tolerate

., less

re anal-
75
long detection latencies. Longer latency detection can be more powerful and more end-to-end (i.e

localized) than schemes whose latencies are on the critical path. Notably, we developed two signatu

ysis schemes for detecting violations of system-wide invariants.

76

77
Chapter 5
diffi-

n

ility

es of it

al

t errors

ate our

re cor-

simply

r solv-

oftware

essor.

option

v9

rt pre-

into the

we must

le 5-1

tively

lly did
Designability

Systems are becoming increasingly complicated, making both design and verification increasingly

cult. We would like to ease these problems by relying onSafetyNet, our checkpoint/recovery scheme, i

the case of design errors, whether they are due tospeculatively correct designor unintentional design

faults.SafetyNetcheckpoint/recovery unifies the support for designability with the support of availab

that was discussed in Chapter 4.

In Section 5.1, we discuss speculatively correct design, and we discuss how to enable two exampl

with SafetyNet. In Section 5.2, we discuss how to useSafetyNetto tolerate certain classes of unintention

design faults.

5.1 Errors due to Speculatively Correct Design
Speculatively correct design of systems can improve performance and reduce costs, provided tha

due to mis-speculation can be detected and tolerated. The cornerstone of our philosophy is to alloc

resources—transistors, design time, verification effort—towards common-case events rather than ra

ner-case events. If possible, we would like to reduce the cost of infrequent and complex events by

treating them as “errors” and recovering from them. In the past, this approach has been employed fo

ing complex processor hardware problems in software. For example, processors have trapped to s

for standard floating point arithmetic, such as the Intel 80386 without the 80387 floating point coproc

No recovery is necessary for these traps to software. Also, numerous architectures give the user the

of trapping to software for IEEE standard denormalized floating point arithmetic, including SPARC

[105] and Intel IA-64 [51]. Localized processor recovery may be necessary in these cases to suppo

cise interrupt semantics. We seek to extend speculatively correct design beyond the processor and

system. Since system components can thus communicate speculative data amongst themselves,

provide global recovery to recover from these errors.

Errors due to speculatively correct system design fall into a specific region of the error space. In Tab

(identical to the middle two rows of Table 1-1), we illustrate two examples of errors due to specula

correct design. The cause of these errors (the fault) is mis-speculation, i.e., the designer intentiona

ction is

ow they

gns that

n

ility by

xecu-

ples of

roach

situa-

5.1.1,

nd, in

onnect

avoid

lt to

Inter-

f cross-

exam-

nd S2
78

not design for certain circumstances, in effect predicting that these circumstances are rare. Dete

easier than in general because, by definition, the designer knows exactly where the faults are and h

manifest themselves as errors. Also, the errors that can arise due to the speculatively correct desi

we explore in this thesis are all recoverable withSafetyNet—otherwise, we could not employ speculatio

and maintain correctness in all situations. Lastly, speculatively correct designs must ensure resumab

avoiding livelock. Naively re-executing after recovery can lead to livelock, since the resumption of e

tion may keep encountering the same design error immediately after each recovery. For both exam

speculatively correct design that we present later in this section, we will explicitly describe our app

for avoiding livelock. We also address how to avoid high mis-speculation rates due to pathological

tions.

In the rest of this section, we explore two examples of speculatively correct designs. First, in Section

we discuss how to simplify the design of deadlock avoidance in interconnection networks. Seco

Section 5.1.2, we enable adaptive routing in the interconnection network, even though the interc

must guarantee point-to-point ordering of messages. Lastly, in Section 5.1.3, we discuss how to

pathologically bad mis-speculation rates.

5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design
Interconnection networks for multiprocessors are difficult to design, largely because it is difficu

achieve high and robust performance while verifying that deadlock is impossible under all situations.

connect deadlock (as opposed to coherence protocol deadlock) can occur due to the combination o

coupled requests and insufficient buffering for in-flight messages. For example, consider the simple

ple illustrated in Figure 5-1. In this example, switch S1 wants to send message M1 to switch S2, a

TABLE 5-1. Classification of illustrative errors due to speculatively correct design

Error Fault
Detection/
Manifestation

Recoverable
with SafetyNet

Resumability
Mechanism

er
ro

rs
 d

ue
 to

 s
pe

cu
la

tiv
el

y
co

rr
ec

t d
es

ig
n

deadlock due to insuf-
ficient buffering in
ICN (Section 5.1.1)

speculative
underdesign

timeout on request yes slow-start exe-
cution after
recovery

out of order message
arrivals on “in-order”
ICN (Section 5.1.2)

speculative use
of adaptive
routing

invalid transition in
protocol engine

yes disable adap-
tive routing dur-
ing re-execution

ll and

n send

nection

hannels

t each

st-case

stand-

se occurs

o han-

eadlock

ers are

s vir-

that are

ages on

was

t they

ctory

t, and
79

wants to send M2 to S1. However, the buffer from S1 to S2 and the buffer from S2 to S1 are both fu

unable to accept new messages. Moreover, neither switch will process its incoming queue until it ca

its outgoing message. Thus, if incoming message buffers are processed in FIFO order, the intercon

network is now deadlocked, since neither M1 nor M2 can make progress through the interconnect.

To avoid deadlock, interconnects either use worst-case buffering or some scheme, such as virtual c

[25], to break the cyclic dependences that can lead to deadlock. Employing worst-case buffering a

switch is the simplest solution, but the worst case is often far worse than the common case. Wor

buffering can, for example, be proportional to the product of the number of nodes, the number of out

ing messages a node can have simultaneously, and the size of a message. Moreover, the worst ca

exceedingly rarely, if at all, so we would like not to devote a disproportionate share of our resources t

dling it.

To avoid the costs of worst-case buffering, a host of other techniques can be used to ensure that d

cannot occur. Flow control techniques restrict the flow of messages in the interconnect so that buff

kept from filling up and potential deadlocks are avoided. The most common flow control technique i

tual channel flow control [25], a scheme that breaks the circular dependencies among messages

necessary to get deadlock. Virtual channels break dependencies by assigning dependent mess

higher priority virtual channels. In our simple example, if M1 was on virtual channel 1 (VC1) and M2

on VC2, then deadlock would have been avoided. Flow control techniques are well-understood, ye

are not simple to implement nor are they easy to verify correct. For example, the SGI Origin 2000 dire

protocol [60] has only two virtual channels instead of the three (Request, Forwarded Reques

FIGURE 5-1. Example of deadlock in interconnection network

switch S1

switch S2 full

full

message M1

message M2

n relies

iven

er, we

rcon-

mpli-

) or at

mple

cks as

dlock

ncy is

f con-

on. If a

e. The

tected

dead,

ient

e only

ect to

buff-

.e., the

irec-

f recov-

.

lained
80
Response) that would have ensured deadlock avoidance in all protocol situations. Instead, the Origi

on a higher level mechanism to nack its way out of the deadlocks that occur due to this limitation. G

the expertise of the Origin’s architects in this area, we do not suggest that this is a design error; rath

use the Origin as an example of designability trade-offs. At the other extreme, the Alpha 21364 inte

nect uses seven virtual channels [68], demonstrating that virtual channels are not prohibitively co

cated.

Existing techniques for ensuring deadlock-free interconnects are either costly (worst-case buffering

least somewhat complicated (virtual network flow control). We would like to be able to design a si

network without resorting to worst-case buffering. The key to achieving this goal is to fall back onSafety-

Net in those rare situations in which such an interconnection network deadlocks. We treat deadlo

errors, similar to the device errors that were discussed in the context of availability.

Fortunately, the error model for this type of underdesign is clear and detection is straightforward. Dea

in the interconnection network can be detected simply by time-outs at the requestor. Time-out late

chosen to be long enough to mitigate false positives while short enough to be hidden bySafetyNet’s pipe-

lined checkpoint validation. We set time-out latency equal to the sum of the latencies of three hops o

gestion-free traversals through the interconnect, cache/memory access, and slack for congesti

message gets stuck in the network, the coherence transaction to which it belongs will not complet

requestor of the transaction will timeout and trigger a system recovery. If time-outs are being de

repeatedly, the system performs diagnostics to determine the cause. If no switch or link is found to be

the system then assumes that the speculatively correct design is the culprit.

To avoid livelock,SafetyNetmust ensure that the system will not continually deadlock due to insuffic

interconnect buffering. Thus, the system temporarily enters a “slow-start” mode, in which nodes ar

allowed to have one outstanding request. As long as we provide enough buffering in the interconn

satisfy this restricted number of requests, slow-start provably avoids livelock.

To demonstrate the utility of easing interconnection network design, we implemented a network with

ering sufficient for the average case (i.e., less than worst-case buffering) and one virtual channel (i

virtual channel is the physical channel). On top of this interconnection network, we run our MOSI d

tory protocol that normally requires four virtual channels to ensure deadlock avoidance.1 In the case that

deadlock is detected, the system recovers and resumes execution. If deadlock is frequent, the cost o

eries will degrade performance, but infrequent deadlock will have negligible impact on performance

1. Most directory protocols only require three virtual channels, but this protocol has a fourth for Final-Ack messages as exp

in Chapter 2.

system

nnels.

asons.

g to the

ore fre-

m more

nd not

ints of

unless

ffers of

ction

execu-

tness.

tercon-

rout-

abling

adap-

er in

t from

, but M2

ention

th and

e con-

s a Put-

e direc-

a For-

i.e., the
81
To determine the performance impact of such recoveries, we compare the performance of this

against a system with the same protocol running on an interconnection network with four virtual cha

We discover that the performance difference between the two systems is indistinguishable, for two re

First, deadlock does not occur. We can only get the system to deadlock when we reduce the bufferin

size of one entry per buffer and, even then, deadlocks are exceedingly rare. (Deadlocks are far m

quent when the memory system is driven by our random tester, which enables us to test our syste

thoroughly.) Second, this experiment only measures performance loss due to deadlock recovery a

because of stalls due to limited buffering. Other buffers in the system, including those at the endpo

the interconnect (i.e., where the interconnect meets the nodes) are infinite, so the system can drain

deadlock occurs due to cross-coupled requests. Thus, buffers of size one perform equivalently to bu

size five, except for the cost of the recoveries due to deadlock.

We conclude from this experiment that speculatively under-designing the buffering in the interconne

network is a viable solution to deadlock avoidance that allows the designer to target common-case

tion. WithSafetyNet, a designer can size the interconnect buffers for performance and not for correc

5.1.2 Enabling Adaptive Routing in the Interconnection Network
Interconnection networks can often achieve greater performance by using adaptive routing. Such in

nects allow, for example, two messages from switch S1 to switch S2 to take different paths. Adaptive

ing can improve performance by distributing traffic more evenly across the interconnect and by en

messages to be routed around localized congestion in the interconnect. In general, the flexibility of

tive routing provides opportunities that system designers would like to be able to exploit.

A problem with adaptive routing, however, is that it complicates the enforcement of point-to-point ord

the interconnection network. We illustrate this problem in Figure 5-2, in which two messages are sen

a source node to a destination node. The source sends message M2 after sending message M1

arrives first at the destination. The reversal in arrival order could be due, for example, to higher cont

along the path taken by M1. With static routing, both messages would have followed the same pa

thus arrived in order.

Some directory-based cache coherence protocols rely upon point-to-point order to avoid certain rac

ditions. One common example of these races occurs when the owner of a block, processor P1, send

Exclusive to the directory and another processor, P2, sends a Get-Exclusive for the same block to th

tory that arrives first. The directory responds to both messages by sending a Put-Exclusive-Ack and

warded-Get-Exclusive to P1. If those messages arrive in the reverse order of when they were sent (

us, it

is

the

oint-

tness.

s proto-

net-

ven for

multiple

rder in

-Ack

re rare;

articular

ner

or some
82

Put-Exclusive-Ack arrives first), then P1 sees the Put-Exclusive-Ack and downgrades to Invalid. Th

cannot handle the incoming Forwarded-Get-Exclusive.2 Directory protocols can be designed to handle th

race, but doing so complicates the protocol.

SafetyNetis well-suited to speculatively providing the illusion of a point-to-point ordered network in

presence of adaptive routing. First, the routing algorithm, while adaptive, is still unlikely to violate p

to-point ordering. Second, even when it does violate ordering, very few re-orderings impact correc

Except in the example described above, re-ordering does not matter, for several reasons. First, in thi

col, point-to-point ordering is only required on one virtual network (the Forwarded Request virtual

work). Second, ordering only matters for messages concerning the same block of memory. Third, e

messages concerning the same block, only certain messages need to be ordered. For example,

Forwarded-Get-Shared messages can be sent from the directory to the owner of a block, but the o

which they arrive does not matter for correctness. In particular, the situation in which a Put-Exclusive

races a Forwarded-Get-Exclusive is particularly rare, since Put-Exclusive requests themselves a

2. There is another common race case that is avoided by point-to-point ordering, although this case does not exist in our p

protocol. If the directory forwards a Get-Shared and then a Get-Exclusive for the same block to the owner, and the ow

receives these forwarded requests out of order, then the owner will observe a Forwarded-Get-Shared in state Invalid (

other incorrect state).

FIGURE 5-2. Violating point-to-point order with adaptive routing

Message M1 and message M2 are sent, in that order, from the NW Switch to the SE
Switch. Message M2, however, arrives before message M1.

NW
Switch

NE
Switch

SE
Switch

SW
Switch

SOURCE

DESTINATION

message M1

message M1message M2

message M2

node.

tory

ch is a

s along

asts) to

daptive

outing

rous

ves, as

having

a cache

be an

osti-

be due

g mes-

ositives

other

resum-

ard

ion has

g out-

e per-
83
moreover, it is unlikely that a block that is being evicted at one node is actively wanted by another

(This race happens much more frequently in our random tester than for real workloads.)

We implemented aSafetyNetsystem with an adaptively routed interconnection network and a direc

cache coherence protocol that relies upon point-to-point ordering. The interconnection network, whi

two-dimensional torus, supports multicasts and broadcasts by splitting multicast/broadcast message

their traversals. The adaptive routing algorithm allows messages (unicasts, multicasts, or broadc

choose among minimal distance paths based on outgoing queue lengths in each direction. While a

routing can break point-to-point order, it can also cause deadlock. To isolate the issue of adaptive r

in this experiment, we avoid deadlock in this discussion by providing full buffering, although nume

more clever solutions exist, such as Duato’s scheme for deadlock-free adaptive routing [29].

Classifying this error model in the error space clarifies the issues involved. Faults manifest themsel

errors, as invalid transitions in coherence controllers, so we detect illegal message re-orderings by

cache controllers detect the specific incorrect transition in the coherence engine. For our race case,

with a block in state Invalid that receives a Forwarded-Get-Exclusive determines this situation to

“error” and triggers a system recovery. This “fault” cannot manifest itself in any other fashion. Diagn

cally, we assume that this situation arose because of a speculative re-ordering, even though it could

to another cause/fault. We could use a more sophisticated diagnosis mechanism, possibly labelin

sages with small sequence numbers. However, the simple solution which leads to occasional false p

(i.e., situations in which a cache controller receives a Forwarded-Get-Exclusive in Invalid for reasons

than speculative re-ordering), is sufficient.

This system appears to have more errors than a similar system without adaptive routing. To ensure

ability, we allow the interconnection network to disable adaptive routing temporarily, so that forw

progress can always be made. Our heuristic disables adaptive routing until the resumption of execut

progressed beyond the point at which the error occurred that triggered the recovery.

We evaluated the performance of this system to determine if the positive benefits of adaptive routin

weigh the performance cost of recoveries due to illegal re-orderings. In Figure 5-3, we plot the relativ

formances of three systems with link bandwidths of 400 MBytes/second:

• Unprotected with static routing

• SafetyNet with static routing

• SafetyNet with adaptive routing

y mini-

th the

ve rout-

rst, the

link

rings,

dful of

ust be

uently

d by

round

h is far

mewhat

-

84

The adaptive routing scheme used in this experiment allows switches to route a message along an

mal-length path to its destination. Among these choices, the switch chooses the outgoing link wi

smallest buffer occupancy.

We normalize the results to the performance of the unprotected system, and we observe that adapti

ing achieves a significant speedup for our workloads. There are two reasons for this speedup. Fi

adaptive routing enables the system to better utilize its links. Link utilization was greater for every

with adaptive routing. Second, adaptive routing incurs very few recoveries, despite frequent re-orde

because the vast majority of re-orderings do not affect correctness. In fact, we only observed a han

recoveries in all of our simulations! However, we reassure ourselves that this race is possible and m

handled correctly, since it does occur occasionally in our workloads and it occurs much more freq

when we drive our system with a random tester instead of real workloads.

The performance impact of adaptive routing is partially a function of the available bandwidth provide

the interconnection network. With less bandwidth, adaptive routing has more opportunity to route a

congestion. In the results just shown, we decreased the link bandwidth to 400 Mbytes/second, whic

less than the 6,400 MBytes/second assumed in Chapter 3. While this example may thus appear so

contrived, this experiment still provides a proof of concept.SafetyNetenables adaptive routing in a situa

tion in which it was not previously possible.

0.0

0.5

1.0

1.5
no

rm
al

iz
ed

 p
er

fo
rm

an
ce

unprotected - static routing
SafetyNet - static routing
SafetyNet - adaptive routing

jbb apache slashcode oltp barnes

FIGURE 5-3. Performance of a system with adaptive routing

SafetyNet provides the illusion of a point-to-point ordered interconnection network.

cannot

rs (e.g.,

e trends

st also

ducing

ations.

eases,

erence

t intense

s, even

enter a

r the

d reli-

ional

wever,

ction

fault

erifica-

pealing

all the
85
5.1.3 Avoiding Pathological Mis-speculation
Speculatively correct designs will mis-speculate. The key is to ensure that mis-speculation rates

severely degrade performance. Mis-speculation rates must not rise too quickly as system paramete

processor speed, number of outstanding requests) or workload characteristics change. Both of thes

could increase the workload intensity and could cause more mis-speculations. Mis-speculation mu

not fall victim to a pathologically bad situation, whether unintentional or due to malicious software.

Our two examples of speculatively correct design have both a natural feedback mechanism for re

mis-speculation and fail-safe mechanisms for ensuring forward progress in pathologically bad situ

First, the natural feedback loop is the latency through the memory system. As workload intensity incr

due to system or workload trends, the memory system bottleneck limits the throughput of cache coh

transactions. Since these are closed systems, the feedback mechanism reins in even the mos

offered loads.

Second, both speculatively correct designs have a fail-safe mechanism for ensuring forward progres

in the most pathologically bad situations. For the under-designed buffering example, the system can

slow-start mode for which the limited buffering satisfies the worst-case offered load in slow-start. Fo

adaptive routing example, the adaptivity can be temporarily disabled.

5.2 Errors Due to Unintentional Design Faults
SafetyNetcan be used to tolerate unintentional design faults, if their resultant errors can be detecte

ably [16, 34] and they permit resumption of execution after recover. The ability to tolerate unintent

design faults that slip through testing and verification could speed up a system’s time to market. Ho

since these types of design faults are unintentional, it is difficult to target them with specific error dete

mechanisms. By definition, these faults are not included in the fault model. Ironically, if we knew the

modela priori, we would have avoided the design fault in the first place!

Unintentional design faults manifest themselves as errors at some point either late in the design/v

tion cycle or even after the system has been shipped. At this point, the producer has several unap

options:

• Re-design the system to eliminate the fault and re-verify the system, possibly after having to rec

shipped product.

• Publish the existence of the fault.

• Ignore the fault.

n

ors in

these

diffi-

evice

quest to

Exclu-

hat

lts are

detec-

design

detec-

el ECC

a Get-

ence sig-

detect-

d.
86

It would be preferable to instead tolerate errors due to the fault withSafetyNetand then perhaps re-desig

and re-verify a future spin of the system.

Classifying errors due to unintentional faults, which we will refer to asdesign errors, in the error space

helps to focus on the difficult issues in tolerating these faults. We illustrate examples of design err

Table 5-2 (in which the first two rows are identical to the last two rows in Table 1-1). The cause of

errors is design faults that did not get caught by testing or verification. Detection of design errors is

cult in general, but fortunately some types of design faults manifest themselves in ways similar to d

faults. For example, a device fault that corrupts a coherence message by changing a Get-Shared re

a Get-Exclusive request looks much like a design fault that leads to a cache controller issuing a Get-

sive instead of a Get-Shared.SafetyNetcan recover from some design faults, such as Intel’s FDIV bug, t

may require software intervention to avoid subsequent livelock in this case. Other types of design fau

simply unrecoverable.

For those unintentional design faults that manifest themselves equivalently to device faults, the error

tion techniques presented in Chapter 4 suffice for detecting both classes of errors. Particularly for

errors, the end-to-end signature analysis detection methods will be effective. More localized error

tion techniques are less able to detect errors due to system-level design faults. For example, link-lev

in the interconnection network will not detect that a Get-Exclusive message was sent instead of

Shared message, since the erroneous Get-Exclusive message will pass ECC. However, the coher

nature analysis technique presented in Section 4.3.4 will detect this design error. Another option for

ing design errors might be a field programmable detection mechanism for targeting faults in the fiel

TABLE 5-2. Classification of illustrative errors due to unintentional design faultsa

a. We shade the errors thatSafetyNetcannot tolerate (or may not be able to tolerate) without software support.

Error Fault Detection
Recoverable
with SafetyNet

Resumability
Mechanism

er
ro

rs
 d

ue
 to

un
in

te
nt

io
na

l d
es

ig
n

fa
ul

ts

unspecified edge case
in coherence protocol

unintentional

design fault

invalid state in pro-
tocol engine

yes slow-start
execution after
recovery

Intel’s FDIV bug [13] unintentional

design fault

self-checking
program

yes software FP
routine

routing bug in
half-switch

unintentional
design fault

invalid state in pro-
tocol engine or tim-
eout

yes depends on
specific bug

deadlock situation in
coherence protocol

unintentional
design fault

timeout at requestor yes depends on spe-
cific deadlock

igners

reports

y the

handle

ted in

tem can

opriate

lerated

ed.

ller is a

mber of

espect

ted to

and a

. In real-

ntercon-

explo-

tes—

oving.

ng [9,

subtle

ting.

-

ned to

gn by

latively

of the

cover-
87
Diagnosis of an unintentional design error is a difficult challenge. When it is first detected, the des

and verifiers must try to reproduce it and determine its cause. The FDIV bug was diagnosed after

from users that floating point division occasionally produced incorrect results. After initial diagnosis b

producer, the designers must determine whether the system can diagnose this error in the field and

it appropriately. For the FDIV bug, this was not the case. For the design error that will be presen

Section 5.2.1, which is due to an unspecified corner case in a cache coherence protocol, the sys

diagnose the error based on the specific invalid transition in a protocol engine, and it can take appr

measures to ensure resumability.

In the rest of this section, we first present an example of an unintentional design fault that can be to

with SafetyNet, and then we present a more general discussion of which design faults can be tolerat

5.2.1 An Example in the Cache Coherence Protocol
Cache coherence protocols define the behaviors of the cache and memory controllers. Each contro

finite state machine (FSM) that has some number of states (per cache block) and handles some nu

events that can happen to a block. Numerous controllers concurrently interact with each other with r

to many different blocks. While protocols are simple at a high level, they are much more complica

design at a low level. Textbooks often abstract protocols into a handful of stable states (MOESI)

handful of messages that are exchanged (in the easiest order for the reader to understand!) [24, 47]

ity, though, protocols have numerous transient states, and messages race with each other in the i

nect and can arrive in many different orders.

Cache coherence protocols are notoriously difficult to design and (statically) verify. The state space

sion problem—an exponential function of the number of controllers, memory blocks, and block sta

limits the effectiveness of formal verification methods [20], such as model checking and theorem pr

Testing is a valuable complement to formal verification techniques. Directed testing or random testi

119] can uncover many bugs. Unfortunately, the complexity of coherence protocols is often due to

race conditions, especially those that are infrequent and thus less likely to be uncovered during tes

We now present an example of a protocol race inSN-Snoopingthat the designer (the author!) did not ini

tially consider. The designer overlooked this case until weeks later when random testing happe

uncover it (by crashing the simulator). We explore the potential to simplify coherence protocol desi

treating this edge case as an “error” that triggers system recovery. As with the examples of specu

correct designs in Section 5.1, the frequency of these now-allowable errors determines the viability

speculation. If this protocol situation occurs more than rarely, the performance degradation due to re

impact

n

Modi-

s tran-

n to a

er Get-

inates

rite-

cess to

then

r. Our

appro-

t them-

’s Get-

ter, this

ce this

g that

m-

t.

ithout

kloads,

nder-

ncoun-

coher-

the

likely
88
ies could negatively impact performance. However, if we only recover in rare corner cases, then the

of the infrequent recoveries should be negligible.

To test this hypothesis, we developed a version of theSN-Snoopingprotocol that treats a certain situatio

as an “error” instead of handling it. The situation arises when a cache controller has a block in state

fied (or Owned) and then issues a Put-Exclusive for the block, transitioning to a transient state. In thi

sient state, a Get-Exclusive arrives from another node, causing the cache controller to transitio

different transient state. Then, in this second transient state, the cache controller observes anoth

Exclusive from another node. This sequence of events is exceedingly unlikely, especially since it orig

with a writeback from the cache controller. Compounding its rarity is that a block that is evicted by a w

back is unlikely to be requested by two other nodes. Moreover, both nodes must request exclusive ac

the block in the interval of time between when the cache controller issues its Put-Exclusive and

observes its own Put-Exclusive on the address network. While this scenario is unlikely, it can occu

random tester took a long while to uncover this edge case, but it did occur. Thus, we must handle it

priately.

In the error space, errors due to encountering a coherence transition that was not specified manifes

selves as invalid transitions. In this particular example, a cache controller that observes another node

Exclusive while in the transient state described above triggers a system recovery. In the random tes

is sufficient to preserve correctness. It may appear that no resumability mechanism is needed, sin

error only occurs due to a timing race and the timing after recovery should be different than the timin

led up to the recovery. However, toensureresumability, we must ensure a different timing. Thus, we te

porarily enter a “slow-start” mode, in which nodes are only allowed to have one outstanding reques

We then tested the protocol on our set of commercial workloads, and all of them ran to completion w

needing to recover from reaching the edge case. Thus, performance of the protocol is, for these wor

identical to that of the fully designed protocol. While this obviously does not guarantee that the u

designed protocol will never have to recover, it does suggest the infrequency of recoveries due to e

tering this corner case in the cache coherence protocol.

We conclude from this experiment that we can tolerate an unintentional design error in the cache

ence protocol withSafetyNet. Even if recoveries due to this error slightly degrade performance,

reduced time for design and verification provides a gain in performance (due to Moore’s Law) that is

to more than offset the cost of recoveries.

a gen-

eving

two

ction

et other

lps to

us, we

higher-

ection

riants,

umerous

rrors,

diffi-

entation

, if any,

cha-

tart exe-

orrect,

ed in
89
5.2.2 General Properties
While SafetyNetcan tolerate the design fault example described in Section 5.2.1, this is by no means

eral solution to design faults. Tolerating an unintentional design fault requires three properties:

1. Detection: The system can detect the error caused by the design fault.

2. Recoverability:SafetyNetcan recover from this error model.

3. Resumability:SafetyNetcan resume execution (without livelock) after recovering.

Currently, achieving any of these three properties is probabilistic. Moreover, the probability of achi

the second property is difficult to improve. However, we can improve the probabilities of the other

properties.

Detection.The probability of detecting design errors can be improved by adding better error dete

capabilities to the system. Detection of design errors happens when detection mechanisms that targ

error models also detect the manifestations of design faults. Checking for other error models he

detect design faults that manifest themselves in similar ways to these newly detectable faults. Th

encourage the use of stronger error detection schemes.

Stronger error detection can be achieved with higher-level error detection mechanisms, because

level error detection can detect errors that are not in the low level error model. Higher-level error det

can be performed in hardware and in software. In hardware, end-to-end checking of high level inva

such as the signature analysis schemes presented in Section 4.3.3 and Section 4.3.4, can detect n

lower level errors. In software, self-checking programs [12] can similarly detect a wide range of e

including design errors like Intel’s FDIV bug.

Diagnosis is a component of detection that we would also like to improve, although this is certainly a

cult problem. We encourage the use of better diagnostic mechanisms, such as hardware instrum

and system software diagnostics. Without diagnosis, the system cannot decide what action to take

upon detection of an error.

Resumability. The probability of being able to resume execution can be improved by adding me

nisms that change an execution after a recovery. One example used thus far in this thesis is a slow-s

cution mode, in which nodes issue requests at a slower rate. Slow-start enables a different, but still c

execution by changing the timing in the multiprocessor system. Another example was develop

Section 5.1.2, where we described how to turn off adaptive routing after recovery.

tems

For

point

of the

d.

faults.

ble for

sources

e

o

prov-
90
The ability to dynamically turn off system features can help to avoid livelocks. Many industrial sys

have followed this philosophy in order to more quickly ship a functional, if not fully-utilized, system.

example, Sun Microsystems shipped UltraSparcIII processors with hardware prefetching of floating

data, but they disabled this prefetching when it was discovered to be faulty [90]. In a later revision

UltraSparcIII, the design fault was fixed and hardware prefetching of floating point data was enable

In general, more adaptive and more flexible systems are more likely to tolerate unintentional design

Field upgradable systems may also help in this regard. Since adaptivity and flexibility are also desira

other reasons, we argue for designing systems with these properties.

5.3 Summary of Designability
In this chapter, we have addressed the problem of system designability. We discussed how to useSafetyNet

to enable speculatively correct designs. Speculative correctness allows the designer to allocate re

towards the common case scenarios while falling back onSafetyNetfor rare, unimportant cases. Lastly, w

addressed the issues involved in usingSafetyNetto tolerate unintentional design faults. While the ability t

tolerate a fault for which the designer did not plan is probabilistic, we describe several avenues for im

ing the probabilities in this area.

91
Chapter 6
s avail-

ddress

of data

logi-

ER)

e fur-

e-pass-

error is

102,

rdware

tolerate

e that

f the

y

Cache-

ith a

ontrol-

never a

y syn-
Related Work

SafetyNetis related to research in a number of different areas. Most of the related research addresse

ability in the presence of hardware errors (Section 6.1), although some recent work has begun to a

designability (Section 6.2). There also exists related research in checkpoint/recovery or versioning

for use in other domains of computer science (Section 6.3). Finally, we discuss related work in using

cal time to order events in distributed systems (Section 6.4).

6.1 Availability
Prior work in availability can be classified into two broad categories: backward error recovery (B

through checkpointing or logging and forward error recovery (FER) through redundant hardware. W

ther distinguish BER schemes by whether they are implemented in hardware, software, or messag

ing systems.

6.1.1 Hardware Backward Error Recovery
In BER schemes, the state of the system is checkpointed periodically or differences are logged. An

tolerated by recovering to a previously checkpointed state or unrolling the log. IBM mainframes [44,

96], which have been the archetypal high availability systems, have long used register checkpoint ha

and store-through caches to recover from processor and memory system errors, respectively. To

some of the latency of error detection, Tamir and Tremblay [107] developed a micro rollback schem

allows the recipient of erroneous information to rollback several clock cycles (which is the length o

window of opportunity for receiving erroneous information).SafetyNetdiffers from these approaches b

tolerating hundreds of thousands of cycles of error detection latency.

Hardware BER schemes have often utilized the caches and/or the cache coherence protocol. The

Aided Rollback Error Recovery (CARER) scheme [48] for uniprocessors uses a normal cache w

writeback update policy to assist rapid rollback recovery. This scheme is integrated with the cache c

ler, checkpointed system state is maintained in main memory, and checkpoints are established whe

modified cache block needs to be replaced. Ahmed et al. [2] extend CARER for multiprocessors b

roces-

oints.

since

er-

. The

ry holds

check-

uting

normal

verable

ism for

cache

d error

e sup-

.

e BER

ystems

, there

et al.

se con-

rform

copy

es that

emory

MA
92
chronizing the processors whenever any of them need to take a checkpoint. Wu et al.’s [120] multip

sor extension of CARER allows a processor to write into its private cache between checkp

Checkpointing, which flushes all modified blocks, is performed when ownership of a block modified

the last checkpoint changes.SafetyNetis more efficient, since it does not checkpoint before every own

ship transfer.

Other hardware BER schemes rely entirely upon memory to hold recoverable checkpoint state

Sequoia computer system [10] uses private caches to hold state between checkpoints. The memo

the consistent (checkpoint) state, and all dirty cache blocks are flushed to the main memory at every

point. ReVive [82] employs a similar scheme, although it can tolerate the loss of a node by distrib

memory and its parity across the nodes. Banâtre et al. [7] describe a scheme that is identical to a

bus-based SMP, except that the traditional memory module has been replaced by an RSM (Reco

Shared Memory) module. RSM requires a shadow copy of the entire memory as well as a mechan

maintaining the inter-processor dependence graph to establish consistent recovery points.SafetyNetdiffers

from all of these schemes by allowing checkpoint state to reside in the caches and by not requiring

flushes to memory at every checkpoint.

IEEE’s Scalable Coherent Interface (SCI) standard specifies potential hardware support for backwar

recovery [49], but this recovery is limited to localized SCI ringlets. The designers deemed hardwar

port for end-to-end transaction recovery to be likely to introduce more problems than it would solve

6.1.2 Software Backward Error Recovery
Software checkpointing have been developed, at radically different engineering costs from hardwar

schemes. In this section, we discuss checkpointing in software distributed shared memory (DSM) s

and in more general contexts.

Software DSM, as the name suggests, is a software implementation of shared memory. Accordingly

are software schemes that provide support for improving the availability of these systems. Sultan

[104] develop a fault tolerance scheme for a software DSM scheme with the home-based lazy relea

sistency (HLRC) memory model. Wu and Fuchs [121] use a twin-page disk storage system to pe

user-transparent checkpoint/recovery. At any point in time, one of the two disk pages is the working

and the other page is the checkpoint. Similarly, Kim and Vaidya [55] develop a scheme that ensur

there are at least two copies of a page in the system. Morin et al. [67] leverage a Cache Only M

Architecture (COMA) to ensure that at least two copies of a block exist at all times; traditional CO

ce for a

chines

eriodi-

d on the

int jobs

o that

Wang

ance.

mmer,

covery

cation

esses

-effects.

sts/

oft-

ail-

eration

whether

urvey

ndently

mes are

oming

nchro-

eme is

it logs
93
schemes ensure the existence of only one copy. Feeley et al. [33] implement log-based coheren

transactional DSM.

Software checkpointing has also been developed for systems that do not employ DSM. Tandem ma

prior to the S2 (e.g., the Tandem NonStop) use a checkpointing scheme in which every process p

cally checkpoints its state on another processor [92]. If a processor fails, its processes are restarte

other processors that hold the checkpoints. Condor [63], a batch job management tool, can checkpo

in order to restart them on other machines. Applications need to be linked with the Condor libraries s

Condor can checkpoint them and restart them. Other schemes, including work by Plank [78, 79] and

and Hwang [112, 111], use software to periodically checkpoint applications for purposes of fault toler

These schemes differ from each other primarily in the degree of support required from the progra

linked libraries, and the operating system.

IEEE’s Scalable Coherent Interface (SCI) standard specifies software support for backward error re

[49]. SCI can perform end-to-end error retry on coherent memory transactions, although the specifi

describes error recovery as being “relatively inefficient.” Recovery is further complicated for SCI acc

to its non-coherent control and status registers (CSRs), since some of these actions may have side

SafetyNetdiffers from all of these works in that it is a hardware solution with different engineering co

benefits. There exist similarities in thatSafetyNetand these schemes both implement checkpoints, but s

ware schemes can be much more elaborate.SafetyNetcan be used as a complementary piece of an av

ability scheme that also includes software checkpoint/recovery. IntegratingSafetyNetwith a software

scheme is an interesting area of future research, because it is likely to require at least some coop

between the two levels of availability mechanisms.

6.1.3 Message Passing Backward Error Recovery
Numerous BER schemes exist for message passing systems, and they can be classified based on

checkpointing is coordinated/consistent or not. Elnozahy et al. [31] provide an excellent tutorial and s

of this area of research, which we will now discuss in some more detail.

In uncoordinated/independent checkpointing schemes, such as Manetho [32], processors indepe

decide when to take checkpoints. There is no overhead for coordinating checkpoints, but these sche

susceptible to rollback propagation (i.e., cascading rollbacks). Uncoordinated schemes can log inc

messages with approaches that are either pessimistic or optimistic. Pessimistic logging involves sy

nously logging every message before processing it. Logging is thus costly, but the recovery sch

much simpler and output commit is much faster. Optimistic logging assumes failures are rare, so

ted and

ckpoint.

e

to coor-

ordinate

it uses

hich

error

plicate

weight

ndancy

t cause

can be

proces-

tch, an

odular

cheme

ssor to

I com-

connec-

around

un-

have
94
incoming messages asynchronously. The logging cost is less, but the recovery scheme is complica

output commit requires coordination.

In coordinated/consistent checkpointing schemes, processors must agree when to take a global che

This is more similar toSafetyNet, althoughSafetyNetimplicitly coordinates in logical time, whereas thes

schemes coordinate in physical time. Koo and Toueg’s scheme [56] uses an exchange of messages

dinate checkpointing, whereas several other schemes assume synchronized physical clocks to co

checkpointing without an exchange of messages [84, 23].

6.1.4 (Hardware) Forward Error Recovery
FER schemes use redundant hardware to mask errors. ECC is the canonical FER scheme, and

redundant bits to mask bit errors. A typical FER scheme is triple modular redundancy (TMR), in w

three identical components feed their results into a majority voter. Thus, TMR can mask a single

(except in the voter itself). Other FER schemes can be used to detect errors (requiring only du

redundancy) or mask more than just a single error (with higher degrees of redundancy). Most heavy

fault tolerance schemes employ redundancy, and some lightweight schemes employ lighter redu

(e.g., redundant threads instead of redundant processors).

At the processor level, numerous FER schemes exist for detecting errors and tolerating the faults tha

them. Redundant processors [6, 53, 54, 117] or redundant threads within a processor [106, 110]

used to detect and/or mask processor faults. The Stratus [117] computer system uses two pairs of

sors to mask errors. Within each pair, the two processors compare results—if the results do not ma

error has been detected and the other pair is now responsible. The Tandem S2 [53] uses triply m

redundant (TMR) processors to mask errors. Slipstream [106] is a lighter-weight processor FER s

that can use redundant threads within a processor to mask errors. DIVA [6] uses a checker proce

implement FER on the processor (but not on the system).

FER schemes can also be used beyond just the processor. The Intel 432 [54] uses replication of VLS

ponents (i.e., commodity parts) to achieve a range of fault tolerance needs across the system. Inter

tion networks have long used redundant paths and adaptive routing to allow packets to be routed

faulty switches and links [26, 30]. At the disk level and more recently at the DRAM level, RAID (red

dant array of inexpensive disks [73] or DRAMs [28]) has been used to mask errors. RAID schemes

various flavors, known as levels, which trade off redundancy costs for fault tolerance capabilities.

sed it in

also

tly even

verify

eously

bility

oses

tecture,

ynami-

ral state

mically

reorder

d, so as

Queue

e actions

ive his-

C++

s to a

uire a

tions of

from

ery

ulation.

3]. In

ssigned

n have
95
6.2 Designability
Designability has not been explored in great depth, although a couple of recent papers have addres

the context of dynamic verification. DIVA [6], discussed in Section 6.1.4 for its use in availability,

addresses designability. The simple checker processor ensures that the system will function correc

if the highly optimized core processor has a design fault. Other recent research seeks to dynamically

complex cache coherence protocols by implementing checker coherence controllers that simultan

run a much simpler version of the optimized protocol [16]. This research strives to extend designa

support beyond the processor core.

6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes
While checkpoint/recovery is clearly useful for supporting availability and designability, it serves purp

in numerous other areas of computer architecture and, more generally, computer science. In archi

prior research for supporting speculation has logged changes in state that is local to a given node. D

cally scheduled processors, such as the MIPS R10000 [122], must either log changes to architectu

or checkpoint architectural state, in case they need to recover from mis-speculations. Since dyna

scheduled processors are limited in terms of how much speculative state they can hold (i.e., in their

buffers), other research has sought to extend the amount of speculative state that can be maintaine

to enable deeper speculation. SC++ [39] augments the reorder buffer with a Speculative History

that logs changes to the cache state due to speculative stores. In the case of a misspeculation, th

logged in the Speculative History Queue are undone. Speculative Retirement [85] uses a speculat

tory buffer to speculatively retire instructions that would otherwise clog up the reorder buffer. Unlike S

that logs only store instructions, Speculative Retirement logs every speculative instruction that write

register. As with dynamically scheduled processors, both SC++ and Speculative Retirement req

mechanism to detect if another processor’s store would violate the local speculation.SafetyNet’s logging is

logically similar to these schemes, exceptSafetyNetis a global scheme; thus,SafetyNetmust locally log

transfers of coherence ownership and globally coordinate checkpoints across nodes. Implementa

SafetyNetcan also leverage some properties of the application (availability/designability) that differ

speculation. For example,SafetyNetcan checkpoint at a coarse granularity and not optimize the recov

process, since recovery due to errors is presumably far less frequent than violations due to misspec

Beyond traditional (uniprocessor) speculation, the area ofspeculative multithreadinguses data versioning

(often implemented with logging) to implement sequential program semantics [3, 19, 41, 70, 81, 10

speculative multithreading, different processors (or processing elements within a processor) are a

different sequential tasks which they speculatively execute in parallel. Thus, the same address ca

deter-

lation.

s in a

s. Most

ed [83],

minal

essage

t A than

ssor 2,

 B).

ol over

lus the

es (in

rder-

erations

ong

Times-

ms with

l order

ple-

allow

d other

a physi-

. Multi-

erages

asted
96
multiple outstanding values at the different processors, and some versioning control is necessary to

mine the correct order of the values and to detect violations of sequential ordering due to misspecu

The goal ofSafetyNetdiffers in that we superimpose checkpoints on system execution withparallel

semantics. We use globally consistent checkpoints rather than local checkpoints at different place

sequential execution.

Beyond architecture, the concepts of checkpointing and logging have been used in various context

notably, databases use (software) checkpoint/recovery to ensure that data is never lost or corrupt

and they can use data versioning to maintain serializability [71].

6.4 Using Logical Time to Coordinate Multiprocessor Systems
The use of logical time to coordinate events in a multiprocessor system originated with Lamport’s se

paper [58]. This paper first described how to construct a logical time base to order events in a m

passing system, and the fundamental idea is to use an algorithm that assigns a greater time to Even

Event B if Event A is causally after Event B. For example, if processor 1 sends a message to proce

then the reception of the message (Event A) should occur after the sending of the message (Event

Systems have been designed that exploit logical time. Isotach networks [88] provide complete contr

the logical ordering of messages in the network. Messages arrive at the (logical) time of the sender p

(logical) distance to the receiver. Logical ordering is achieved by conservatively stalling messag

physical time) in the network so that they arrive at the correct logical time at the destination. Logical o

ing of messages enables totally ordered multicasts/broadcasts and the ability to make a group of op

(called anisochron) atomic in logical time. Delta cache coherence protocols [116, 27] exploit the str

ordering of Isotach networks to provide SC and powerful synchronization primitives.

Other research that we have done has leveraged logical time to devise new coherence protocols.

tamp snooping [65] enables the use of broadcast snooping cache coherence protocols on syste

interconnection networks that do not support totally-ordered broadcasts. Instead of relying on a tota

in physical time, timestamp snooping creates a total order in logical time. Logical time can be im

mented in a variety of ways, including token-passing schemes. Optimizations of timestamp snooping

nodes to process incoming requests early (i.e., before they arrive in logical time). We have develope

snooping cache coherence protocols that are derived from timestamp snooping and do not require

cal total order of coherence requests, although this feature is not emphasized in the original papers

cast snooping [11, 101] is a variant of timestamp snooping (as well as broadcast snooping) that lev

the logical total ordering of messages to allow processors to independently determine if a multic

daptive

sed on

a mul-

n physi-

t” event

hould

e Wis-

system

ion

can

has

imistic

ly pro-

out of

rvative

. This

ted in
97
request succeeds (i.e., is sent to all destinations that need to observe the request). Bandwidth a

snooping [66] is a variant of multicast snooping in which requests are either unicast or broadcast ba

estimations of dynamic interconnection network utilization.

Logical time has also been applied to parallel discrete event simulation (PDES), in order to simulate

tiprocessor target system on a multiprocessor host system [35]. To manage the discrepancy betwee

cal and logical times, PDES must determine, for each node, whether that node can process the “nex

on its event queue, because it may not know yet if another node will generate an event for it that s

occur earlier (in logical time) than any event currently in its queue. Conservative schemes, such as th

consin Wind Tunnel [86], nodes exchange information to determine theglobal logical time,so that proces-

sors can ensure that they only process the next event in logical time. The WWT breaks up target

simulation into quanta whose length,Q, is less than the minimum latency of the target’s interconnect

network. Keeping thelookahead(i.e., the minimum target time between events and the events that they

generate in remote nodes) greater thanQ ensures that, at the beginning of each quantum, a host node

received all remotely generated events that could affect the target node in that quantum. Opt

schemes, such as Chandrasekaran and Hill’s extension of the WWT [17], let processors speculative

cess events before determining the global logical time. If it later turns out that events were processed

order, the system recovers to a previous state. Optimistic schemes can thus outperform conse

schemes if the cost of recoveries is less than the cost of waiting for global logical time to advance

tradeoff is the same FER versus BER tradeoff that was described in Section 4.2 and illustra

Figure 4-1.

98

99
Chapter 7
lability

ms are

ult to

y

-

ckpoint

v-

heck-

int and

rd error

s the

te.

, thus

ith

coher-

check-

to the

nnova-

and
Summary

While architectural research has generally focused on improving performance, the issues of avai

and designability have suffered. For both technological and architectural reasons, computer syste

more susceptible to hardware device faults. Meanwhile, systems are becoming increasingly diffic

design and verify as they become more complex in their efforts to achieve greater performance.

In this thesis, we develop a scheme, calledSafetyNet, that unifies the support for improving the availabilit

and designability of shared memory multiprocessors.SafetyNetis a system-wide, hardware-only, check

point/recovery scheme that enables a shared memory multiprocessor to recover to a pre-error che

when an error is detected. Periodically,SafetyNetlogically checkpoints the state of the system. The reco

ery point checkpoint, which is the checkpoint that was most recently validated as error-free, is the c

point to which the system recovers in the case that an error is detected. In between the recovery po

the active checkpoint, there are some number of old checkpoints that are pending validation.

In developingSafetyNet, this thesis makes three contributions which allowSafetyNetto be efficient in the

common case of error-free execution. First, as opposed to previous hardware schemes for backwa

recovery,SafetyNetuses logical time to efficiently coordinate creation of consistent checkpoints acros

system. Second,SafetyNetuses a form of optimized logging to minimize the saving of checkpoint sta

Third, SafetyNetenables the system to validate checkpoints in the background of the active execution

hiding the potentially lengthy error detection latency.

We describe an implementation ofSafetyNet, and we address the implementation issues involved w

SafetyNet. The implementation described in this thesis is based on a MOSI directory-based cache

ence protocol, with nodes connected by a two-dimensional torus interconnection network. We add a

point log buffer (CLB) to each cache hierarchy and each memory, for purposes of logging changes

memory and coherence state. Other additions are made to protect the system withSafetyNet, but these

changes are minor.

We evaluateSafetyNetwith full-system simulation and commercial workloads. We demonstrate thatSafe-

tyNet incurs negligible performance overhead, relative to an unprotected system, because of the i

tions that allow it to be efficient. We show that 512 kbyte CLBs are sufficient, for our workloads

. We

check-

c-

sys-

how to

erance,

ystem-

certain

nooping

ropriate

s help to

due

ts and

outing

ering.

e have

around

f these

t notably

aranteed

tection

an even

st ver-

f future
100
100,000 cycle checkpoint intervals, to avoid a significant amount of stalling due to filling the CLBs

also perform several sensitivity analyses to exploreSafetyNet’s behavior for different implementation

parameters. Notably, we evaluate the effects of changing the checkpoint interval length, register

pointing latency, and CLB sizing.

We discuss howSafetyNetimproves availability for a variety of error models. We first explore the intera

tion of SafetyNetwith traditional error detection mechanisms. We discuss specific error models in the

tem—including the interconnection network, cache coherence protocol, and the processors—and

detect these errors. Then we innovate in the area of error detection, by leveragingSafetyNet’s ability to tol-

erate error detection latencies on the order of hundreds of thousands of cycles. Given this latency tol

error detection can be extended to incorporate global mechanisms. For example, we develop two s

wide signature analysis schemes that perform global reductions to verify that the system obeys

invariants. The message-level scheme detects if a message is lost or re-ordered in a broadcast s

system, and the coherence-level scheme detects if a coherence upgrade is not matched by app

coherence downgrades. Both the message-level and coherence-level signature analysis scheme

demonstrate the power of end-to-end invariant checking.

We also discuss howSafetyNetcan improve system designability. We first classify the types of errors

to design faults that we address, dividing them broadly into errors due to unintentional design faul

errors due to speculatively correct design. For example, we speculatively design an adaptively r

interconnection network for a system whose cache coherence protocol requires point-to-point ord

The adaptive routing can lead to violations of point-to-point ordering, but we useSafetyNetto recover from

the rare situations in which reordering occurs and this reordering affects correctness. Meanwhile, w

enabled the use of adaptive routing, which can improve system performance by routing messages

congestion so as to better balance the traffic load in the interconnection network.

Future work exists in both availability and designability, since this thesis has not exhausted either o

areas. The availability research presented here does not address certain harder error models, mos

the permanent loss of a processor/cache chip. Relaxing some assumptions about what state is gu

safe opens up new areas of research. Also, availability research can be pursued in novel error de

schemes, moving beyond the signature analysis schemes presented in this thesis. Designability is

more open research area. Work is still to be done in tolerating unintentional design faults that slip pa

ification and testing. In terms of speculatively correct designs, there are also numerous avenues o

research.

101
References
-

overy

in,

ues

n

es-

d

ea-

ess-

et-
[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman.Digital Systems Testing and Test

able Design. IEEE Press, 1990.

[2] Rana E. Ahmed, Robert C. Frazier, and Peter N. Marinos. Cache-Aided Rollback Error Rec

(CARER) Algorithms for Shared-Memory Multiprocessor Systems. InProceedings of the 20th

International Symposium on Fault-Tolerant Computing Systems, pages 82–88, June 1990.

[3] Haitham Akkary and Michael A. Driscoll. A Dynamic Multithreading Processor. InProceedings

of the 31st Annual IEEE/ACM International Symposium on Microarchitecture, pages 226–236,

November 1998.

[4] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M.K. Martin, Daniel J. Sor

Mark D. Hill, and David A. Wood. Evaluating Non-deterministic Multi-threaded Commercial

Workloads. InProceedings of the Fifth Workshop on Computer Architecture Evaluation Using

Commercial Workloads, pages 30–38, February 2002.

[5] R. Anglada and A. Rubio. An Approach to Crosstalk Effect Analyses and Avoidance Techniq

in Digital CMOS VLSI Circuits.International Journal of Electronics, 6(5):9–17, 1988.

[6] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design. I

Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, pages

196–207, November 1999.

[7] M. Banâtre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin. An Architecture for Tolerating Proc

sor Failures in Shared-Memory Multiprocessors.IEEE Transactions on Computers, 45(10):1101–

1115, October 1996.

[8] Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network an

Server Performance Evaluation. InProceedings of the 1998 ACM Sigmetrics Conference on M

surement and Modeling of Computer Systems, pages 151–160, June 1998.

[9] Robert M. Bentley. Validating the Pentium 4 Microprocessor. InProceedings of the International

Conference on Dependable Systems and Networks, pages 493–498, July 2001.

[10] P. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled Multiprocessor for Transaction Proc

ing. IEEE Computer, 21(2):37–45, February 1988.

[11] E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin, Mark D. Hill, and

David A. Wood. Multicast Snooping: A New Coherence Method Using a Multicast Address N

 Net-

e

ols.

s

u-

lative

-

tions.

ea-

-

trib-
102
work. InProceedings of the 26th Annual International Symposium on Computer Architecture,

pages 294–304, May 1999.

[12] Manuel Blum and Sampath Kannan. Designing Programs that Check Their Work. InACM Sympo-

sium on Theory of Computing, pages 86–97, May 1989.

[13] Manuel Blum and Hal Wasserman. Reflections on the Pentium Bug.IEEE Transactions on Com-

puters, 45(4):385–393, April 1996.

[14] M. Bohr. Interconnect Scaling - The Real Limiter to High Performance. InProceedings of the

International Electron Devices Meeting, pages 241–244, December 1995.

[15] Philip Buonadonna and David Culler. Queue Pair IP: A Hybrid Architecture for System Area

works. InProceedings of the 29th Annual International Symposium on Computer Architectur,

pages 247–256, May 2002.

[16] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic Verification of Cache Coherence Protoc

In Workshop on Memory Performance Issues, June 2001. In conjunction with ISCA.

[17] Sashikanth Chandrasekaran and Mark D. Hill. Optimistic Simulation of Parallel Architecture

Using Program Executables. InProceedings of Tenth Workshop on Parallel and Distributed Sim

lation (PADS ’96), pages 143–150, May 1996.

[18] Alan Charlesworth. Starfire: Extending the SMP Envelope.IEEE Micro, 18(1):39–49, Jan/Feb

1998.

[19] Marcelo Cintra, Jose Martinez, and Josep Torrellas. Architectural Support for Scalable Specu

Parallelization in Shared-Memory Systems. InProceedings of the 27th Annual International Sym

posium on Computer Architecture, pages 13–24, June 2000.

[20] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and future direc

ACM Computing Surveys, 28(4):626–643, December 1996.

[21] B. Colwell. Maintaining a Leading Position.IEEE Computer, pages 45–47, January 1998.

[22] Anne E. Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin. Using Lamport Clocks to R

son About Relaxed Memory Models. InProceedings of the Fifth IEEE Symposium on High-Per

formance Computer Architecture, pages 270–278, January 1999.

[23] F. Cristian and F. Jahanian. A Timestamp-Based Checkpointing Protocol for Long-Lived Dis

uted Computations. InProceedings of IEEE Symposium on Reliable Distributed Systems, pages

12–20, 1991.

[24] David E. Culler and J.P. Singh.Parallel Computer Architecture: A Hardware/Software Approach.

Morgan Kaufmann Publishers, Inc., 1999.

os.

Mes-

ce,

r-

erabil-

ms

e and

c-

.

103
[25] William J. Dally. Virtual Channel Flow Control.IEEE Transactions on Parallel and Distributed

Systems, 3(2):194–205, March 1992.

[26] William J. Dally, Larry R. Dennison, David Harris, Kinhong Kan, and Thucydides Xanthopoul

Architecture and Implementation of the Reliable Router. InProceedings of 2nd Hot Interconnects

Symposium, August 1994.

[27] Bronis R. de Supinski.Logical Time Coherence Maintenance. PhD thesis, University of Virginia,

May 1998.

[28] Timothy J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main

Memory. IBM Microelectronics Division Whitepaper, November 1997.

[29] Jose Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks.IEEE

Transactions on Parallel and Distributed Systems, 4(12):1320–1331, December 1993.

[30] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni.Interconnection Networks. IEEE Computer

Society Press, 1997.

[31] E.N. Elnozahy, D.B. Johnson, and Y.M. Wang. A Survey of Rollback-Recovery Protocols in

sage-Passing Systems. Technical Report CMU-CS-96-181, Department of Computer Scien

Carnegie Mellon University, September 1996.

[32] E.N. Elnozahy and W. Zwaenepoel. Manetho: Transparent Rollback-Recovery with Low Ove

head, Limited Rollback, and Fast Output Commit.IEEE Transactions on Computers, 41(5):526–

531, May 1992.

[33] M.J. Feeley, J.S. Chase, V.R. Narasayya, and H.M. Levy. Integrating Coherency and Recov

ity in Distributed Systems. InProceedings of the First USENIX Symposium on Operating Syste

Design and Implementation, pages 215–227, November 1994.

[34] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-access Times.Electronics,

57(1):164–169, January 1984.

[35] Richard M. Fujimoto. Parallel Discrete Event Simulation.Communications of the ACM,

33(10):30–53, October 1990.

[36] Mike Galles. Spider: A High-Speed Network Interconnect.IEEE Micro, 17(1):34–39, Jan/Feb

1997.

[37] Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Von Doren. Architectur

Design of AlphaServer GS320. InProceedings of the Ninth International Conference on Archite

tural Support for Programming Languages and Operating Systems, pages 13–24, November 2000

[38] Phillip B. Gibbons and Ephraim Korach. Testing Shared Memories.SIAM Journal on Computing,

26(4):1208–1244, August 1997.

ing

itec-

rs. In

esign

on

ER)

Sys-

r’s

em
104
[39] Chris Gniady, Babak Falsafi, and T.N. Vijaykumar. Is SC + ILP = RC? InProceedings of the 26th

Annual International Symposium on Computer Architecture, pages 162–171, May 1999.

[40] S. W. Golumb.Shift Register Sequences. Aegean Park Press, revised edition, 1982.

[41] Sridhar Gopal, T.N. Vijaykumar, James E. Smith, and Gurindar S. Sohi. Speculative Version

Cache. InProceedings of the Fourth IEEE Symposium on High-Performance Computer Arch

ture, pages 195–205, February 1998.

[42] G. Grohoski. Reining in Complexity.IEEE Computer, pages 41–42, January 1998.

[43] Rajiv Gupta. The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Processo

Proceedings of the Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 54–63, April 1989.

[44] R.N. Gustafson and F.J. Sparacio. IBM 3081 Processor Unit: Design Considerations and D

Process.IBM Journal of Research and Development, 26:12–21, January 1982.

[45] Erik Hagersten and Michael Koster. WildFire: A Scalable Path for SMPs. InProceedings of the

Fifth IEEE Symposium on High-Performance Computer Architecture, pages 172–181, January

1999.

[46] Robert H. Havemann and James A. Hutchby. High-Performance Interconnects: An Integrati

Overview.Proceedings of the IEEE, 89(5):586–601, May 2001.

[47] John L. Hennessy and David A. Patterson.Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann, second edition, 1996.

[48] D.B. Hunt and P.N. Marinos. A General Purpose Cache-Aided Rollback Error Recovery (CAR

Technique. InProceedings of the 17th International Symposium on Fault-Tolerant Computing

tems, pages 170–175, 1987.

[49] IEEE Computer Society.IEEE Standard for Scalable Coherent Interface (SCI), August 1993.

[50] Intel Corporation.Pentium Pro Family Developer’s Manual, Volume 3: Operating System Write

Manual, January 1996.

[51] Intel Corporation.Intel IA-64 Architecture Software Developer’s Manual, Volume 2: IA-64 Syst

Architecture, Revision 1.1, July 2000.

[52] iROC Technologies. White Paper on VDSM IC Logic and Memory Signal Integrity and Soft

Errors, January 2002.

[53] D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform. InProceedings of the 21st International

Symposium on Fault-Tolerant Computing Systems, pages 512–519, June 1991.

[54] D. Johnson. The Intel 432: A VLSI Architecture for Fault-Tolerant Computing.IEEE Computer,

pages 40–48, August 1984.

ess

’s

of

puter

berg,

m

,

rchi-
105
[55] J.-H. Kim and N.H. Vaidya. Recoverable Distributed Shared Memory Using the Competitive

Update Protocol. InPacific Rim International Symposium on Fault-Tolerant Systems, December

1995.

[56] R. Koo and S. Toueg. Checkpointing and Rollback-Recovery for Distributed Systems.IEEE

Transactions on Software Engineering, SE-13(1):23–31, January 1987.

[57] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency Control.ACM Transac-

tions on Database Systems, pages 213–226, June 1981.

[58] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.Communica-

tions of the ACM, 21(7):558–565, July 1978.

[59] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiproc

Programs.IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[60] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. InPro-

ceedings of the 24th Annual International Symposium on Computer Architecture, pages 241–251,

June 1997.

[61] David D. Lee and Randy H. Katz. Using Cache Mechanisms to Exploit Nonrefreshing DRAM

for On-Chip Memories.IEEE Journal of Solid-State Circuits, 26(4):657–66, April 1991.

[62] Charles E. Leiserson et al. The Network Architecture of the Connection Machine CM-5. InPro-

ceedings of the Fourth ACM Symposium on Parallel Algorithms and Architectures, pages 272–285,

June 1992.

[63] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint and Migration

UNIX Processes in the Condor Distributed Processing System. Technical Report 1346, Com

Sciences Department, University of Wisconsin–Madison, April 1997.

[64] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hall

Johan Hogberg, Fredik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A Full Syste

Simulation Platform.IEEE Computer, 35(2):50–58, February 2002.

[65] Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa Alameldeen, Ross M. Dickson

Carl J. Mauer, Kevin E. Moore, Manoj Plakal, Mark D. Hill, and David A. Wood. Timestamp

Snooping: An Approach for Extending SMPs. InProceedings of the Ninth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems, pages 25–36,

November 2000.

[66] Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood. Bandwidth Adaptive

Snooping. InProceedings of the Eighth IEEE Symposium on High-Performance Computer A

tecture, pages 251–262, January 2002.

-

 Alpha

ple-

or.

ntury.

pen-

 a

l

ocus-

om-
106
[67] C. Morin, A. Gefflaut, M. Banatre, and A.-M. Kermarrec. COMA: An Opportunity for Building

Fault-Tolerant Scalable Shared Memory Multiprocessors. InProceedings of the 23th Annual Inter

national Symposium on Computer Architecture, pages 56–65, May 1996.

[68] Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink, and David Webb. The

21364 Network Architecture. InProceedings of 9th Hot Interconnects Symposium, August 2001.

[69] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed Design and Im

mentation of Redundant Multhreading Alternatives. InProceedings of the 29th Annual Interna-

tional Symposium on Computer Architecture, pages 99–110, May 2002.

[70] Jeffrey Oplinger, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica S. Lam, and Kunle

Olukotun. Software and Hardware for Exploiting Speculative Parallelism with a Multiprocess

Technical Report CSL-TR-97-715, Stanford University, May 1997.

[71] Christos Papadimitriou.The Theory of Database Concurrency Control. Computer Science Press,

Rockville, Maryland, 1986.

[72] David A. Patterson. Recovery Oriented Computing: A New Research Agenda for a New Ce

HPCA-8 Keynote Address, January 2002.

[73] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inex

sive Disks (RAID). InProceedings of 1988 ACM SIGMOD Conference, pages 109–116, June

1988.

[74] Fernando Pedone. Boosting System Performance with Optimistic Distributed Protocols.IEEE

Computer, pages 80–86, December 2001.

[75] Larry L. Peterson and Bruce S. Davie.Computer Networks: A Systems Approach. Morgan Kauf-

mann, 1996.

[76] W. W. Peterson and E. J. Weldon, Jr.Error-Correcting Codes. MIT Press, 1972.

[77] Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and Mark D. Hill. Lamport Clocks: Verifying

Directory Cache-Coherence Protocol. InProceedings of the Tenth ACM Symposium on Paralle

Algorithms and Architectures, pages 67–76, June 1998.

[78] James S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed Systems, F

ing on Implementation and Performance. Technical Report UT-CS-97-372, Department of C

puter Science, University of Tennessee, July 1997.

[79] James S. Plank, Kai Li, and Michael A. Puening. Diskless Checkpointing.IEEE Transactions on

Parallel and Distributed Systems, 9(10):972–986, October 1998.

[80] Dhiraj K. Pradhan.Fault-Tolerant Computer System Design. Prentice-Hall, Inc., 1996.

ving

port

m

ms

t and

 Mod-

uter

ous

hi-

ors.
107
[81] Milos Prvulovic, Maria Jesus Garzaran, Lawrence Rauchwerger, and Josep Torrellas. Remo

Architectural Bottlenecks to the Scalability of Speculative Parallelization. InProceedings of the

28th Annual International Symposium on Computer Architecture, pages 204–215, July 2001.

[82] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: Cost-Effective Architectural Sup

for Rollback Recovery in Shared-Memory Multiprocessors. InProceedings of the 29th Annual

International Symposium on Computer Architecture, pages 111–122, May 2002.

[83] Raghu Ramakrishnan and Johannes Gehrke.Database Management Systems, 2nd edition.

McGraw-Hill, 1999.

[84] P. Ramanathan and K.G. Shin. Checkpointing and Rollback Recovery in a Distributed Syste

Using Common Time Base. InProceedings of the 7th Symposium on Reliable Distributed Syste,

pages 13–21, October 1988.

[85] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using Speculative Retiremen

Larger Instruction Windows to Narrow the Performance Gap between Memory Consistency

els. InProceedings of the Ninth ACM Symposium on Parallel Algorithms and Architectures, pages

199–210, June 1997.

[86] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and

David A. Wood. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. InPro-

ceedings of the 1993 ACM Sigmetrics Conference on Measurement and Modeling of Comp

Systems, pages 48–60, May 1993.

[87] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault Detection via Simultane

Multithreading. InProceedings of the 27th Annual International Symposium on Computer Arc

tecture, pages 25–36, June 2000.

[88] Paul F. Reynolds, Jr., Craig Williams, and Raymond R. Wagner, Jr. Isotach Networks.IEEE Trans-

actions on Parallel and Distributed Systems, 8(4):337–348, April 1997.

[89] Jack Robertson. Alpha Particles Worry IC Makers as Device Features Keep Shrinking.Semicon-

ductor Business News, October 21, 1998.

[90] Jack Robertson. Sun Confirms Glitch in UltraSparcIII Processor.Silicon Strategies, April 4, 2001.

[91] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocess

In Proceedings of the 29th International Symposium on Fault-Tolerant Computing Systems, pages

84–91, June 1999.

[92] O. Serlin. Fault-Tolerant Systems in Commercial Applications.IEEE Computer, pages 19–30,

August 1984.

ss.

visi.

ces-

ler-

ry

20,

tocol.

 His-

n to

r-

ory.
108
[93] K. Seshan, T. Maloney, and K. Wu. The Quality and Reliability of Intel’s Quarter Micron Proce

Intel Technology Journal, September 1998.

[94] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo Al

Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic. InPro-

ceedings of the International Conference on Dependable Systems and Networks, June 2002.

[95] Richard L. Sites, editor.Alpha Architecture Reference Manual. Digital Press, 1992.

[96] Timothy J. Slegel et al. IBM’s S/390 G5 Microprocessor Design.IEEE Micro, pages 12–23,

March/April 1999.

[97] James E. Smith and Andrew R. Pleszkun. Implementing Precise Interrupts in Pipelined Pro

sors.IEEE Transactions on Computers, C-37(5):562–573, May 1988.

[98] Gurindar S. Sohi, Manoj Franklin, and Kewal K. Saluja. A Study of Time-Redundant Fault To

ance Techniques for High-Performance Pipelined Computers. InProceedings of the 19th Interna-

tional Symposium on Fault-Tolerant Computing Systems, pages 436–443, June 1989.

[99] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. Fast Checkpoint/Recove

to Support Kilo-Instruction Speculation and Hardware Fault Tolerance. Technical Report 14

Computer Sciences Department, University of Wisconsin–Madison, October 2000.

[100] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. SafetyNet: Improving the

Availability of Shared Memory Multiprocessors with Global Checkpoint/Recovery. InProceed-

ings of the 29th Annual International Symposium on Computer Architecture, pages 123–134, May

2002.

[101] Daniel J. Sorin, Manoj Plakal, Mark D. Hill, Anne E. Condon, Milo M.K. Martin, and David A.

Wood. Specifying and Verifying a Broadcast and a Multicast Snooping Cache Coherence Pro

IEEE Transactions on Parallel and Distributed Systems, 13(6):556–578, June 2002.

[102] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tolerance: A

torical Perspective.IBM Journal of Research and Development, 43(5/6), September/November

1999.

[103] J. Gregory Steffan and Todd C. Mowry. The Potential for Using Thread-Level Data Speculatio

Facilitate Automatic Parallelization. InProceedings of the Fourth IEEE Symposium on High-Pe

formance Computer Architecture, pages 2–13, February 1998.

[104] Florin Sultan, Thu Nguyen, and Liviu Iftode. Scalable Fault-Tolerant Distributed Shared Mem

In Proceedings of SC2000, November 2000.

[105] Sun Microsystems.UltraSPARC User’s Manual. Sun Microsystems, Inc., July 1997.

erfor-

al

l-

a

ta-

ter

tion

ns.

. The

trol-
109
[106] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving both P

mance and Fault Tolerance. InProceedings of the Ninth International Conference on Architectur

Support for Programming Languages and Operating Systems, pages 257–268, November 2000.

[107] Y. Tamir and M. Tremblay. High-Performance Fault-Tolerant VLSI Systems Using Micro Rol

back.IEEE Transactions on Computers, 39(4):548–554, April 1990.

[108] Scott Taylor et al. Functional Verification of a Multiple-Issue, Out-of-Order, Superscalar Alph

Processor–The DEC Alpha 21264 Microprocessor. InDesign Automation Conferehce, pages 638–

643, June 1998.

[109] M. Tremblay. Increasing Work, Pushing the Clock.IEEE Computer, pages 40–41, January 1998.

[110] T. N. Vijaykumar, Irith Pomeranz, and Karl K. Chung. Transient Fault Recovery Using Simul

neous Multithreading. InProceedings of the 29th Annual International Symposium on Compu

Architecture, pages 87–98, May 2002.

[111] Y. M. Wang, E. Chung, Y. Huang, and E.N. Elnozahy. Integrating Checkpointing with Transac

Processing. InProceedings of the 27th International Symposium on Fault-Tolerant Computing

Systems, pages 304–308, June 1997.

[112] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and Its Applicatio

In Proceedings of the 25th International Symposium on Fault-Tolerant Computing Systems, pages

22–31, June 1995.

[113] David L. Weaver and Tom Germond, editors.SPARC Architecture Manual (Version 9). PTR Pren-

tice Hall, 1994.

[114] N. Weste and K. Eshragian.Principles of CMOS VLSI Design: A Systems Perspective. Addison-

Wesley Publishing Co., 1982.

[115] George White and Pete Vogt. Profusion: A Buffered, Cache Coherent Crossbar Switch. InPro-

ceedings of 5th Hot Interconnects Symposium, pages 87–96, August 1997.

[116] Craig Williams.Concurrency Control in Asynchronous Computations. PhD thesis, University of

Virginia, Computer Sciences Department, January 1993.

[117] D. Wilson. The Stratus Computer System. InResilient Computer Systems, pages 208–231, 1985.

[118] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta

SPLASH-2 Programs: Characterization and Methodological Considerations. InProceedings of the

22nd Annual International Symposium on Computer Architecture, pages 24–37, June 1995.

[119] David A. Wood, Garth A. Gibson, and Randy H. Katz. Verifying a Multiprocessor Cache Con

ler Using Random Test Generation.IEEE Design and Test of Computers, pages 13–25, August

1990.

ing

110

[120] K. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in Shared Memory Multiprocessors Us

Private Caches.IEEE Transactions on Parallel and Distributed Systems, 1(2):231–240, April

1990.

[121] K.-L. Wu and W. K. Fuchs. Recoverable Distributed Shared Virtual Memory.IEEE Transactions

on Computers, 39(4):460–469, April 1990.

[122] Kenneth C. Yeager. The MIPS R10000 Superscalar Microprocessor.IEEE Micro, 16(2):28–40,

April 1996.

[123] J. Ziegler et al. IBM Experiments in Soft Fails in Computer Electronics.IBM Journal of Research

and Development, 40(1):3–18, January 1996.

111
Appendix A
b-

ilable

that

that a

all con-

 the

is emu-

BE),

ue and

nnec-

ed as

, the tran-

straint

rmed

ntroller

llers for
Tabular Specification ofSafetyNet Directory Protocol

In this appendix, we fully specify theSN-Directorycache coherence protocol. The specification is in a ta

ular format that was developed by Sorin et al. [101], and an online version of this specification is ava

at http://www.cs.wisc.edu/multifacet/public/sorin_thesis/ . For each controller—cache

controller, directory/memory controller, and network interface controller—we specify four tables

describe the controller’s behavior with respect to any given block:

• States:1 States are specified as one or more letters. For example, the transient state OI denotes

cache controller was in state Owned and then issued a Put-Exclusive (PUTX).

• Actions: Actions are specified as individual letters. For example, the lettera could denote that the cache

controller allocates a transaction buffer entry (TBE).

• Events: Events are triggered by incoming messages. Messages arrive on queues, as shown for

trollers in Figure A-1. At the cache, incoming queues are the Mandatory queue (for requests from

processor), the Service processor queue (for handling requests to the service processor, which

lated by processor 0), the Recovery queue (for undoing log entries from the CLB and from the T

and queues from the network interface. At the directory, incoming queues are the Recovery que

queues from the network interface. At the network interface, incoming queues are from the interco

tion network and from the cache and directory controllers.

• Transitions: A transition—an intersection of a state on a row and an event on a column—is specifi

a sequence of actions and a next state (if the state changes) separated by a slash. For example

sitionab/S denotes that actionsa andb are performed and that the next state isS. Transitions that are

shaded are impossible. If any action in a sequence cannot be performed, due to a resource con

such as being unable to allocate a transaction buffer entry (TBE), then the transition is not perfo

and none of the actions are performed.

There are two issues in the cache specification that should be noted. First, there is a single cache co

that manages both L1 caches and the L2 cache. Other implementations could have separate contro

1. The network interface controller has only one “state,” so we omit this table.

112

mandatory queue

service processor queue

recovery queue

forwarded request net

response net

cache
controller

request net

forwarded request net

final ack net

directory
controller

recovery queue

forwarded request net

response net

final ack net

network

request net

interface
controller

FIGURE A-1. Protocol state machines and their incoming queues

{

{

{

from
network
interface

from
network
interface

from
interconnection
network

ontrol-

ible, but

ed in
113

each, but we opted for the simplicity of this design. Second, there are three transitions in the cache c

ler transition table that are shaded despite being specified. These transitions are, in general, imposs

they can occur when we enable adaptive routing in the interconnection network (discuss

Section 5.1.2). As such, the actions for these transactions involve triggering a system recovery.

Table A-1. SN-Directory - cache controller states

State Description

NP Not present

I Idle

S Shared

O Owned

M Modified

MI Modified, issued PUTX, have not seen response yet

OI Owned, issued PUTX, have not seen response yet

IS Idle, issued GETS, have not seen response yet

ISI Idle, issued GETS, saw INV, have not seen data for GETS yet

IM Idle, issued GETX, have not seen response yet

IMn Idle, issued GETX, saw nack, still waiting for acks

IMI Idle, issued GETX, saw forwarded GETX

IMO Idle, issued GETX, saw forwarded GETS

IMOI Idle, issued GETX, saw forwarded GETS, saw forwarded GETX

OM Owned, issued GETX, have not seen response yet

OMn OM, saw nack, still waiting for acks

114

Table A-2. SN-Directory - cache controller actions

Action Description Action Description

a Issue GETS φ Record FwdGETX and ack count for forwarding

b Issue GETX κ Restart system after recovery

c Send FinalAck to dir if this is response to 3-hop xfer λ Copy block from head of Recovery queue to L2 cache

d Issue PUTX µ Log upgrade of block in CLB

e Send data from cache to requestor ν Record in TBE if Final-Ack will be needed

f Issue GET_INSTR ο Delayed precommit of a version

h If not prefetch, notify sequencer the load completed. π Broadcast Pre-Restart message

i Allocate TBE (isPrefetch=0, number of invalidates=0)θ Broadcast Restart message

j Set prefetch bit ρ Log entry in CLB (from cache)

k Pop mandatory queue. σ Log entry in CLB (from TBE)

l Pop incoming forwarded request queue τ Update logical clock

m Pop optional queue υ (profiling)

n Send Final-Ack to directory if 3-hop transaction ϖ Broadcast Recovery message

o Pop Incoming Response queue ω Pop incoming service processor queue

p Add number of pending acks to TBE ξ Log entry in CLB (from TBE)

q Decrement number of pending invalidations by one ψ Pop incoming Recovery queue

r Recycle head of recovery queue (from CLB) to tail ζ Broadcast Timeout message

s Deallocate TBE A,B,C,D (profiling)

t Send ack to invalidator E Send Nack to requestor

u Write data to cache G Reset the TBE

v Check to see if space in CLB H Trigger system recovery

x Copy data from cache to TBE L Copy data block from L2 to L1 (I or D)

y Send data from TBE to requestor M Log CLB entry to record upgrade of block (from TBE)

z Stall Q Send Final-Nack to directory if 3-hop transaction

α Recover TBE that was used for PUTX transaction R Bookkeeping for multipass recovery from CLB

β Commit a version S Set L1 D-cache tag equal to tag of block B.

χ Recover system T Set L1 I-cache tag equal to tag of block B.

δ Record forwarded GETS for future forwarding U Set L2 cache tag equal to tag of block B.

ε Send data from cache to GetS ForwardIDs V Send Final-Nack to directory if 3-hop transaction

φ Record forwarded GETX and ack count for future for-
warding

W Send Final_nack if Nack was from myself

γ Send data from cache to GetX ForwardID X Deallocate L1 cache block. Sets the cache to not
present, allowing a replacement in parallel with a fetch.

η If not prefetch, notify sequencer that store completed.Y Deallocate L2 cache block. Sets the cache to not
present, allowing a replacement in parallel with a fetch.

ι Count a PreCommit for a checkpoint number Z Copy data block from L1 (I or D) to L2

115

Table A-3. SN-Directory - cache controller events

Event Description

Load Load request from the processor
Load_prefetch Load prefetch request from the processor
Ifetch I-fetch request from the processor
Store Store request from the processor
Store_prefetch Store prefetch request from the processor
L1_to_L2 L1 to L2 transfer
L2_to_L1D L2 to L1-Data transfer
L2_to_L1I L2 to L1-Instruction transfer
L2_Replacement L2 Replacement
Forwarded GET_INSTR Directory forwards GET_INSTR to us
Forwarded GETS Directory forwards GETS to us
Forwarded GETX Directory forwards GETX to us
INV Invalidation
CLBstall Cannot process Forwarded-GETX due to filling CLB
Proc ack Ack from processor
Proc last ack Last ack from a processor
Data ack 0 Data with ack count = 0
Data ack not 0 Data with ack count != 0 (but haven’t seen all acks first)
Data ack not 0 last Data with ack count != 0 after having received all acks
WB ack Writeback ack from directory
Dir nack 0 Nack with ack count = 0
Dir nack not 0 Nack with ack count != 0 (but haven’t seen all acks first)
Dir nack not 0 last Nack with ack count != 0 after having received all acks
DelayedPreCommit Cache just now became ready to PreCommit
Commit Commit a version
Recovery Recover system to recovery point checkpoint
PreRestart Pre-Restart system after a recovery
Restart Restart system after a recovery
Timeout Timeout
RecoverStaleI_cacheAvail Recover StaleI data into cache
RecoverStaleO_cacheAvail Recover StaleO data into cache
RecoverStaleM_cacheAvail Recover StaleM data into cache
RecoverStaleI_cacheNotAvail Cache not available for StaleI data
RecoverStaleO_cacheNotAvail Cache not available for StaleO data
RecoverStaleM_cacheNotAvail Cache not available for StaleM data
UpdateRecyclingCount After pass through CLB, increment counter
RecoverSpecTBE Recover TBE that has uncommitted state
RecoverNonSpecTBE Recover TBE that has committed state
ExtPreCommit A PreCommit for a checkpoint number arrives at service processor
ReqTimeout Service processor requests Timeout
ReqRecovery Service processor requests Recovery
ReqPreRestart Service processor requests Pre-Restart
ReqRestart Service processor requests Restart
IgnoreCPU Ignore request from mandatory queue during Recovery
IgnoreFwdReq Ignore forwarded request msg during Recovery
IgnoreResponse Ignore response msg during Recovery

116

Table A-8. SN-Directory - directory controller states

State Description

NP Not present

I Idle

S Shared

O Owned

M Modified

OO Owned, saw GETS

OM Owned, saw GETX

MO Modified, saw GETS

MM Modified, saw GETX

117

Table A-4. SN-Directory - cache controller transitions (part 1 of 4)

State

Lo
ad

Lo
ad

_p
re

fe
tc

h

Ife
tc

h

S
to

re

S
to

re
_p

re
fe

tc
h

L1
_t

o_
L2

L2
_t

o_
L1

D

L2
_t

o_
L1

I

L2
_R

ep
la

ce
m

en
t

F
or

w
ar

de
d

G
E

T
_I

N
S

T
R

F
or

w
ar

de
d

G
E

T
S

NP τSiaυk/
IS

τSijam/
IS

τTifυk/
IS

τvSi-
bυk/IM

τvSijbm
/IM

UZX SLY TLY τY

I τSiaυk/
IS

τSijam/
IS

τTifυk/
IS

τvSi-
bυk/IM

τvSijbm
/IM

UZX SLY TLY τY

S τhk τm τhk τvibυk/
IM

τvijbm/
IM

UZX SLY TLY τY/I

O τhk τm τhk τvix-
bυk/OM

τvixjbm
/OM

UZX SLY TLY τvixdY/
OI

τAel τAel

M τhk τm τhk τvηk τm UZX SLY TLY τvixdY/
MI

τAel/O τAel/O

MI τz τz τz τz τz τz τAyl τAyl

OI τz τz τz τz τz τz τAyl τAyl

IS τz τz τz τz τz τz

ISI τz τz τz τz τz τz

IM τz τz τz τz τz τz τAδl/
IMO

τAδl/
IMO

IMn τz τz τz τz τz τz

IMI τz τz τz τz τz τz

IMO τz τz τz τz τz τz τAδl τAδl

IMOI τz τz τz τz τz τz

OM τz τz τz τz τz τz τAel τAel

OMn τz τz τz τz τz τz τAel τAel}
requests from processor

}

forwarded
requests

}

L1/L2 exchanges

118

Table A-5. SN-Directory - cache controller transitions (part 2 of 4)

State

F
or

w
ar

de
d

G
E

T
X

IN
V

C
LB

st
al

l

P
ro

c
ac

k

P
ro

c
la

st
 a

ck

D
at

a
ac

k
0

D
at

a
ac

k
no

t 0

D
at

a
ac

k
no

t 0
 la

st

W
B

 a
ck

D
ir

na
ck

 0

D
ir

na
ck

 n
ot

 0

D
ir

na
ck

 n
ot

 0
 la

st

NP τAEHl τAtl

I τAEHl τAtl

S τAtl/I

O τBρel/I τEl

M τBρel/I τEl

MI τCξyl τEl τσsl/I τdGo

OI τCξyl τEl τσsl/I τdGo

IS τAEHl τAtl/
ISI

τuhsco/
S

ISI τAtl τuhsco/I

IM τDφl/
IMI

τAtl τEl τqo τMηns
o/M

τµuη−
sco/M

τupνo τµuη−
sco/M

τQbGo τpνo/

IMn
τQbGo

IMn τAtl τqo τVbGo
/IM

IMI τqo τMη−
γnso/I

τµuηγ−
sco/I

τupνo τµuηγ−
sco/I

IMO τDφl/
IMOI

τqo τMηεn
so/O

τµu-
ηεsco/O

τupνo τµu-
ηεsco/O

IMOI τqo τMηεγ
nso/I

τµuηεγ−
sco/I

τupνo τµuηεγ−
sco/I

OM τBρel/
IM

τEl τqo τWbG
o

τpνo/

OMn
τWbG

o

OMn τqo τVbGo
/OM }

responses from directory

}

responses
from cache

}

forwarded
requests
(cont’d)

119

Table A-6. SN-Directory - cache controller transitions (part 3 of 4)

State

C
om

m
it

R
ec

ov
er

y

P
re

R
es

ta
rt

R
es

ta
rt

T
im

eo
ut

R
ec

ov
er

S
ta

le
I_

ca
ch

eA
va

il

R
ec

ov
er

S
ta

le
O

_c
ac

he
A

va
il

R
ec

ov
er

S
ta

le
M

_c
ac

he
A

va
il

R
ec

ov
er

S
ta

le
I_

ca
ch

eN
ot

A
va

il

R
ec

ov
er

S
ta

le
O

_c
ac

he
N

ot
A

va
il

R
ec

ov
er

S
ta

le
M

_c
ac

he
N

ot
A

va
il

U
pd

at
eR

ec
yc

lin
gC

ou
nt

NP τβl τχl τϕl τκl τl τψ/I τλψ/O τλψ/M τrψ τrψ τrψ R

I τβl τχl τϕl τκl τl τψ τλψ/O τλψ/M τrψ τrψ τrψ R

S τβl τχl τϕl τκl τl τψ/I R

O τβl τχl τϕl τκl τl τψ/I τψ τψ R

M τβl τχl τϕl τκl τl τψ/I τψ τψ R

MI τβl τχl τϕl τκl τl τψ τψ R

OI τβl τχl τϕl τκl τl τψ τψ R

IS τβl τχl τϕl τκl τl

ISI τβl τχl τϕl τκl τl

IM τβl τχl τϕl τκl τl

IMn τβl τχl τϕl τκl τl

IMI τβl τχl τϕl τκl τl

IMO τβl τχl τϕl τκl τl

IMOI τβl τχl τϕl τκl τl

OM τβl τχl τϕl τκl τl

OMn τβl τχl τϕl τκl τl}
checkpoint management

}
recovering from CLB

120

Table A-7. SN-Directory - cache controller transitions (part 4 of 4)

State

R
ec

ov
er

S
pe

cT
B

E

R
ec

ov
er

N
on

S
pe

cT
B

E

E
xt

P
re

C
om

m
it

R
eq

T
im

eo
ut

R
eq

R
ec

ov
er

y

R
eq

P
re

R
es

ta
rt

R
eq

R
es

ta
rt

Ig
no

re
C

P
U

Ig
no

re
F

w
dR

eq

Ig
no

re
R

es
po

ns
e

NP τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

I τsψ τsψ τιo τζω τϖω τπω τθω k l o

S τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

O τsψ τsψ τιo τζω τϖω τπω τθω k l o

M τsψ τsψ τιo τζω τϖω τπω τθω k l o

MI τsψ/I ταψ τιo τζω τϖω τπω τθω k l o

OI τsψ/I ταψ τιo τζω τϖω τπω τθω k l o

IS τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

ISI τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

IM τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

IMn τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

IMI τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

IMO τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

IMOI τsψ/I τsψ/I τιo τζω τϖω τπω τθω k l o

OM τsψ/I τsψ/O τιo τζω τϖω τπω τθω k l o

OMn τsψ/I τsψ/O τιo τζω τϖω τπω τθω k l o}

draining network

}}
service processorrecovering

requestsfrom TBE

121

Table A-9. SN-Directory - directory controller actions

Action Description

a Add requestor to list of sharers

b Send data to requestor

d Forward request to owner

e Deallocate TBE

f Set owner equal to requestor

g Clear list of sharers

h Send Invalidations to all sharers

i Allocate TBE

j Pop incoming request queue

k Pop incoming forwarded request queue

l Write incoming data to memory

m Nack incoming request

n Send PUTX-Ack to requestor

p Clear owner

r Add owner to list of sharers

t Remove owner from list of sharers

u Remove requestor from list of sharers

v Add CLB entry, if necessary

w Add CLB entry, if necessary

x Recycle request from head of incoming queue to tail

z Stall

β Recover directory to checkpointed state

χ Restart system

δ Commit a version

ε Pre-Restart the System

η Pop incoming final-ack queue

ι Pop incoming recovery queue

ϕ Deallocate TBE

κ Recover state from TBE

ο Delayed precommit of a version

π Final-Nack undoes 3-hop transaction

τ Update logical clock

A (profiling)

B (profiling)

C Trigger system recovery

122
Table A-10. SN-Directory - directory controller events

Event Description

GETS A GETS arrives

GET_INSTR A GET_INSTR arrives

GETX_Owner A GETX arrives, requestor is owner

GETX_NotOwner A GETX arrives, requestor is not owner

PUTX (requestor is owner) A PUTX arrives, requestor is owner

PUTX (requestor not owner) A PUTX arrives, requestor is not owner

CLBstall Stall due to full CLB

FinalAck Final-Ack

FinalNack Final-Nack

Commit Commit a version

DelayedPreCommit Delayed PreCommit

Recovery System recovery

PreRestart Pre-Restart system (phase 1 of recovery)

Restart Restart system after a recovery (phase 2 of recovery)

Timeout Timeout to advance logical time

RecoverTBE Recover state from TBE

IgnoreRequestMsg Ignore message during recovery

IgnoreFwdRequestMsg Ignore message during recovery

IgnoreFinalAckMsg Ignore message during recovery

123

Table A-11. SN-Directory - directory controller transitions

State

G
E

T
S

G
E

T
_I

N
S

T
R

G
E

T
X

_O
w

ne
r

G
E

T
X

_N
ot

O
w

ne
r

P
U

T
X

 (
re

qu
es

to
r

is
 o

w
ne

r)

P
U

T
X

 (
re

qu
es

to
r

no
t o

w
ne

r)

C
LB

st
al

l

F
in

al
A

ck

F
in

al
N

ac
k

C
om

m
it

D
el

ay
ed

P
re

C
om

m
it

R
ec

ov
er

y

P
re

R
es

ta
rt

R
es

ta
rt

T
im

eo
ut

R
ec

ov
er

T
B

E

Ig
no

re
R

eq
ue

st
M

sg

Ig
no

re
F

w
dR

eq
ue

st
M

sg

Ig
no

re
F

in
al

A
ck

M
sg

NP τAab
j/S

τAab
j/S

τBvf
bj/M

τAnj τmj τδk το τβk τεk τχk τk τϕι j k η

I τAab
j/S

τAab
j/S

τBvf
bj/M

τAnj τmj τδk το τβk τεk τχk τk τϕι j k η

S τAab
j

τAab
j

τBvu
bfhgj
/M

τAnj τmj τδk το τβk τεk τχk τk j k η

O τAi-
adj/
OO

τAi-
adj/
OO

τBiu
tdf-
hgj/
OM

τBiu
tdf-
hgj/
OM

τBvu
lnpj/

S

τAnj τmj τδk το τβk τεk τχk τk τϕι j k η

M τAia
rdj/
MO

τAia
rdj/
MO

τBZ
Zj

τBid
fj/

MM

τBv-
lnpj/

I

τAnj τmj τδk το τβk τεk τχk τk j k η

OO τxj τxj τxj τxj τxj τxj τmj τeη/
O

τπeη
/O

τδk το τβk τεk τχk τk τκϕι
/O

j k η

OM τxj τxj τxj τxj τxj τxj τmj τwe
η/M

τπeη
/O

τδk το τβk τεk τχk τk τκϕι
/O

j k η

MO τxj τxj τxj τxj τxj τxj τmj τeη/
O

τπeη
/M

τδk το τβk τεk τχk τk τκϕι
/O

j k η

MM τxj τxj τxj τxj τxj τxj τmj τwe
η/M

τπeη
/M

τδk το τβk τεk τχk τk τκϕg
ι/M

j k η}
requests

} }}

checkpoint
management

draining
network

final
ack/nack

124

Table A-12. SN-Directory - network interface actions

Action Description

a Send response message from cache to network

b Send request message from cache to network

c Send response message from dir to network

d Send forwarded request message from dir to network

e Send response message from network to cache or dir

f Send request message from network to dir

g Send forwarded request message from network to cache and dir

h Pop Incoming Response Network

i Pop Incoming Request Network

j Pop Incoming Forwarded Request Network

k Pop response queue from cache

l Pop request queue from cache

m Pop response queue from dir

n Pop forwarded request queue from dir

o Send forwarded request message from cache to network

p Pop forwarded request queue from cache

q Send Final-Ack from cache to network

r Pop Final-Ack from cache queue

s Send Final-Ack from network to directory

t Pop incoming Final-Ack from network queue

125

Table A-13. SN-Directory - network interface events

Event Description

OutgoingRequestFromCache Outgoing cache request

OutgoingForwardedRequestFromCache Outgoing cache forwarded request

OutgoingResponseFromCache Outgoing cache response

OutgoingFinalAckFromCache Outgoing cache final-ack

OutgoingForwardedRequestFromDir Outgoing dir forwarded request

OutgoingResponseFromDir Outgoing dir response

IncomingRequest Incoming request

IncomingForwardedRequest Incoming forwarded request

IncomingResponse Incoming response

IncomingFinalAck Incoming final-ack

Table A-14. SN-Directory - network interface transitions

State

O
ut

go
in

gR
eq

ue
st

F
ro

m
C

ac
he

O
ut

go
in

gF
or

w
ar

de
dR

eq
ue

st
F

ro
m

C
ac

he

O
ut

go
in

gR
es

po
ns

eF
ro

m
C

ac
he

O
ut

go
in

gF
in

al
A

ck
F

ro
m

C
ac

he

O
ut

go
in

gF
or

w
ar

de
dR

eq
ue

st
F

ro
m

D
ir

O
ut

go
in

gR
es

po
ns

eF
ro

m
D

ir

In
co

m
in

gR
eq

ue
st

In
co

m
in

gF
or

w
ar

de
dR

eq
ue

st

In
co

m
in

gR
es

po
ns

e

In
co

m
in

gF
in

al
A

ck

I bl op ak qr dn cm fi gj eh st} }

from cache from network
to nodeto network

from directory
to network

}

126

	Abstract
	Acknowledgments
	Table of Contents

	Chapter 1 Introduction 1
	Chapter 2 SafetyNet: Abstraction and Implementation 15
	Chapter 3 SafetyNet Evaluation 41
	Chapter 4 Availability 59
	Chapter 5 Designability 77
	Chapter 6 Related Work 91
	Chapter 7 Summary 99
	Appendix A: Tabular Specification of SafetyNet Directory Protocol 111
	List of Figures
	List of Tables

	Chapter 1
	Introduction
	1.1 A Case for Supporting Availability
	1.2 A Case for Supporting Designability
	1.3 Background Material
	1.3.1 Availability
	1.3.2 Designability
	1.4 SafetyNet: Unifying the Support for Availability and Designability
	FIGURE 1-1.� SafetyNet abstraction
	FIGURE 1-2.� Example SafetyNet system implementation

	1.5 Classification of Errors Due to Device and Design Faults

	1.5.1 Four Aspects of Error Characterization
	Fault
	Detection
	SafetyNet Recoverability
	Resumability Mechanisms
	TABLE 1-1. Classification of illustrative errors

	1.5.2 Classifying Errors in the Taxonomy
	Errors due to device faults
	Errors due to speculatively correct design faults
	Errors due to unintentional design faults

	1.5.3 Hardware Faults Not Tolerated
	Resultant error is undetected
	Fault corrupts recovery point state
	Cannot resume execution after recovery
	1.6 Thesis Contributions

	Chapter 2
	SafetyNet: Abstraction and Implementation
	2.1 SafetyNet Abstraction
	FIGURE 2-1. SafetyNet abstraction

	2.1.1 Incremental Checkpointing Via Logging
	2.1.2 Creating Consistent Checkpoints in Logical Time
	FIGURE 2-2. Example of checkpoint coordination

	2.1.3 Validating Checkpoints and Deallocating Checkpoint State
	2.1.4 Recovering the System to a Consistent Global State
	2.1.5 Input/Output Commit Problems
	2.1.6 Other Classes of Coherence Protocols and Memory Models
	Cache Coherence Protocols
	Memory Consistency Models

	2.1.7 Integrating SafetyNet with Other Levels of Checkpoint/Recovery
	2.2 Implementing SafetyNet
	2.2.1 System Model
	FIGURE 2-3. Checkpoint log buffer (CLB) structure
	SN-Snooping Specifics
	SN-Directory Specifics
	FIGURE 2-4. SN-Snooping system model
	FIGURE 2-5. SN-Directory system model

	2.2.2 Logical Time Base
	SN-Snooping
	SN-Directory
	FIGURE 2-6. Ensuring that logical time respects causality

	2.2.3 Logging
	FIGURE 2-7. Logging at the cache

	2.2.4 Checkpoint Creation
	FIGURE 2-8. Two-phase validation of checkpoint CPi

	2.2.5 Checkpoint Validation and Deallocation of Checkpoint State
	2.2.6 System Recovery and Restart
	FIGURE 2-9. Two-phase recovery/restart

	2.2.7 Implementation Details
	Checkpoint Numbers at Cache
	TABLE 2-1. Modifications to SafetyNet cache behavior

	Register Checkpointing

	2.2.8 Summary of Implementation
	2.3 SafetyNet Conclusions

	Chapter 3
	SafetyNet Evaluation
	3.1 High-Level Performance Model
	3.1.1 Error-Free Performance
	(EQ 1)
	(EQ 2)
	(EQ 3)
	(EQ 4)

	3.1.2 Performance in Presence of Errors
	(EQ 5)
	(EQ 6)

	3.2 Methodology
	3.2.1 Simulation Infrastructure and Target System
	Simics
	TABLE 3-1. Target system parameters

	Processor Model
	Memory Model
	I/O Model
	Recovery
	Methodology

	3.2.2 Workloads
	Online Transaction Processing (OLTP)
	Java Server
	Static Web Server
	Dynamic Web Server
	Scientific Application
	TABLE 3-2. Workload execution behavior

	3.3 Experiments
	3.3.1 Experiment 1: Error-Free Performance
	FIGURE 3-1. Performance comparison of SafetyNet with an unprotected system

	3.3.2 Experiment 2: Dropped Messages
	3.3.3 Experiment 3: Lost Switch
	3.4 Sensitivity Analyses
	3.4.1 Checkpoint Log Buffer Storage Cost
	FIGURE 3-2. Workload intensity (Apache workload)
	FIGURE 3-3. Performance vs. CLB size

	3.4.2 Checkpoint Interval Length
	FIGURE 3-4. Performance as a function of checkpoint interval (512 kbyte CLBs)
	FIGURE 3-5. Performance vs. CLB size for 500,000 cycle intervals
	FIGURE 3-6. Performance vs. CLB size for 1 million cycle intervals

	3.4.3 Register Checkpointing Latency
	FIGURE 3-7. Performance as a function of register checkpointing latency

	3.4.4 Sensitivity to the Rate of Soft Errors
	FIGURE 3-8. SafetyNet performance vs. soft error rate

	3.4.5 Cache Bandwidth
	FIGURE 3-9. Bandwidth vs. checkpoint interval (static web workload)

	3.5 Summary

	Chapter 4
	Availability
	TABLE 4-1. Classification of illustrative errors due to device faults
	4.1 Traditional Hardware Error Detection Mechanisms
	4.1.1 Interconnection Network Errors
	4.1.2 Coherence Protocol Errors
	4.1.3 Cache Hierarchy and Memory Errors
	4.1.4 Processor Core Errors
	4.1.5 SafetyNet Hardware Errors
	4.1.6 Device Faults Not Tolerated with SafetyNet
	4.2 Global Recovery versus Local Recovery
	4.2.1 General Discussion of FER vs. Global BER
	FIGURE 4-1.� Rough comparison of BER vs. FER

	4.2.2 Interconnect Link Errors
	Local Recovery with Error Correcting Codes
	Local Recovery with Link-Level Retry

	4.2.3 Processor Errors
	4.3 Innovations in Hardware Error Detection
	4.3.1 Detecting Errors with Signature Analysis
	(EQ 7)
	(EQ 8)

	4.3.2 Developing a Simplified Signature Analysis Example
	(EQ 9)
	(EQ 10)

	4.3.3 Checking Message-Level Invariants with Signature Analysis
	(EQ 11)
	(EQ 12)
	(EQ 13)
	(EQ 14)
	(EQ 15)

	4.3.4 Checking Coherence-Level Invariants with Signature Analysis
	(EQ 16)
	SN-Snooping
	TABLE 4-2. Coherence-level signature update function (SN-Snooping)
	SN-Directory
	Summary of Coherence-Level Signature Analysis

	4.4 Summary of Availability

	Chapter 5
	Designability
	5.1 Errors due to Speculatively Correct Design
	TABLE 5-1. Classification of illustrative errors due to speculatively correct design

	5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design
	FIGURE 5-1.� Example of deadlock in interconnection network

	5.1.2 Enabling Adaptive Routing in the Interconnection Network
	FIGURE 5-2.� Violating point-to-point order with adaptive routing
	FIGURE 5-3.� Performance of a system with adaptive routing

	5.1.3 Avoiding Pathological Mis-speculation
	5.2 Errors Due to Unintentional Design Faults
	TABLE 5-2. Classification of illustrative errors due to unintentional design faults

	5.2.1 An Example in the Cache Coherence Protocol
	5.2.2 General Properties
	1. Detection: The system can detect the error caused by the design fault.
	2. Recoverability: SafetyNet can recover from this error model.
	3. Resumability: SafetyNet can resume execution (without livelock) after recovering.
	Detection
	Resumability

	5.3 Summary of Designability

	Chapter 6
	Related Work
	6.1 Availability
	6.1.1 Hardware Backward Error Recovery
	6.1.2 Software Backward Error Recovery
	6.1.3 Message Passing Backward Error Recovery
	6.1.4 (Hardware) Forward Error Recovery
	6.2 Designability
	6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes
	6.4 Using Logical Time to Coordinate Multiprocessor Systems

	Chapter 7
	Summary
	References

	Appendix A
	Tabular Specification of SafetyNet Directory Protocol
	FIGURE A-1. Protocol state machines and their incoming queues
	Table A-1.� SN-Directory - cache controller states
	Table A-2.� SN-Directory - cache controller actions
	Table A-3.� SN-Directory - cache controller events
	Table A-4.� SN-Directory - cache controller transitions (part 1 of 4)
	Table A-5.� SN-Directory - cache controller transitions (part 2 of 4)
	Table A-6.� SN-Directory - cache controller transitions (part 3 of 4)
	Table A-7.� SN-Directory - cache controller transitions (part 4 of 4)
	Table A-8.� SN-Directory - directory controller states
	Table A-9.� SN-Directory - directory controller actions
	Table A-10.� SN-Directory - directory controller events
	Table A-11.� SN-Directory - directory controller transitions
	Table A-12.� SN-Directory - network interface actions
	Table A-13.� SN-Directory - network interface events
	Table A-14.� SN-Directory - network interface transitions

