USING LIGHTWEIGHT CHECKPOINT/RECOVERY TO IMPROVE THE
AVAILABILITY AND DESIGNABILITY OF SHARED MEMORY

MULTIPROCESSORS

by

Daniel J. Sorin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the
UNIVERSITY OF WISCONSIN - MADISON

2002

Abstract

In this thesis, we address the issues of availability and designability for shared memory multiprocessors.
While Moore’s Law has provided architects with faster and more numerous transistors, it has correspond-
ingly degraded availability and designability. Availability is increasingly difficult to achieve due to the
combination of smaller devices and wires, along with more components in more aggressive designs. Des-
ignability, which we define as the difficulty of designing and verifying a computer system, has also suf-
fered as a result of these same trends. As computer architects are given more transistors with which to

work, system designs generally become much more complicated and more difficult to verify correct.

To address these downward trends in availability and designability, we propose using a lightweight check-
point/recovery scheme call&hfetyNetSafetyNeis a hardware-only scheme that allows a shared memory
multiprocessor to recover its system-wide state—including processor registers, caches, and memories—to
a previous checkpoint. Thus, in the case of an error due to a device fault or a desigBdfatifNeallows

the system to recover to a pre-fault state and re-execute. In the case of transient faults and some permanent
faults (i.e., those permanent faults that can be tolerated by reconfiguration), recovery and re-execution is

sufficient to transparently tolerate the faults.

SafetyNehas three distinguishing features that enable it to provide error-free performance that is compara-
ble to that of an unprotected system. First, it coordinates the system-wide checkpoints in logical time and

leverages “logically atomic” cache coherence transactions. By using logicalSafetyNetloes not have

to quiesce the system or exchange synchronization messages at each checkpoint. Sadéetyiktises

an optimized logging scheme to reduce the amount of checkpoint state. Third, it pipelines checkpoint vali-

dation—the process of determining that a checkpoint is error-free and can be made the new recovery

point—and keeps it entirely in the background.

We demonstrate thabafetyNetcan be used in conjunction with a variety of existing error detection
schemes to improve system availability. We also 8aétyNeto innovate in the areas of availability and
designability. To improve availability, we leveragafetyNet'sability to tolerate long error detection laten-

cies. SafetyNetan tolerate latencies that are long enough to enable much stronger error detection tech-
niques than are currently feasible. These techniques can use inter-node communication and system-wide
invariant checking. To improve designability, we uSafetyNeto enablespeculatively correct designas

well as to tolerate certain classes of unintentional design faults. For rare and complicated system events,

we demonstrate that we can fall back $afetyNet{and treat these events as errors) instead of devoting

i
design time and verification effort towards handling them. Speculative correctness can simplify the design

and/or enable otherwise infeasible design points.

We evaluatesafetyNetvith full-system simulation and commercial workloads running on Solaris 8. Our
results show thaBafetyNetas negligible impact on error-free performance, while avoiding data corrup-
tion and system failures when errors are detected. We shov#iatyNetan provide this error recovery

with reasonable storage costs (512-kbyte buffers at each processor and each memory) and with negligible

additional cache bandwidth.

Acknowledgments

This thesis would not have made it to this point without the contributions of many people, and | wish to
thank as many of them as | can remember. My parents and sister have been a wonderful source of support,
inspiration, and encouragement throughout my education, and they deserve much credit for where | am
today. Deborah, my lovely fiancee, is my inspiration, and she deserves all the thanks in the world, despite
claiming not to understand what | do. | would not be who | am today without her, and | can only hope to

make her as happy as she makes me.

The University of Wisconsin has been a wonderful place for me to pursue my Ph.D., and much of this is
because of its outstanding faculty. My advisor, Prof. David Wood, has mentored me for the past six years,
and | have learned how to perform research under his wise guidance. | thank David for his support and for
forcing me, sometimes against my wishes at the time, to be a better researcher. Prof. Mark Hill, the other
director of the Multifacet project, has been a joy to work with. Besides the many technical insights |
gleaned from Mark, | thank him for his invaluable advice and for providing a terrific role model for how to
be a researcher. Prof. Mary Vernon, with whom | worked early in my graduate career, led me through my
first research. | thank Mary not only for teaching me how to perform and present research, but also for
pushing me to the limits of my abilities (which, | might add, are still well short of hers). My collaboration
with Prof. Anne Condon taught me how to think more formally and precisely, while simultaneously dem-

onstrating that | better not switch areas into theory.

Other faculty at Wisconsin and beyond have contributed to where | am now. Prof. Derek Eager at the Uni-
versity of Saskatchewan has been a valuable collaborator, and | particularly enjoyed working with him,
even when | got stranded in Saskatoon. | thank Profs. Guri Sohi, Mikko Lipasti, and Kewal Saluja at Wis-
consin for their valuable insights into this thesis work. | thank Prof. Alvy Lebeck at Duke University for

helping to convince me to go to Wisconsin, and | also thank Prof. John Board at Duke for inspiring me to

pursue computer architecture in the first place.

The students at Wisconsin are the other reason that it has been such a wonderful place for me to pursue my
Ph.D. First and foremost, Milo Martin has been the best possible collaborator and partner in crime. My
research has benefited more from Milo than from anyone else, and | owe him many thanks for his help,
insights, support, and leftover pizza. | would like to thank Amir Roth (now Prof. Roth) for countless dis-
cussions, some of which did not involve comparisons of our respective hometown sports teams. | thank

Craig Zilles and Ravi Rajwar, as well, for numerous valuable discussions of our research. Ravi also

deserves many thanks for always being willing to play tennis on a moment’s notice. | thank Marlw\éj Plakal
for his collaboration on more Lamport clock papers than we could have imagined. | thank Carl Mauer, my
officemate, for putting up with me, particularly during ISCA seasons when a less saintly officemate would
have had me evicted. Lastly, | would like to thank the other members of the Wisconsin Multifacet project,

many of whose contributions have improved this research.

Research that depends on many compute-years of full-system simulation is not achieved without a lot of
help. For supporting Simics and answering countless questions at all hours, | thank the industrious folks at
Virtutech, particularly Peter Magnusson, Bengt Werner, and Andreas Moestedt. At Wisconsin, the Com-
puter Systems Lab and the Condor project (especially Erik Paulson) enabled me to soak up all those com-
pute-years. | also thank Erin Miller and Alicia Walley for expertly solving the numerous administrative
issues | encountered. Lastly, | thank Intel Corporation for providing me with an Intel Graduate Fellowship

and my very own laptop.

Table of Contents

Abstract [
Acknowledgments iii
Table of Contents %
List of Figures iX
List of Tables Xi
Chapter 1 Introduction 1
1.1 A Case for Supporting Availability 3
1.2 A Case for Supporting Designability 4
1.3 Background Material e 5..
1.3.1 Availability e 5
1.3.2 Designability 6.
1.4 SafetyNet: Unifying the Support for Availability and Designability —................ 7
1.5 Classification of Errors Due to Device and Design Faults 9
1.5.1 Four Aspects of Error Characterization 10
1.5.2 Classifying Errors inthe Taxonomy i 11
1.5.3 Hardware Faults Not Tolerated i 13
1.6 Thesis ContributioNS e 14. .
Chapter 2 SafetyNet: Abstraction and Implementation 15
2.1 SafetyNet Abstraction 15..
2.1.1 Incremental Checkpointing Via Logging 17
2.1.2 Creating Consistent Checkpoints in Logical Time 17
2.1.3 Validating Checkpoints and Deallocating Checkpoint State 19
2.1.4 Recovering the System to a Consistent Global State 21
2.1.5 Input/Output Commit Problems 22

2.1.6 Other Classes of Coherence Protocols and Memory Models 23

2.1.7 Integrating SafetyNet with Other Levels of Checkpoint/Recovery 24
2.2 Implementing SafetyNet 25 ...
2.2.1 System Model 26. . ..
222 Logical TIME Baset e 28 ...
2.2.3 LOgOiNg . ..ot e 30
2.2.4 Checkpoint Creation 2.... 3
2.2.5 Checkpoint Validation and Deallocation of Checkpoint State 33
2.2.6 System Recoveryand Restart i 35
2.2.7 Implementation Details 36
2.2.8 Summary of Implementation 38
2.3 SafetyNet CoNnClUSIONS e 39....
Chapter 3 SafetyNet Evaluation 41
3.1 High-Level Performance Model e 42
3.1.1 Error-Free Performance 42
3.1.2 Performance in Presence of Errors 44
3.2 Methodology 44
3.2.1 Simulation Infrastructure and Target System 45
3.2.2 WOrkloads 47 .
3.3 EXPeriMENtS .. e 49
3.3.1 Experiment 1: Error-Free Performance i 49
3.3.2 Experiment 2: Dropped MeSsages 50
3.3.3 Experiment 3: Lost Switch 51
3.4 Sensitivity ANalySes 51.
3.4.1 Checkpoint Log Buffer Storage COSt i 52
3.4.2 CheckpointInterval Length 53

3.4.3 Register Checkpointing Latency i i 55

3.4.4 Sensitivity tothe Rate of Soft Errors 56
3.4.5 CacheBandwidth 57....

3.5 SUMMAIY . e 58

Chapter 4 Availability 59

4.1 Traditional Hardware Error Detection Mechanisms 60
4.1.1 Interconnection Network Errors 60
4.1.2 Coherence ProtoCol EIrOrs e 61
4.1.3 Cache Hierarchy and Memory Errorst 61
4.1.4 Processor Core EImMOrS et 2.... 6
4.1.5 SafetyNet Hardware Errors ettt e e ee e 62
4.1.6 Device Faults Not Tolerated with SafetyNet 63

4.2 Global Recovery versus Local Recovery 63
4.2.1 General Discussion of FERvs. GlobalBER 64
4.2.2 Interconnect LINK EITOrs 65
4.2.3 ProCessOr ErrOrs 66. ..

4.3 Innovations in Hardware Error Detection i 66
4.3.1 Detecting Errors with Signature Analysis i 67
4.3.2 Developing a Simplified Signature Analysis Example 69
4.3.3 Checking Message-Level Invariants with Signature Analysis 69
4.3.4 Checking Coherence-Level Invariants with Signature Analysis 72

4.4 Summary of Availability 74. ..

Chapter 5 Designability 77

5.1 Errors due to Speculatively Correct Designo 77
5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design 78
5.1.2 Enabling Adaptive Routing in the Interconnection Network 81

5.1.3 Avoiding Pathological Mis-speculation, 85

5.2 Errors Due to Unintentional Design Faults

5.2.1 An Example in the Cache Coherence Protocol 87
5.2.2 General Properties 89....
5.3 Summary of Designability Q...
Chapter 6 Related Work 91
6.1 Availability aaa 91
6.1.1 Hardware Backward Error RECOVENYttt e 91
6.1.2 Software Backward Error Recovery i 92
6.1.3 Message Passing Backward Error Recovery 93
6.1.4 (Hardware) Forward Error ReCovVery i 94
6.2 Designability 95
6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes 95
6.4 Using Logical Time to Coordinate Multiprocessor Systems 96
Chapter 7 Summary 99
References 101

Appendix A: Tabular Specification of SafetyNet Directory Protocol 111

List of Figures

SafetyNet abstraction e A
Example SafetyNet system implementation 9
SafetyNet abstraction e 16
Example of checkpoint coordination 0... 2
Checkpoint log buffer (CLB) Structure 6... 2
SN-Snooping system model e 28. ...
SN-Directory system model 28 ..
Ensuring that logical time respects causality 30
Logging atthe cache i i e e e 31
Two-phase validation of checkpoint CPi 34
Two-phase recovery/restart 36..
Performance comparison of SafetyNet with an unprotected system 50
Workload intensity (Apache workload) 52
Performance vs. CLB Size e 53..
Performance as a function of checkpoint interval (512 kbyte CLBS) 54
Performance vs. CLB size for 500,000 cycle intervals 55
Performance vs. CLB size for 1 million cycle intervals 55
Performance as a function of register checkpointing latency 56
SafetyNet performance vs. softerrorrate 7.... 5
Bandwidth vs. checkpoint interval (static web workload) 58
Rough comparison of BER vS. FER e 64
Example of deadlock in interconnection network 79
Violating point-to-point order with adaptive routing 82
Performance of a system with adaptive routing 84

Protocol state machines and their incoming queues 112

A-10
A-11
A-12
A-13
A-14

Xi

List of Tables

Classification of illustrative errors. e 12
Modifications to SafetyNet cache behavior. 37..
Target system parameters. 45
Workload execution behavior e 49,
Classification of illustrative errors due to device faults.| 0..

Coherence-level signature update function (SN-Snooping)
Classification of illustrative errors due to speculatively correctdesign

Classification of illustrative errors due to unintentional designfaults.

SN-Directory - cache controller states. 113..

SN-Directory - cache controller actions 114 ..
SN-Directory - cache controllerevents. 115 ..
SN-Directory - directory controller states. 116..

SN-Directory - cache controller transitions (part Lof 4).
SN-Directory - cache controller transitions (part 2 0f4).
SN-Directory - cache controller transitions (part 30f4). i

SN-Directory - cache controller transitions (part 4 of4).

SN-Directory - directory controller actions. 121...
SN-Directory - directory controllerevents i 122. .
SN-Directory - directory controller transitions 123. ..
SN-Directory - network interface actions 124 ..
SN-Directory - network interface events. e 125 ..

SN-Directory - network interface transitions, 125. ..

Xii

Chapter 1

Introduction

Computers are becoming increasingly important in our daily lives. We rely upon computer services, such

as electronic commerce and information delivery. These services are based upon software infrastructure,
such as database management systems and web hosting software. This software infrastructure, in turn,
depends upon the hardware infrastructure provided by computer systems. These machines, known as com-
mercial servers, have become an integral part of society’s infrastructure. These commercial servers are
often systems with multiple processors that share a single memory address space. Shared memory multi-
processors provide the performance necessary for running commercial applications, especially for work-

loads that exhibit abundant concurrency, such as databases and web servers.

Computer system performance, including that of shared memory multiprocessors, has harnessed the expo-
nential trend described by Moore’s Law and complemented by architectural advances. Performance has
traditionally been the focus of most research in computer architecture, and increasing performance has

enabled qualitative improvements in computing. But beyond performance, there are other features that

contribute to the quality of a commercial server. This thesis addresses two other system aspects that con-
tribute towards system qualitavailability and designability Unfortunately, as we will discuss, Moore’s

Law presents increasing challenges for both of these issues.

Availability is the probability that a system is functioning correctly at a given time. Availability is often
confused withreliability, which is the probability that a system that is functioning correctly at a given time

will continue to function correctly for a specified amount of time afterwards. A system may function incor-
rectly if a fault (“a physical defect, imperfection, or flaw” [80]) manifests itself as an error (“a deviation
from accuracy or correctness” [80]). Availability is a function of both the frequencies of faults and the sys-
tem’s ability to tolerate them—either by masking them or recovering from them—when they manifest
themselves as errors. A highly available system must thus avoid and/or tolerate faults. Avoidance is diffi-
cult, though, because the smaller and more numerous transistors enabled by Moore’s Law degrade avail-
ability by increasing fault frequencies. Patterson argued recently that faults are a fact of life and that
designers must learn to deal with them [72]. In Section 1.1, we further argue why architects should develop

systems that provide improved availability by tolerating increasing numbers of faults.

We define designability as the ease with which a system can be designed and verified. As with a\2/ailability,
Moore’s Law causes designability to suffer. Having more transistors with which to work enables architects
to design more complicated systems that are more difficult to design and verify. Designability is important
because it relates directly to cost, for two broad reasons. First, if it takes longer to design a system and
longer to verify that the system is correct, this increase in time translates to lost performance. Since
Moore’s Law has provided exponential increases in transistors and, in turn, performance over time, unfore-
seen additional time to market incurs an exponential loss in performance. For example, an eighteen month
product slip is roughly a factor of two in performance that has been lost. Second, systems that target worst-
case scenarios, in an effort to simplify design and verification, are often far costlier, in terms of resources
and performance, than designs that could target the common case. For both of these reasons, we would like
to be able to design systems more quickly and more efficiently. In Section 1.2, we present a case for
improving system designability.

There exists a large body of prior research in available systems and some limited current research in des-
ignability. In Section 1.3, we present a brief overview of this existing work, in order to illustrate its
achievements and limitations, thus motivating our research in these areas. We present a full treatment of

the related work in Chapter 6.

To address the issues of availability and designability, this thesis presents a system-wide checkpoint/recov-
ery scheme calle8afetyNetSafetyNetdescribed briefly in Section 1.4 and in depth in Chapter 2, unifies

the support for availability and designability by recovering the system to a pre-fault state in the case of
errors due to both device faults and design faults. The recovery point is a globally consistent checkpoint of
the system state, including the memory system and cache coherence protocol, enabling the system to seam-
lessly resume execution after recovery. We describaf@tyNetn previous work [100], but that research

only addressed the use ShafetyNefor improving availability with conventional error detection tech-
niques. This thesis not only explores this area in greater depth, but it also develops innovative error detec-

tion mechanisms and addresses the issue of system designability.

To illustrate the similarities between availability and designability, we present a framework for classifying
errors due to device and design faults in Section 1.5. We classify errors based on four aspects—fault,
detection, recoverability with checkpoint/recovery, and resumability—and we classify several illustrative
examples to show the utility of the framework. This framework will be used throughout the thesis, when

discussing particular error models.

The cornerstone of our philosophy is that we want to allocate our resources—transistors, performance,

design effort, verification time—towards the common case of normal, error-free operation. In the rare case

of an error, be it due to a transient device fault or a design fault, we will fall back on our checkpoir?t/recov—
ery mechanism. Moreover, error detection latency should be hidden, since finding a error is not the com-
mon case. This philosophy reflects both architectural common sense as well as the philosophy of
optimistic algorithms, including optimistic distributed protocols [74] and optimistic concurrency [57].
Optimistic algorithms speed up the common case (or do not slow it down), while sacrificing some perfor-
mance in the uncommon case that the optimistic assumption fails. In the context of availability and design-

ability, the optimistic assumption is that the execution is error-free.

The primary contributions of this thesis, detailed in Section 1.6, are the improved availability and designa-

bility that are enabled b$afetyNet.

1.1 A Case for Supporting Availability

Availability becomes increasingly important as computer services are integrated more tightly into society’s
infrastructure. This is particularly true for the shared-memory multiprocessor servers that run the applica-
tion services and database management systems (DBMSs) that must robustly manage business data. How-
ever, unless architectural steps are taken, availability will decrease over time as implementations use a
larger number of increasingly unreliable components in search of higher performance [21, 42, 109]. The
high frequencies and small circuit dimensions of future systems will increase their susceptibility to both
transient and permanent faults. For example, higher frequencies exacerbate crosstalk [5, 14] and supply
voltage noise [93], and smaller devices and wires suffer more from electromigration [114] and alpha parti-
cle disruptions [89, 123]. Moreover, while DRAM cells have long been susceptible to radiation-induced

faults, now SRAM cells and combinational logic are also susceptible [52, 94].

Decades of research in fault-tolerant systems suggest a path toward addressing this problem. Mission-criti-
cal systems routinely employ redundant processors, memories, and interconnects (e.g., triple-modular
redundancy [53] or pair-and-spare [117]) to tolerate a broad class of faults. However, for many applica-
tions, the highly competitive commercial market will seek lighter-weight solutions. For example, RAID
level 5 [73] has been deployed widely because its overhead is 1/Nth (for N data disks) rather than the 100%
overhead for mirroring. Commercial servers aim for high availability but will accept occasional crashes to
improve cost/performance. Software-visible techniques—including database logging and clustering—help
preserve data integrity in these cases. However, availability is compromised, because recovery from a crash
takes hours, and “5 9s” of availability (i.e., 99.999% availability) translates to only five minutes of down-

time per year.

Current servers employ a range of hardware mechanisms to improve availability. Error correctﬂlg codes
(ECC), interconnection network link-level retry [36], RAID [73], and duplicate ALUs with processor retry
[102] target specific, localized error models such as transient bit flips on memory, links, or ALUs. Com-
puter architects seeking system-wide coverage must integrate a patchwork of localized error detection and

recovery schemes.

In this thesis, we propose using tBafetyNetheckpoint/recovery scheme to provide a unified, lightweight
mechanism that provides end-to-end recovery from a broad class of transient and permanent errors due to
device faults (which we refer to @evice error3. This recovery mechanism can be combined with a wide
range of error detection mechanisms, including strong error detection codes (e.g., CRCs), redundant pro-
cessors and ALUs [36, 102], redundant threads [91], and system-level state checkers [16]. By largely
decoupling recovery from detection, our approach allows a range of implementations with varying cost-
performance. By providing a unified mechanism that can tolerate an increasingly important class of tran-

sient and permanent errors, we hope to encourage pervasiveSafetgNein commercial servers.

1.2 A Case for Supporting Designability

Shared memory multiprocessors are complicated systems that are difficult to design for a variety of rea-
sons. Most significantly, interprocessor communication and cache coherence protocols are prone to timing
races that result in rarely exercised corner cases. Not only is it a challenge to design these systems cor-
rectly, it is even more difficult to do so without wasting hardware resources. For example, it is often diffi-
cult to design a cache coherence protocol that is not wasteful of buffering in the interconnect and
coherence controllers, and it is tempting to employ worst-case buffering rather than to add complexity to
reduce this requirement. However, there are many design issues, including buffer sizing, for which the

worst-case requirements may be far worse than the requirements for the common case.

In this thesis, we propose usirsafetyNeto improve designability. With such a checkpoint/recovery
mechanism, when a design fault manifests itself as an error (which we refer tweagya erroj, we can

recover the system state to a pre-error checkpoint. Our proposal relies on two assumptions. First, we must
be able to detect, in a timely fashion, that an error due to a design fault has occurred. Second, we must be
able to ensure that, after recovery, the system will not immediately encounter this design fault again, thus
leading to livelock. In Chapter 4, we will discuss our fault model, error model, and error detection
schemes, as well as how to avoid livelock. We seek to leveraggafetyNemechanism that was proposed

for availability to provide the additional benefit of improved designability.

There are two classes of situations in which we will fall back on our checkpoint/recovery mechan?sm. The
first class of situations are errors due to (unintentional) design faults. Since design faults are, by definition,
unintentional, it can be difficult to devise detection schemes to catch all of them. As we will discuss in
Section 5.2SafetyNetan tolerate some unintentional design faults, because they manifest themselves like
device faults. While&SafetyNetannot be relied upon to tolerate all design faults, we can improve our odds
of both detecting the errors they cause and enabling the resumption of execution after recovery. We
improve our chances of detection by employing more comprehensive (device) error detection. We improve
our chances of being able to resume execution—and not livelock due to immediately re-encountering the

error—by designing more adaptable and flexible systems that can change the execution path after recovery.

The second, more profitable, class of situations in which we recover the system state are errospéicie to
ulatively correct designSpeculatively correct design can be useful in situations in which the requirements

to handle an infrequent event are far worse than the common case. Designers like to focus their resources
on the common case, but resources often get allocated to uncommon cases, since not handling these
uncommon cases can cause system failure. Errors due to mis-speculation (i.e., speculation in the sense that
we optimistically predicted that a certain edge case would not get exercised) are much easier to detect,
since the designer knows exactly where they are. We will present two speculatively correct designs in
Section 5.1. In one example, we enable adaptive routing in an interconnection network that must provide
(the illusion of) point-to-point ordering. When adaptive routing leads to violations of point-to-point order-

ing that impact correctnesémost re-orderings do not matter), the system falls baclSafetyNetand

resumes execution with the adaptive routing disabled until after execution has progressed beyond the point
of the error. WithSafetyNesupport, we can gain the advantages of adaptive routing while hiding the rare

occasions in which our optimistic assumption is violated.

1.3 Background Material
In this section, we briefly address related work in the areas of availability and designability, in order to pro-
vide a context in which to discuss the contributions of this thesis. We provide a full treatment of related

work in Chapter 6.

1.3.1 Availability
Many availability schemes have been developed, but they have achieved availability at the cost of either
degraded performance or significant additional hardware. These schemes can be classified into two catego-

ries: forward error recovery(FER) andbackward error recoveryBER). Forward error recovery schemes

use redundant hardware, such as triple modular redundancy (TMR) to mask errors while executign contin-
ues running forward. IBM mainframes [96] are a prominent example of FER systems that achieve high
availability. The primary cost of FER schemes is the redundant hardware. While the cost of TMR or other
FER schemes may be acceptable for mission-critical systems, commercial servers seek better cost/perfor-

mance.

Backward error recovery schemes, includBefetyNetuse a combination of checkpointing and/or logging

to enable the system to recover to a pre-error statagttmvery pointin the case of an error. Checkpoint-

ing schemes periodically save the state of the system and recover to the recovery point in the case of an
error. Logging schemes log changes to the system state and then undo the logs if an error is detected. BER
schemes have been developed in both hardware and software, and the primary cost of these schemes is a
degradation in system performance. BefBafetyNetcoordination of checkpoints/logs across the system

and the checkpointing of system state have tended to be inefficient. While performance may not be crucial
for mission-critical systems, it is an important factor for commercial systems and, as such, they have
tended not to employ hardware BER. Software BER is still used in applications such as database manage-
ment systems, but the latency of software checkpointing determines that it must be infrequent. Moreover,
the latency of software recovery determines that errors cannot be a frequent occurrence, as may be the case
in the near future. Even an error rate as low as one error per trillion cycles is equivalent to an error every

seventeen minutes at a clock rate of 1 GHz or an error every ten seconds for a 100 GHz clock.

1.3.2 Designability

Little research exists in the area of designability, but recent research in dynamic verification suggests that
this topic is attracting interest. DIVA [6] is the primary example of a designability scheme. DIVA adds a
simple, provably correct checker processor at the retirement stage of an aggressive processor that is not
formally verifiable. The checker processor dynamically verifies that the aggressive processor is producing
correct results. In the case that the aggressive processor exhibits an error (due to a design fault or a device
fault), the checker processor masks this error at the cost of degraded performance. While DIVA is an excel-
lent approach for processor designability, it does not address multiprocessor designability. The complexity
of everything beyond the processors—including the interconnection network and cache coherence proto-
col—is increasing, and recent research in dynamic verification of cache coherence protocols [16] incurs a

large hardware cost and an appreciable degradation in performance.

Recovery Point (2)

A | a—

- — — "
[—— =7

I

I | I
: Current | | |
| State of | |
System (1) | | 1

—
-
Processor

Checkpoints Waiting
To Be Validated (3)

Processor

FIGURE 1-1. SafetyNetabstraction

In SafetyNet(1) processors operate on the current state of the system, (2) the system can fecover
to the recovery point if an error is detected, and (3) some number of non-current checkpoints can

be pending validation.

1.4 SafetyNet Unifying the Support for Availability and Designability

This thesis improves availability and designability with a lightweight global checkpoint/recovery scheme
called SafetyNetAs illustrated in Figure 1-1SafetyNeperiodically creates system-wide (logical) check-
points.SafetyNetheckpoints can span thousands or even millions of execution cycles, permitting power-
ful detection mechanisms with long latencies. If an error is detected, all processors, caches, and memories
revert to (and resume execution from) a consistent system-wide checkpoint stageotrery pointSafe-

tyNetis a hardware-only scheme that requires no changes to any software or the instruction set. Moreover,
SafetyNethas limited impact on the processor, coherence protocol, and input/output (I/O) subsystem

design.

SafetyNé$ basic approach is to incrementally checkpoint system state by using logging. In between
checkpoints SafetyNetlogically) logs all changes to the architected state by saving the before image at

each change.
There exist three main challenges for a lightweight checkpoint/recovery scheme that employs logging.

« Naively saving previous values before every register update, cache write, and coherence response

would require a prohibitive amount of storage (i.e., multiple megabytes).

« All processors, caches, and memories in a shared-memory multiprocessor must recover to a%onsistent
point. For example, recovery must ensure that all nodes agree on the ownership and data values of each
memory block.

« SafetyNemust determine when it is safe to advance the recovery point (i.e., validate a new check-
point), without degrading performance to wait for slow error detection mechanisms. The bottleneck is
the slowest error detection mechanism, which is likely to be a timeout on a coherence request. A
coherence timeout would likely be set to elapse after the latency of a couple traversals of the intercon-

nection network plus some slack for worst-case contention.

SafetyNeefficiently meets these challenges. By doing SafetyNetheckpoint/recovery achieves high

performance while maintaining a low hardware cost. There are three KegfetgNes efficiency.

« Optimized loggingLogging is reduced by checkpointing at a coarse granularity (e.g., 100,000
cycles). Only the first change to a piece of architectural state—register, memory block, or coherence
permission—within a checkpoint interval requires a log entry, reducing the log overhead by one or two
orders of magnitude.

» Logical time checkpoint coordinatioSafetyNeefficiently coordinates checkpoint creation usgig-
bal logical timeandlogically atomic coherence transactigrensuring a consistent recovery point.

» Pipelined validation Checkpoint validation is pipelined and overlapped with normal execution. Pipe-
lining validation allowsSafetyNeto tolerate long latency error detection mechanisms in the back-

ground.

We develop twdSafetyNetmplementations—one for a system with broadcast snooping cache coherence
and one for a system with directory coherence—that minimize runtime overheads for actions in the com-
mon case of fault-free execution, including memory operations and coherence transactions. Figure 1-2
depicts, for a directory system, the hardware used to hold logged state—register checkpoint buffers and
Checkpoint Log Buffers (CLBs)—that is added to processor-memory nodes in the directory system. Regis-
ter checkpoints, CLBs, caches, and memories are deemed “stable storage” and protected by ECC. As cur-
rently defined,SafetyNetcannot recover from uncorrectable errors to these structures, which may
encourage the use of stronger ECC codes [28] or fault tolerance schemes that provide redundancy for these
structures [82]. Future work could address this class of faults, including processor-cache chip Kills, but

solutions will necessarily trade some performance to provide availability in this case.

SafetyNeis a recovery mechanism that is largely decoupled from any specific error detection mechanisms.
SafetyNeteduces the problem of fault tolerance to the simpler problem of error detection. In Section 1.5,

we present a framework for classifying errors due to both device and design faults, but we postpone discus-

Node

register
e c%geckpoi nts

ffffffffffffffffff

i Egeckpoi nt 3@ Cache i Eheckpoi nt i@

Memory

L | Network
Switch Interface

]

Half
Switch

R
T
T
Ty

FIGURE 1-2. Example SafetyNetsystem implementation

sion of our specific fault models, error models, and error detection schemes until Chapter 4 and Chapter 5,
when we describe the wide variety of faults and error detection mechanisms compatibearatiiNet

Like most prior work, we focus on tolerating all single faults plus coverage for many but not all double
faults.

In Chapter 3, we evaluate an implementationSaffetyNewith full-system simulations and commercial
workloads. Our results show that, in the common case of error-free exechéifatyNetoes not increase
execution time (relative to an unprotected system) by a statistically significant amount. Mofeaiety-
Netcontinues to run after the injection of faults. Recovery time is reduced from a system crash/reboot to a
performance “speed bump” of less than one millisecond. We also show that 512-kbyte CLBs are large
enough, for our commercial workloads, to tolerate error detection mechanisms with over 100,000 cycles of

latency.

1.5 Classification of Errors Due to Device and Design Faults

The difference betweeBafetyNesupport of availability and designability is equivalent to the difference
between errors due to device faults and errors due to design faults. When designers use checkpoint/recov-
ery to improve availability, they target errors (e.g., a bit flip) due to device faults (e.g., electrical crosstalk).
Designers specify a particular fault model and corresponding error model, and then they design error
detection schemes accordingly. The fault and error models for designability differ, but our designability

approach leverages the same checkpoint/recovery mechanism to recover from design errors.

. 10
In this section, we classify hardware errors based on several aspects. We first define the aspects and then
classify some illustrative error examples within teor space We then discuss faults that are not cur-

rently tolerated bysafetyNetwhy they are not tolerated, and how they might be tolerated in future work.

1.5.1 Four Aspects of Error Characterization

We characterize hardware errors based on four aspects: fault, detegaifatyNetrecoverability, and
resumabilitymechanisms. Resumability mechanisms allow for the resumption of execution after recovery.
We define a fault to béolerableif it is both recoverable and resumable. We now discuss each of these

aspects in turn.

Fault. An error can be caused by any number of faults. For example, a transient bit flip on a link in the
interconnection network might be caused by crosstalk with a neighboring wire. Or, to give an example of a
design error, a system deadlock might be caused by speculatively underdesigning the buffering in the inter-

connection network, as will be explained in Section 5.1.1.

Detection.This aspect of the error space specifies how an error can be detected (in a reasonable amount
of time). For example, a bit flip on a link can be detected by an error detecting code (EDC). For the exam-
ple error of a message lost in a dead switch in the interconnection network (ICN), the error can be detected

by a time-out at the requestor.

A system does not detect a fault; rather, it detects the error that is the manifestation of the fault. Thus,
detecting that an error occurred is not necessarily sufficient for diagnosing the fault. For example, a time-
out on a coherence request detects that a response was not received, but it does not diagnose why the
response was not received (e.g., dead switch in the interconnection network). Diagnosis is important if the
fault requires that some action be taken after it occurs (e.g., reconfiguring the interconnect to route around
a dead switch). Diagnosis can be performed in two stages. The first time an error is detected, the system
assumes that the fault is transient. If the error is detected repeatedly, the system then invokes diagnosis
mechanisms in hardware and/or software. For example, multiple time-outs on coherence requests could
invoke a diagnosis mechanism in the interconnection network. Such a mechanism could force each switch

to ping its neighbors and thus enable the interconnect to determine if a switch is dead.

SafetyNetRecoverability. This aspect specifies whethgafetyNetan be used to recover from the fault,
assuming we can detect its resultant error in the first pl8aéetyNetan recover from a wide variety of

detected faults by recovering to a pre-fault state. More@®afetyNehides the latency of error detection,

. : . , . . 11
enabling stronger error detection mechanisms that would otherwise negatively impact performance. In
Section 1.5.3, we will discuss unrecoverable/unresumable faults and how they might be made tolerable in

future work.

Resumability Mechanismslf SafetyNetan be used to recover from an error, it must also guarantee
that execution can resume after the recovery, if this error is to be tolerable. For example, if resuming execu-
tion will lead immediately back to the error, then livelock is possible. This aspect of the error space speci-
fies what, if any, techniques are needed to resume execution after recovering from the error. Such
technigues include reconfiguration (e.g., to route around a dead switch in the interconnection network) and
“slow-start” execution after recovery (e.g., to avoid the same timing race that manifested a fault due to
speculatively correct design). For some errors, resumption of execution may require software assistance

(e.g., if reconfiguring the routing in the interconnect cannot be performed entirely in hardware).

1.5.2 Classifying Errors in the Taxonomy
Using the four aspects described in Section 1.5.1, we will now characterize some illustrative errors, includ-
ing errors due to both device and design faults. A tabular classification of them is shown in Table 1-1.

Errors that are not currently tolerated ®gfetyNeare shaded in the table.

Errors due to device faults.The first three errors in Table 1-1 are examples of errors due to device

faults. The three examples are: dead switch in the interconnection network (ICN), dropped coherence mes-
sage, and processor-cache chipkill. The unifying thread for these errors is their causes, which are all device
faults, although one is transient and two are permanent. All of these errors are detectable and all but the
processor-cache chipkill are recoverable. Resumability mechanisms depend on the fault model, although it
is instructive to note that a system can resume execution after all errors due to transient device faults (not

just the example here) without using any special mechanism.

Errors due to speculatively correct design faultsThe next two errors in Table 1-1 are examples of
errors due to speculatively correct design faults, and these two examples will be elaborated in Chapter 5.
These errors share more in common than the other two categories. First, they all derive from the same type
of “fault,” which is speculative correctness. Second, they are all detectable (and easily diagnosed, as will
be discussed later) and recoverable. Third, each of them requires a resumability mechanism for avoiding
livelock after recovery. A speculatively correct design that cannot ensure livelock avoidance is not correct

and cannot be employed.

TABLE 1-1. Classification of illustrative errors?

12

errors due to unintentional

design faults

design fault

Recoverable Resumability
Error Fault Detection with SafetyNet | Mechanism
2 | dead switch in ICN hard device fault timeout on requast yes reconfigura
[CI= - .
2 8 | dropped coherence | soft device fault | timeout on request yes none needef
o 8| message
o > . - X .
5 2 | proc-cache chipkill hard device fault| watchdog timer no not available
o
%‘ deadlock due to insufi{ speculative timeout on request| yes slow-start exd-
2 ficient buffering in underdesign cution after
S < | ICN (Section 5.1.1) recovery
o .2
Q & | out of order message| speculative use | invalid transition in | yes disable adap-
g T | arrivals on “in-order” | of adaptive protocol engine tive routing dur-
< © | ICN (Section5.1.2) | routing ing re-execution
25
2
e
o}
unspecified edge case unintentional invalid state in pro-| yes slow-start
in coherence protocol design fault tocol engine execution after
(Section 5.2.1) recovery
Intel’s FDIV bug [13] | unintentional self-checking yes software FP
program routine

a. We shade the faults thHaafetyNetannot tolerate either at all or without software support.

Errors due to unintentional design faults.The last two errors in Table 1-1 are examples of errors

due to unintentional design faults. The two examples are: an unspecified edge case in the cache coherence
protocol and Intel's FDIV bug [13]. The FDIV bug would not currently be detected in hardware, but it
could be detected by a self-checking program [12]. If it was detected, it would be recoverable. However,
execution could not resume without software intervention after recovery, since the execution would lead

straight back to this fault and thus livelock. A software routine to perform floating point division would

solve this problem.

tion

13
1.5.3 Hardware Faults Not Tolerated

Certain hardware faults are not currently tolerable ustiadetyNetFaults can be unrecoverable and/or
unresumable for one of several reasons, which we will now discuss. Recoverability, even without resum-
ability, is still useful in that it avoids the loss or corruption of data. After recovery, the system could trap to

software to gracefully exit.

Resultant error is undetected A checkpoint/recovery scheme is only as good as its fault model and
associated error detection schemes. For example, using parity detects all single-bit errors, but it will not
detect double-bit errors. Thus, if faults that cause double-bit errors are to be added to the fault model, par-
ity is not a sufficient detection mechanism. The system validates a checkpoint after all nodes have agreed
that it is error-free according to their error detection mechanisms. Thus, an undetected error would be
included in the validated state of the recovery point. Once this has occurred, system state is corrupted. The
execution may still execute correctly, if this erroneous data is not used again (i.e., the erroneous data is
dead), but this is good fortune rather than good planning. Note also that an error that is detected after the

erroneous state has been validated is equivalent to an undetected error.

Fault corrupts recovery point state.Certain faults can corrupt state associated with the recovery
point, which violates an integr&afetyNeassumptionSafetyNeaissumes that its recovery point state is
protected. Recovery point state includes processor register checkpoints, caches, checkpoint log buffers
(CLBs), and memory/directory state. This state can be protected from many soft faults with error correct-
ing codes (ECC)However, an uncorrectable soft fault or a hard fault that corrupted any of this state could
be unrecoverable. An important area of future work is exten@afptyNeto handle these harder fault
models. For example, a hard fault (e.g., a short circuit) that results in a processor-cache chipkill would

destroy all of the state on the chip and partition that node’s memory banks from the rest of the system.

Cannot resume execution after recoveryCertain faults that are recoverable wifafetyNetdo not

permit resumption of execution after the recovery. For example, an fault that partitioned the system would
not permit execution to resume after recovery. Our hard fault model includes faults that cause the loss of a
half-switch, but not the loss of a whole switch (i.e., the switch was not split into two half-switches). Losing

a whole switch causes the switch’s node to be partitioned from the rest of the s§&tfatyNetan pro-

vide a recovery that preserves system data without any corruptions, but intervention is required before exe-
cution can resume. In this example, resumption requires manual intervention to replace a faulty

component.

Other faults are recoverable wigafetyNebut are unresumable because there is no way to avoidllié\llelock
after recovery. For example, an unintentional design fault in the processor core that affected a specific
instruction in a specific circumstance (e.g., Intel's FDIV bug [13]) could be tolerat&hafstyNefassum-

ing its resultant error was detected) without corruption of system data. However, resuming execution
would lead immediately back to that fault and result in livelock. In this case, the system would need to
invoke a higher level recovery mechanism, likely a software routine, to handle the problem. If a specula-
tively correct design fault falls into this category and it occurs frequently, then the system designer failed in

her use of speculative correctness.

1.6 Thesis Contributions

This thesis makes the following contributions:

* We develosafetyNeta globally-consistent, hardware-only checkpoint/recovery scheme for shared
memory multiprocessors. (Chapter 2)

* We evaluatesafetyNées performance and cost using full-system simulation and commercial work-
loads, and we compare it to an unprotected system. (Chapter 3)

* We show how to usBafetyNeto improve system availability. In the process, we innovate stronger
error detection techniques, based on system-wide signature analysis, that are ertadetygs
tolerance of detection latency. (Chapter 4)

* We show how to us&afetyNeto improve system designability. In the process, we describe potential
avenues for speculatively correct design, and we show how to tolerate a certain class of unintentional

design faults. (Chapter 5)

In Chapter 6, we discuss related research—in availability, designability, and logical time schemes—and
compareSafetyNeto this work. Chapter 7 concludes this thesis and outlines some potential areas of future

work.

15

Chapter 2

SafetyNetAbstraction and Implementation

In this chapter, we develoSafetyNeta hardware-only mechanism for globally consistent checkpoint/
recovery of shared memory multiprocessb@&afetyNeallows for the recovery of the global system state,
in the case that an error occurs and is detected. We begin in Section 2.1 by describing an abstraction of the

SafetyNeinterface, and then we develop one specific implementatiSafetyNein Section 2.2.

2.1 SafetyNetAbstraction

This section presents a high-level overview of BafetyNetrbstraction that is illustrated in Figure 2-1
(identical to Figure 1-1). The purpose $&fetyNets to allow the system to recover its state to a consistent
previous checkpoint, where a checkpoint includes all state necessary to resume execution after recovery:
processor registers, memory values, and cache coherence permissions. While the processors are interacting
with the active state of the syste®afetyNets periodically taking system-wide checkpoints. The check-

point most recently validated as being error-free is the systeeasvery pointi.e., the checkpoint to

which the system recovers in the case that an error is detected. Between the recovery point checkpoint and

the active state of the system, some number of checkpoints may be pending validation.

Three challenges for logging schemes were raised in Chapter 1SafetyNetddresses all three. First,
naively saving previous values before every register update, cache write, and coherence response would
require a prohibitive amount of storaggafetyNetiddresses this challenge by exploiting a coarse check-
point granularity to reduce the amount of logging (Section 2.1.1). Second, all processors, caches, and
memories in a shared-memory multiprocessor must be able to recover to a consistent point. For example,
recovery must ensure that all nodes agree on the ownership and data values of each memory block. To effi-
ciently solve this problemSafetyNetreates consistent global checkpoints in logical time (Section 2.1.2)
such that all processors and memories can recover to a consistent recovery point upon error detection.

Third, SafetyNetnust determine when it is safe to advance the recovery point (i.e., validate a new check-

1. Checkpoint/recovery is performed entirely in hardware, although system reconfiguration between recovery and resumption

(e.g., reconstructing interconnect routing to avoid a dead switch) of execution might require software assistance.

16

Recovery Point (2)

 —
Processor - —
rt———-
I | I
: Current | |
| State of | | |
System (1) | I~
o
1
Processor
Checkpoints Waiting

To Be Validated (3)

FIGURE 2-1. SafetyNet abstraction

In SafetyNet(1) processors operate on the current state of the system, (2) the system can recgver
to the recovery point if an error is detected, and (3) some number of non-current checkpoints ¢an

be pending validation.

point), without degrading performance to wait for slow error detection mechanisms. To achieve this goal,
SafetyNeknables pipelined checkpoint validation that is off the critical path and hides the latencies of

error detection mechanisms (Section 2.1.3).

Beyond the three key features ShfetyNetwe discuss several other important issues. We describe the
recovery process and how in-flight coherence transactions are handled (Section 2.1.4). We also discuss
how SafetyNetadopts standard solutions for interacting with input/output devices (Section 2.1.5), how
SafetyNetould be implemented with different cache coherence protocols and different memory consis-
tency models (Section 2.1.6), and h8afetyNeinteracts with other levels of checkpoint/recovery in com-

puter systems (Section 2.1.7).

In the rest of this section, we will assume that the system implements cache coherence with a directory
protocol and that the system supports a sequentially consistent memory model. In deafetgNehas

only a small impact on the underlying cache coherence protocolSafetyNetloes not affect the imple-
mentation of a sequentially consistent system. In situations in whatatyNeaffects the cache coherence

protocol, we will highlight the impact and explain why modifications are necessary.

17
2.1.1 Incremental Checkpointing Via Logging

Logically, SafetyNetcheckpoints contain a complete copy of the system’s architectural state, which
includes processor, cache, memory, and coherence SafietyNeexplicitly checkpoints a processor’s

state by saving a copy of the processor’s architected registers. Checkpointing of processor register state can
be done in many ways, including shadow register copies or writing the registers into the cache, and we will
discuss implementations of register checkpointing in Section 2.2. We only assume that the processors
implement precise interrupts [97], since this assumption simplifies the checkpointing of architected state

and all current processors maintain precise interrupts.

Explicitly checkpointing memory state, including cache and coherence state, would be inefficient. Instead,
SafetyNetncrementally checkpoints memory state by logging the previous values of memory blocks and
coherence permissions. Conceptually, cache controllers and memory controllers log every change to the
memary/coherence state (i.e., save dliecopy of the block) whenever ampdate-action(i.e., a store or a
transfer of ownership) might have to be undone. To reduce storage and bandwidth requirements at the
caches, where storage and bandwidth are more expensive than at m@aietyNetache controllers only

log a block on its first such update-action per checkpoint interval. By combining this optimization with
coarse checkpoint intervals (e.g., 100,000 cyclgajetyNesignificantly reduces logging overhead (evalu-

ated in Chapter 3). Implementations of logging will be discussed in Section 2.2.

2.1.2 Creating Consistent Checkpoints in Logical Time

All of the components (processors, cache controllers, and memory controllers) coordinate their local
checkpoints, so that the collection of local checkpoints represents a consistent global recovery point. A
consistent checkpoint is necessary for memory values and coherence permissions. Without consistency, for
example, recovery could revert the system to a checkpoint state in which two nodes both believe that they
own the same block. For a checkpoint to be consistent, all nodes must agree which coherence transactions
occurred before the checkpoint and which occurred after it. Coordinated system-wide checkpointing has
two advantages over independent checkpointing. First, it avoids the problem of cascading rollbacks [31],
whereby recovering one node leads to recoveries on other nodes that cascade backwards in time until a
consistent checkpoint line can be determined. Second, it eliminates an output commit problem [32] for
inter-node communication. With coordinated global recovery, nodes can exchange data with each other
without having to first perform error correction, since the system can be recovered if an error is detected

later.

Checkpoints are coordinated across the systetogital timeto avoid either quiescing the syster%%r a
potentially costly exchange of synchronization messages. Logical time is a time base that respects causal-
ity [58]. If Event A causes Event B, then Event A occurs earlier in logical time than Event B. For example,
the sending of a message occurs earlier in logical time than the reception of that message. Logical time
coordination can be made efficient, since logical time synchronization can be performed without explicit
communication beyond what is needed to maintain logical time itself. Moreover, systems can maintain
logical time without impacting performance, as will be explained for the logical time bases that we choose.
Each node maintains its own logical clock and decides when to take a local checkpoint based on this clock
(e.g., everyT, logical cycles). Thus we need a logical time base that allows nodes to independently make

the same decisions about which coherence transactions occur in which checkpoint intervals.

First, we solve the easier problem of developing a logical time base that enables consistent viewpoints of
when individual coherencequestgnot coherencéransactions which include the request as well as the
response and any other messages incurred by the request) occur in logical time. We consider a request to
occur when it is processed by the owner, for reasons that will become clear later. Many valid bases of logi-
cal time exist. A simple example in a broadcast snooping system is for each component to count the num-
ber of coherence requests it has processed and use that as its logical time. If components create
checkpoints everyl. logical cycles, it is trivial for all components to agree on the interval in which a
coherence request occurl%dDirectory protocols, however, require a different logical time base. If we
could distribute a perfectly synchronous physical clock, we would have a viable logical time base in which
logical and physical time are the same. In Section 2.2, we relax this requirement by deriving a logical time

base from a loosely synchronized (in physical tiofeckpoint clock

Beyond ordering individual coherence requests, the logical time base also must ensure that all components
can independently determine the checkpoint interval in which @fterence transactiofnot just its

request) occurs. Snooping cache coherence protocols employ two-hop coherence transactions (requestor to
owner to requestor), and directory protocols employ both two-hop (requestor to directory to requestor) and
three-hop coherence transactions (requestor to directory to owner to requestor). To determine the check-
point interval to which each transaction belongs, we exploit the key insight that, in retrospect, a cache
coherence transaction appekgically atomiconce it has completed. Before a transaction has completed,
however, no point of atomicity exists. For snooping and directory protocols, a coherence transaction’s

point of atomicityoccurs when the owner of the requested block processes the request.

2. SMPs do not need to be synchronous, i.e., a request does not need to arrive at every node at the same time. Thus, an SMP with

this logical time base could have skew in logical time between nodes [65].

Implementations oSafetyNetnust ensure that all nodes that participate in a coherence transac%c?n know
its point of atomicity. Solving this problem is implementation-specific and the details will be discussed in
Section 2.2. Logically, though, the owner must send the checkpoint number of the transaction along with
the data in response to the request, so that the requestor knows the transaction’s point of atomicity. More-
over, in a three-hop transaction, the requestor must then notify the directory, as well, since it also partici-
pated in the transaction and must know its point of atomicity. Figure 2-2 illustrates how a directory
protocol withSafetyNetletermines this point. Note that the requestor does not learn the location of the ato-

micity point until it receives the response that completes the transaction.

To avoid having to checkpoint transient coherence sgdétyNeexploits logical atomicity and disallows
recovery to the middle of a coherence transaction before that transaction has successfully completed (i.e.,
appears atomic). To ensure that the system never recovers to the “middle” of a transaction, the requestor
does not agree to validate a checkpoint (i.e., advance the recovery point) until all of its outstanding transac-
tions issued prior to that checkpoint complete successfully. After completion, the transaction appears
atomic, so there is no “middle.” Furthermore, by waiting for all outstanding transactions issued prior to that
checkpoint to complete before validating the checkpdatfetyNetvoids checkpointing transient coher-

ence states and in-flight messages.

Since logical atomicity only exists in retrospect, at the time a component creates a checkpoint, the check-
point only defines whawill be in that component’s checkpoint. The component may not yet have seen the
data responses that occur later in physical time but which will appear to have occurred before this check-
point in logical time. That is, the coherence transaction already occurred in logical time, but it has not yet

completed in physical time.

2.1.3 Validating Checkpoints and Deallocating Checkpoint State

Checkpoint validation is the process of determining that a checkpoint is error-free and now can be made
the new recovery point. Processors and memories coordinate checkpoint validation so that all components
recover to the same checkpoint number on a recovery. For example, checkpoint number 3 (CN3) can be
validated only if every component agrees that it could be the recovery point, i.e, all execution prior to CN3
was error-free. For a checkpoint interval to be error-free, every transfer of ownership in that interval must
complete successfully, by which we mean that the data was transferred error-free to the receiver. Once
every component has independently declared that it has received error-free data in response to all of its
requests in the interval before the checkpoint, the recovery point is ready to be advanced. However, the

recovery point cannot be advanced until a reduction is performed and all nodes are notified that all other

20

Processor Memory

Checkpoint #1

t1 |_<request B>

ﬁ- Checkpoint #2

t2 point of atomicity
Vi

Checkpoint #3
<data,CN3

[

pr!/sical
time

Checkpoint #4

Checkpoint #5

FIGURE 2-2. Example of checkpoint coordination

In this example, physical time flows downwards, and the following assumptions are made:

 Logical time respects causality, so a message cannot be sent in one checkpoint interval arjd arrive

in an earlier interval.

» Checkpoint lines in logical time are not necessarily horizontal, since logical time is not eq
physical time.
» A recovery to checkpoint numbers 2-5 (the duration of the transaction) is not possible unti

the transaction, since the processor would not validate any of these checkpoints until the t

tion completed successfully &t

* In practical situations, checkpoint intervals are much longer than typical transaction durat

ual to

| after

ransac-

ons.

At t1, the processor issues a request for ownership of block B to the memory, which is currently the

owner of the block. The memory processes the requet, dietween checkpoints 2 and 3, a
defines the transaction’s point of atomicity. The directory sends the checkpoint number (CN)
to the requestor, to inform it of the checkpoint to which this transaction belongs. In retrospe

transaction appears to have occurred atomically at this point. A recovery to checkpoint numbg

nd
CN3,
ct, the

r (CN)

2 or before would restore ownership to the memory. A recovery to CN 3 or later would maintain

ownership at the processor.

. . . . : 21 :
nodes are also ready to advance the recovery point. At this point, all transactions prior to this checkpoint
have had their points of atomicity determined. After validation, state for the previous recovery point can be

deallocated lazily.

A key to SafetyNeperformance is that validation can be pipelined and performed in the background, off
the critical path. Not only can validation be pipelined with the active execution, it can also be pipelined
with the validation of other non-active checkpoints. Keeping validation off the critical path requires two
features. FirstSafetyNetmust provide more than two available checkpoint contexts—recovery point,
active point, and some number of checkpoints pending validation—as illustrated in Figure 1-1. Second,

error detection must use dedicated hardware resources (e.g., hardware to check error detecting codes).

Validation latency depends on error detection latency, since a checkpoint cannot be validated until it has
been verified error-free. For the example error of a dead switch in the interconnection network, the detec-
tion latency must be at least as long as the requestor’s timeout latency. Timeout latency can be many tra-
versals of the interconnect, plus some slack built in for contention delays. Adding to validation latency,
validation cannot occur until all nodes have coordinated their validations, and this involves an exchange of
messages. Since validation latency may be long, it is importanB&detyNetfficiency that it be per-

formed in the background and off the critical path.

2.1.4 Recovering the System to a Consistent Global State

If an error is detectedsafetyNetestores the globally consistent recovery point checkpoint. The recovery
point represents the consistent state of the system &ddial timethat this checkpoint was taken. Recov-

ery itself requires that the processors restore their register checkpoints and that the caches and memories
unroll their logs to recover the system to the consistent state at the pre-error recovery point. All state asso-
ciated with transactions in progress at the time of recovery is discarded, since this state is, by definition,
unvalidated state that occurs logically after the recovery point. The system can thus either reset the network

or sink and discard all active coherence messages.

After recovery, the system reconfigures, if necessary, and resumes execution from the recovery point. For
the lost switch example, reconfiguration involves routing around the erroneous switch, as is done in many
interconnection networks, such as that of the Compaq Alpha 21364 [68]. For transient faults, no reconfigu-

ration is necessary.

SafetyNés ability to recover to a consistent state relies upon a couple of assumptions. First, most notably,
we assume that the recovery point state is protected. Corruption of this state would prevent recovery. We

discuss how we protect this state in Section 2.2.1. Second, we assume tisafehgNetmechanisms

: . o 22
themselves are protected. These mechanisms include the communication of messages regarding validation

and recovery, and we discuss these error models and how to tolerate them in Section 4.1.

2.1.5 Input/Output Commit Problems

Since real computer systems interact with the outside w8ddetyNemust deal with interactions that go
beyond itssphere of recoverabilityA shared memory multiprocessor protected3afetyNetan recover
processor state, memory state, and coherence state. However, it cannot recover input/output (I/O) devices,
such as disks, displays, printers, and networks (beyond the system’s local interconnection network), since

these devices are beyoSdfetyNés$ scope.

Theoutput commit probleriB82] requires that only validated, error-free data can be communicated outside
of the sphere of recovery. For example, the system cannot communicate unvalidated data with the disks if
the effects of this communication cannot be undone through recovery. Thus, checkpoint validation deter-
mines when the system can interact with the outside world of input/output devices. The standard solution
to the output commit problem is to delay all output events until a validated checkpoint. Implementing 1/0
with InfiniBand (www.infinibandta.org) is a good match fSafetyNetbecause I/O transactions are set

up in memory and then committed with a “doorbell rin§afetyNetvould need to delay only the door-

bell ring, which should be acceptable to many types of I/O (e.g., to disks and the Internet). In practice,
not all I/O devices need to be treated as carefully. For example, the display could be updated with un-vali-
dated state if the recovery latency is shorter than could be perceived by the user. Writes to disks (but not
disk control registers) might also be performed speculatively, since these actions are idempotent and do not

have side effects.

For higher performance 1/O, such as cluster communication, the required 1/0 performance could dictate
the validation latency, rather than vice versa. In turn, this would determine the error detection schemes
used and perhaps even the fault model. Once again, though, 1/0O systems thatSafatyideto extend

its sphere of recoverability would help alleviate this constraint. Infiniband or some other protocol that
allows SafetyNeto encompass the high performance 1/O device, such as QPIP [15] would allow us to

hide longer error detection latencies without hurting critical performance needs.

The complementarinput commit problenstates that a system that recovers must deal with the input from
the outside world that it received between the recovery point and the time at which it recovered. We adopt

the standard solution of logging input from the outside world and replaying it after recovery.

23
2.1.6 Other Classes of Coherence Protocols and Memory Models

Thus far, we have assumed ttgsfetyNets being applied to a shared memory multiprocessor that imple-
ments sequential consistency with a directory-based cache coherence protocol (referred to commonly as
just a directory protocol). Other classes of cache coherence protocols and memory consistency models
exist, and we now address the issues involved with implemei8afgtyNein these different contexts,
respectively. These issues are orthogonal to each other, so we can address different protocols indepen-

dently from different memory consistency models.

Cache Coherence Protocol®Besides traditional directory and broadcast snooping protocols, there are
numerous hybrid protocols. These include multicast snooping [11, 101], bandwidth adaptive snooping
[66], and the Compaq AlphaServer GS320 [37]. All of these protocols share the same point of atomicity as
directories and broadcast snooping: when the owner processes the request. Determining the basis of logical
time, though, may differ from protocol to protocol. For example, multicast snooping cannot use the same
logical time basis as broadcast snooping, since not every node observes every request, so nodes would have
different views of which request occurs at which logical time. In Section 2.2.2, we will discuss implemen-

tations of logical time bases for both directory protocols and broadcast snooping protocaols.

Hierarchical multiprocessor organizations use coherence protocols that may require different bases of log-
ical time. Systems like Wildfire [45] and Profusion [115] have hierarchical coherence domains. Determin-

ing a basis of logical time in such systems is likely to vary by system.

Memory Consistency ModelsWe have thus far assumed that our system supports sequential consis-
tency [59], and that assumption has determined what architectural state needs to be checkpointed. Different
consistency models, however, may enable hardware optimizations that can add to the state that must be
checkpointed. Thus, implementii@afetyNein the context of a system with a more relaxed memory con-
sistency model may require additional effort. However, these systems are still assumed to maintain precise
interrupts, which facilitates checkpointing of the processor’s architected state. For ex8afptgNetloes

not need to checkpoint store queues (for holding stores that have not been committed yet), since these

stores are not yet part of the architected state.

Systems that enforce processor consistency (PC), such as SPARC Total Store Order (TSO) [113] or 1A-32
[50], enable the use of FIFO store buffers to hold stores that have committed but not yet been made visible
to other noded and these store buffers comprise architectural state. As SafbtyNetvould need to
checkpoint them, too. In processor consistent systems, two nodes can have store buffer entries for the same

block, and the values of the stores can be different. Thus, the checkpoint of consistent state reflects PC'’s

. . - . L
allowance of different concurrent block values (i.e., values visible within a node but not visible to other

nodes).

ImplementingSafetyNebn top of systems that support more relaxed memory consistency models, such as
Alpha [95] and 1A-64 [51], may require saving additional state, depending on the system implementation.
For example, the Alpha memory model allows for coalescing store buffers, and these store buffers com-

prise architectural state that would need to be checkpoint&dfeyyNet

2.1.7 Integrating SafetyNetwith Other Levels of Checkpoint/Recovery
Checkpoint/recovery techniques are used at many different levels in a computer systeBafeiytiet

must interact with them. At the lowest level, a microprocessor can recover from mis-speculation, such as
might occur due to a branch misprediction. This level of checkpoint/recovery is invisible to higher levels,
including SafetyNetWe would not want to have to uS&afetyNeto recover the state of the entire system

just because of a localized branch misprediction. Branch mispredictions are too frequent to incur the pen-
alty of SafetyNetrecoveries, even if these recoveries are adequately short for handling more infrequent

events such as hardware errors.

At the highest level, software-only techniques provide heavyweight availability in the presence of hard-
ware and even software errors. For example, database management systems use software to ensure that
vital database state is never lost or corrupted, even if the computer system fails. Logging of transactions
(database transactions, not cache coherence transactions) and two-phase protocols for committing database
state to disks help to avoid corruption of data. Preservation of data, however, does not provide availability,
since the system may still fail and thus be unavailable. Software-only schemes are oblivBafstidNet

(and all other lower-level schemes).

SafetyNets complementary to other levels of checkpoint/recovery in a computer system. Different system
levels require different approaches, and we do not claim SladtyNeis the answer to all checkpoint/
recovery needs. We do, however, claim tBaffetyNeserves an important role at the level of hardware-
only, system-wide checkpoint/recoveSafetyNetvorks in conjunction with these other levels of check-

point/recovery to provide the appropriate cost/performance tradeoff for each level.

3. While arelaxed memory consistency moakbwsfor optimizations, implementations do not have to use them. For example,
a sequentially consistent system implementation is a valid implementation of more relaxed memory models, such as processor

consistency.

The development dbafetyNetnvolved the creation of another level of checkpoint/recovery, callec% ?/Iulti—
version Memory (MVM), that could be a useful basis for future work in supporting speculative execution
[99]. MVM only permitted local (intra-node) checkpoint/recovery. This local recovery permitted deeper
speculation than possible with intra-core recovery (e.g., for branch prediction), since it extended out to the
node’s memory hierarchy. MVM could be used for speculating on multiprocessor values, such as with false
sharing prediction. MVM would be preferable &afetyNetbecause local recovery is quicker than global
recovery, and speculation would lead to far more recoveries than errors. Moreover, we would not want to
recover the entire system due to a localized misprediction. Local checkpoint/recovery has several limita-
tions, though. First, it subjects all inter-node communication to the output commit problem, thus adding
error detection latency to the critical path of inter-node communication. Second, an external request for
speculative data requires either stalling or recovering. Third, it does not tolerate errors outside of the local
node. However, it may be interesting in the future to pursue a multi-leveled approach, wherein speculation
is supported by local checkpoint/recovery, and availability is supported by the @abetyNepresented

in this thesis.

2.2 Implementing SafetyNet

In this section, we will discuss two particular implementations ofSaéetyNeabstraction. The two imple-
mentations differ in the cache coherence protocol that they use, and they help to distinguish what is funda-
mental toSafetyNetmplementations and what is protocol-speci8iN-SnoopingnplementsSafetyNetn

a system with a broadcast snooping cache coherence protoc@NaBdrectoryimplementsSafetyNein a

system with a directory protocol. Both implementations reflect the goal of incurring low overhead in the
common case of error-free execution, while not allocating resources towards optimizing the rare case of

recovery.
All SafetyNeimplementations have to address two requirements.

» Point-Of-Atomicity Requirement: All of the participants in a cache coherence transaction—the
requestor, the owner, and perhaps other components (e.g., the home directory) depending on the cache
coherence protocol—must agree on when a coherence transaction logically occurs, i.e., its point of
atomicity.

« Sufficient-Log-Storage Requirement: The system must be able to avoid deadlock due to running out of

space to hold logged changes to the system state.

26

_ log entries added at tail
tail
- start of checkpoint k+1 log entries
log entries for checkpoint k
- start of checkpoint k log entries
log entries for checkpoint k-1
head
FIGURE 2-3. Checkpoint log buffer (CLB) structure

2.2.1 System Model

SafetyNesystems are composed of some number of nodes connected together by an interconnection net-
work. All nodes contain a CPU, two levels of cache, and a portion of the system’s shared memory (which
may be separate from the processors). Each CPU has a table of transaction buffer entries (TBES) for hold-
ing state regarding in-progress coherence transactior@heckpoint Log Buffer (CLBRssociated with

each cache hierarchy and memory controller, stores logged state. During error-free execution, the CLB is
simply a last-in-first-out (LIFO) write-only buffer. The CLB is illustrated in Figure 2-3. During system

recovery, the CLBs are read, but this is the uncommon case.

The system also includes redundant system service processors (which exist in many servers, such as the
UltraEnterprise E10000 [18]), which help coordinate advancement of the recovery point as well as system
restart after recovery. Recall from Section 2.1.4 that we assume protection of the recovery point state.
Recovery point state includes processor registers, caches, CLBs, and memory/directory state. Since cor-
ruption of this state would prevent recovery to a error-free consistent state, we protect this state with error

correcting codes (ECC).

SN-SnoopingSpecifics Figure 2-4 illustrates th&N-Snoopingystem. The nodes are connected in a

hierarchical switched interconnection network. Such an interconnect can provide the total order of requests

27
necessary for snooping, but it does not suffer from the limitations of the shared bus that has been tradition-

ally used in snooping systems.

The snooping protocol is based on a typical MOSI broadcast snooping protocol. The protocol uses two vir-
tual networks: Request and Response. The Request network must be totally ordered, but there are no such
constraints on the Response network. There are four types of requests: Get-Shared, Get-Instruction, Get-

Exclusive, and Put-Exclusive. Responses are always Data.

SN-Directory Specifics Figure 2-5 (identical to Figure 1-2) illustrates ti$-Directorysystem. The

system’s multiple nodes communicate through a two-dimensional torus interconnection network, similar to
that used in the Compag Alpha 21364 interconnection network [68]. One difference worth noting is that
switches are composed of two half-switches, one for each direction. Splitting the switches this way offers a
redundant path from a node to the rest of the system if one of the half-switches dies, but it results in addi-

tional latency to change directions.

The directory protocol is based on a typical MOSI directory protocol. The protocol uses four virtual net-
works: Request, Forwarded-Request, Response, and Final-Ack. There are four types of requests: Get-
Shared, Get-Instruction, Get-Exclusive, and Put-Exclusive. Forwarded requests are either Forwarded-Get-
Shared, Forwarded-Get-Instruction, Forwarded-Get-Exclusive, or Put-Exclusive-Ack. Responses are
either Data, Ack, or Nack. The Final-Ack network, discussed later, carries Final-Ack and Final-Nack mes-

sage types. In Appendix A, we specify the protocol in a tabular format developed by Sorin et al [101].

SafetyNehas only a slight impact on the directory cache coherence protocol. Three changes are made so
that SN-Directorysatisfies the two requirements established in Section 2.2, with the first two changes both
addressing the Point-Of-Atomicity Requirement. First, when the owner sends a data response message, it
labels it with a checkpoint number that defines the transaction’s point of atomicity. Second, a Final-Ack
network is used in three-hop transactions to notify the directory of the transaction’s point of atomicity.
When the directory forwards a Get-Exclusive request to the owner, it allocates a transaction buffer entry
(TBE).* When the requestor receives data (or a nack) from the owner, the requestor sends a Final-Ack (or
Final-Nack) to the directory, informing the directory of the point of atomicity and allowing the directory to
free its TBE for this transaction. Third, both the directories and processor owners are allowed to negatively
acknowledge (nack) requests or forwarded requests, so as to satisfy the Sufficient-Log-Storage Require-

ment, as will be discussed in Section 2.2.3.

4. If a TBE cannot be allocated, the directory nacks the request.

28

Node

/
/ register
/ checkpoints
/
/ -
’ -
/ . |
’ ! ()
2 k / | L
, [
@ | @
,
. ,
,
N L [

» , , | | |
I o] H I I o] 1 !
\ _ // : E(l}:ckpoml i=| Cache ! Egﬁ“kp‘)‘m;e Memory
K LBuller Bulfer___
- Network
node node node node node Interface

O

FIGURE 2-4. SN-Snoopingsystem model

Node

register
c%geckpoi nts

-

i L i L
! Egeckpomt:@ Cache ! E(r;eckpomt:e Memory

Network
Switch Interface

|

Half
Switch

D
T
T
T

FIGURE 2-5. SN-Directorysystem model

2.2.2 Logical Time Base

As discussed in Section 2.1, we use logical time to address the primary challenge of coordinating check-

points across a system, which is keeping checkpoints consistent with respect to memory and coherence
state. All components must agree, for every coherence transaction, in which checkpoint interval that trans-

action occurred. Assigning a transaction to a checkpoint interval is protocol-dependent, and it is the most

N . - : . .29
significant difference in implementin§afetyNeton top of different classes of protocols. A similarity,
though, is that the point of atomicity in both protocols occurs when the owner of the block processes the
request. Note that the ordering point in a directory protocol is different, and it occurs when the directory

processes the coherence request (even for a three-hop transaction).

SN-Snooping A simple logical time base in a broadcast snooping system is for each component to count
the number of coherence requests it has processed and use that as its logical time. If components create
checkpoints every. logical cycles, it is trivial for all components to agree on the interval in which a trans-
action’s request occurred. Moreover, unli8®l-Directory the data response message from the previous
owner does not need to include the CN of the point of atomicity, since the requestor already knows it. All
nodes can agree that tFi'g+1th transaction happened after the checkpoint andr gh]éh transaction hap-

pened before it, sS&N-Snoopingeasily satisfies the Point-Of-Atomicity Requirement established in
Section 2.2.

SN-Directory.In Section 2.1.2, we discussed how a perfectly synchronous physical clock with zero skew
would be a viable basis of logical time for our system with directory coherence. Since that solution is not
implementable, we use a loosely synchronous (in physical timegkpoint clockhat is distributed redun-

dantly to ensure no single point of failure. On each edge of this &Jaach component creates a check-

point and increments itsurrent checkpoint number (CCNyVhile it might be difficult to distribute a
synchronous clock across a system with near-zero skew, it is not nearly so difficult to distribute one with
the same frequency and some amount of skew between nodes. As long as the skew between any two nodes
is less than the minimum communication time between these nodes, the checkpoint clock is a valid base of
logical time, since no message can travel backwards in logical time and thus violate causality. Since com-
municating messages between nodes entails sending multiple bytes, this time is easily longer than the skew
in distributing the edge of a clock. Figure 2-6 illustrates this property. Without this guarantee, the follow-

ing inconsistency could arise. Consider the case in which processor P1 has a CCN of 3 and sends a request
to the owner, P2, while P2's CCN is still 2. Thus, checkpoint 3 would appear to include the reception of the

request but not the sending of the request!

To satisfy the Point-Of-Atomicity Requirement, the CN of the point of atomicity must be explicitly

exchanged, since nodes cannot infer it aSMSnoopingThus, an owner’s response to a request includes

5. The frequency of the checkpoint clock is much slower than that of the system clock (e.g., 10 kHz), which simplifies its imple-

mentation. We will address this issue in more detail in Section 2.2.4.

30

send

q
%00,- send /7@0/‘00,- :
s receive

receive

Valid Invalid

phys!:al time

FIGURE 2-6. Ensuring that logical time respects causality

the CN of the point of atomicity and, in a three-hop transaction, the requestor sends a Final-Ack to the

directory to inform it of the point of atomicity.

2.2.3 Logging

SafetyNetusesCheckpoint Log Buffers (CLB$) hold incrementally checkpointed memory state. Logi-

cally, SafetyNetvrites a memory block to a CLB whenever apdate-actior{i.e., store or transfer of own-

ership) might have to be undone in the case of a recovery. Since caches perform stores and both caches and
memories can transfer ownership of blocks, each of these components has a CLB. Except during recovery,

the CLBs are write-only and off the critical path.

To reduce storage and bandwidth requiremeBtdetyNetaches (but not memories) only log a block on

the first update-action per checkpoint interval. To detect this GafetyNetdds acheckpoint number
(CN)to each block in the cache, denoting to which checkpoint it belongs. Initially, all CNs are set to null.
On each update-actioBafetyNet{1) compares the component’s current checkpoint number (CCN) with
the block’s CN, (2) logs the block, if necessary, (3) updates the block’s CN to CCN+1, and (4) performs
the update-action. Blocks must be logged to the CLB if the block’s CN=null or ECNI. For example, a

store by a processor with CCN=3 to a block with CN=4 need not be logged. Blocks with null CNs have not
been written or transferred recently, and they implicitly belong to the recovery point as well as all subse-
guent checkpoints. Having CNs on blocks enables logic to determine whether logging of a store or trans-

ferring ownership to another node would be redun@dfigure 2-7 illustrates an example of logging at a

31

Cache CLB
Data CN
A 5 [null] |
CCN1
SstoreA<-10 A'[10 | 2 |
StoreA<-15 A:[15 | 2 |
CCN2 storeA<-20 A:[20 | 3 | A:15:CN2J] As:CN1]
\
Time FIGURE 2-7. Logging at the cache

cache. In Section 2.2.7, we discuss efficient ways to store and manipulate CNs at the caches. CNs are not
needed on CLB blocks, but they are shown in Figure 2-7 for illustrative purposes. A CLB implementation

only requires a head and tail pointer for each checkpoint number, as was shown in Figure 2-3.

When giving up ownership of a block, a component performs logging (as described above) and then sends
the blockwith the updated CNo the requestoiThis policy follows from a key insight from Wu et al.

[120]: a transfer of ownership is just like a write, in that we cannot be sure that it will not be undone by a
recovery. Consider the case in which P1 transfers ownership of block B to P2 with B’s CN set to 3 (i.e.,
P1's CCN s 2) and P2 wishes to then perform a store to it while its CCN is still 2. Logging is unnecessary,
since P2 was not the owner at checkpoint 2. This is the same as if P1 owned block B with CN=3 and per-

formed a store to it while its CCN is still 2.

The CLBs can be sized for performance and not correctness, Safeg/Netan avoid situations in which

the CLB fills up and violates the Sufficient-Log-Storage Requirement established in Section 2.2. Even
when it appears that an entry must be logged in the CLB, logging can be avoided. In the case of store over-
writes, we can throttle requests from the CPU, thus stalling the CPU. In the case of coherence ownership
transfers, there are two situations. First, there are acquisitions of ownership, and these can be throttled by
the requestor. The tougher situation is relinquishing ownership, since the owner has no control over this.
For SN-Snoopingwhere checkpoint intervals are knowarpriori to beT, transactions long, the solution is

to throttle stores when CLB space reaches the minimum necessary for all possible transactions that could
still occur in the current interval. F@N-Directory where a component does not know how many more

transactions could arrive in an interval, the solution is for the owner to negatively acknowledge (nhack)

6. There are other optimizations for reducing logging duattainingownership, but they are less important. The key is reduc-

ing logging due to store overwrites.

coherence requests. Nacking avoids the transfer of coherence ownership and its associated :|302g entry. In
SN-Directory either the directory or another cache can be the owner that needs to nack a request. While
directory nacks are common in many directory protocols, nacks from caches are rarer. In this case, the
directory has forwarded the request to the owner cache, and the owner cache sends a nack to the requestor.
The requestor then must send a Final-Nack to the directory to inform it that the transaction has been
nacked. This Final-Nack uses the same virtual network used to carry Final-Ack messages. Upon reception
of a Final-Nack, the directory then reverts its state back to the state from before the nacked transaction and

deallocates its TBE.

To the first order, CLB occupancy is unrelated to cache size or memory size. CLB occupancy is a function
of the workload intensity. More specifically, it is a function of the number of update-actions to distinct
blocks per checkpoint interval. It might appear that a smaller cache would cause more update-actions
because of additional cache replacements. However, even if a block is replaced to memory and retrieved
from memory multiple times in an interval, each of which is an update-action, only the first such update-
action per interval is logged. It also might appear that a larger memory would place more pressure on the

CLBs. However, the parameter that matters is the amount of memory touched in an interval.

Having to stall stores or acquisitions of ownership due to a full CLB degrades performance, but it does not
affect correctness or lead to deadlock or livelock. Livelock would occur if execution was stalled—stores
were stalled and all cache coherence requests were nacked—and execution could only be un-stalled if for-
ward progress was made. The key to avoiding livelock is that CLB space will freglapendentlypf exe-

cution. CLB space is freed when an old, pending checkpoint is validated. When this checkpoint becomes
the new recovery point, the old recovery point state (including CLB entries) can be discarded, as will be
discussed in Section 2.2.5. Thus, the freeing of CLB space is tied to checkpoint validation (i.e., error detec-
tion) and not active execution. The performance impact of stalls due to full CLBs will be evaluated in
Section 3.4.1.

2.2.4 Checkpoint Creation

Checkpoint creation is kept lightweight, since it is a common-case event that occurs on each edge of the
checkpoint clock. A processor checkpoints its non-memory architectural state (i.e., registers) and incre-
ments its CCN. A memory controller simply increments its CCN. Checkpointing of memory and coher-
ence state is achieved through logging, so no checkpointing of that state is necessary at checkpoint

creation.

Since checkpoint numbers are encoded in a finite number of bitk, seg can only haveX checkpc:)giﬁt
contexts. In all experiments shown latkiis two (i.e., we can only have four checkpoint conte%tQN
wraparound can only occur if validation ceases (i.e., because a coherence transaction does not complete)
while checkpoint creation continues. We avoid wraparound by choosing a request timeout latency that is
shorter than the latency to wraparound. Thus, a request would timeout, and thus trigger a system recovery,

before it could stall validation to the point at which wraparound could occur.

Checkpoint creation policy is simply choosing a suitable checkpoint pefiodror SN-Snoopingthe
checkpoint period is the number of coherence transactions per checkpoint interval. To keep the period
bounded in physical time and limit output commit latency, the service processor periodically injects null
coherence requests if it observes that no requests are being ma&-Borectory the checkpoint period

is the reciprocal of the checkpoint clock frequenfgy,As f. decreases (given a constant number of out-
standing checkpointspafetyNetan tolerate longer error detection latencies. For example, we allow four
outstanding checkpoints and chodgsequal to 10 kHz (i.e.T. is 100,000 processor cycles at a processor

clock of 1 GHz) to enable 400,000 cycles (0.4 msec) of detection latency tolerance.

The cost of increasing tolerable detection latency is more pressure on the CLBs and longer delays due to
the output commit problem. While increasifig allows for more compression of logged data, since only

the first of multiple writes or ownership transfers in a checkpoint interval requires logging, total CLB stor-
age is a function both of logging frequency and interval length. However, given sufficient CLB storage, the
value ofT; has little effect on common-case performance, as will be shown in Chapter 3. The chdjce of

has a greater impact on I/0O performance, as was discussed in Section 2.1.5.

2.2.5 Checkpoint Validation and Deallocation of Checkpoint State

Checkpoint validation requires that all components agree that execution up until that checkpoint was error-
free. For a given error model and associated error detection mechanisms, each component waits to ensure
that the error detection mechanisms report no errors for activity prior to the checkpoint to be validated. We
now address the error model of a lost/corrupted message that is detected with a timeout at the requestor,
since this is likely to be the longest latency detection mechanism. Other long latency mechanisms may be
implemented, including strong error detecting codes applied to incoming messages, but these should pre-

sumably be shorter than timeouts.

7. Aswill be discussed in Section 2.2.7, we use unary encoding of checkpoint numbers at the caches. Thus, we need four bits to

encode the four possible checkpoint numbers.

34

node

Local
Validation
agree to

validate CR

|
I
I
I
I
I validate
I

service processor

Wait for

All Nodes

I
. | :
node agree to | validat node
validate CR |
Local |
Validation I
I
I
I
Phase 1 Validation | Phase 2 Validation
- | - |

FIGURE 2-8. Two-phase validation of checkpoinCP,

A cache controller only agrees to validate a checkpoint once every transaction it initiated in the interval
before that checkpoint completed successfully. Thus, if a cache controller checks its TBE table and deter-
mines that none of its outstanding requests were issued in the checkpoint to be validated, then it can vali-

date that checkpoint.

A directory controller only agrees to validate a checkpoint once every transaction for which it forwarded a
request to a processor owner (i.e., three-hop transaction) completed successfully. Thus, the requestor must
send a Final-Ack (or Final-Nack) to the directory after its request has been satisfied (or nacked), so that the
directory can deallocate its TBE for the transaction. Any lost message will prevent advancement of the
recovery point. If the recovery point cannot be advanced after a given amount of time, the system assumes

an error has occurred (such as a lost message) and triggers a system recovery.

We coordinate global validation with a two-phase scheme illustrated in Figure 2-8. A component informs
the service processor that it is ready to advance the recovery point. Once every component has informed

the service processor that it is ready to advance the recovery point, the service processor broadcasts the

. . : . .35
newrecovery point checkpoint number (RPCNgxecution does not slow down while checkpoints are val-

idated in the background, similar to a fuzzy barrier [43].

Processor and memory controllers deallocate a checkpoint, sa\bBiscarding their now unneeded
architectural checkpoints for checkpointGPWe discard the state for the before images that enable the
system to recover from G CR_y, since we will never need to recover to;Gmow that CRis the recov-

ery point. A processor discards its register checkpoint for;CEaches deallocate a checkpoint by clear-
ing the CN of all blocks that had CN set to GP We discuss how to implement this feature in
Section 2.2.7. Caches and memories discard logged data at their CLBs frpm CP

2.2.6 System Recovery and Restart

If a component detects an error, it notifies the service processor to trigger a recovery. The recovery mes-
sage, which includes the RPCN, is broadcast (redundantly) by the service processor, and all nodes proceed
to recover to the recovery point. The process of recovery involves several steps, and it leverages the insight
that the state of any transactions in progress, by definition, is unvalidated state that is now discarded. First,
the interconnection network is drained, and all state related to coherence transactions that were in progress
at the time of the recovery, including TBE state for blocks the node is trying to acquire, is discarded. Sec-
ond, processors, caches, and memories recover the RPCN checkpoints. Memories just sequentially undo
the logged update-actions in their CLBs. Undoing the memory CLB involves copying the blocks from the
CLB to the memory, traversing the CLB from the tail to the head (i.e., in reverse order of insertion). Pro-
cessors restore their register checkpoints. Caches invalidate all blocks written or sent in an unvalidated
checkpoint interval (i.e., blocks with non-null CNs), and they undo the logged actions in their CLBs. Sim-
ilar to memory, undoing the cache CLB involves copying the blocks in reverse order from the CLB to the

cache.

At recovery time, the TBEs may also hold validated state that cannot be discarded because it is part of the
recovery point. During normal execution, on a cache replacement of an owned block, the block is moved
from the cache to the TBE while the Put-Exclusive is pending, so that the cache frame can be re-used
immediately. Thus, the only copy of the block is in the TBE. If this block is validated state, it is part of the
recovery point, and it must be retained during the system recovery process. During a recovery, we handle
this block by re-issuing a Put-Exclusive for it and leaving it in the TBE. Trying instead to push the block

back into the cache is legal but more difficult.

8. Communication of coordination messages (which are infrequent) can be made reliable through redundancy, if this double

fault model is to be tolerated. We will discuss this issue in Section 4.1.5.

36

node

Restart
Execution

agree to

restart

|
I
I
I
I
I restart
I

service processor

Wait for
All Nodes

agree to restart

restart

Restart

Phase 1 Recovery/Restart

Phase 2 Recovery/Restart
- > >

-

I
I
I
I
I
I Execution
I
I
I
I
I
|

FIGURE 2-9. Two-phase recovery/restart

After recovery and reconfiguration (if needed), a restart message is broadcast to inform the nodes that they
can resume operation. The restart cannot begin until every node has finished its recovery. As with coordi-
nation to validate checkpoints, we implement a two-phase coordination in which every node informs the
system service processor once it is ready to restart and then the service processor broadcasts the restart

message. This two-phase restart is illustrated in Figure 2-9.

2.2.7 Implementation Details
In this section, we discuss some of the implementation details that have been omitted thus far in
Section 2.2, including how to maintain checkpoint numbers at the cache and how to checkpoint the proces-

sor register state.

37

TABLE 2-1. Modifications to SafetyNetcache behavior

Operation Action

Load nothing

Store If CN=null or CC®CN, then log old copy of block in CLB
Coherence Transfer If CN=null or CERN, then log old copy of block in CLB
Checkpoint Validation Clear CN bit for all blocks in cache

System Recovery Invalidate all blocks with non-null CNs

Checkpoint Numbers at CacheWe now describe how to store and manipulate checkpoint numbers at
the caches. Caches maintain checkpoint numbers to enable optimized logging of update-events. It is cru-
cial to optimize logging at the L1 cache, since stores are so frequent, but optimizing update-events at lower
levels of the cache hierarchy is less crucial. Thus, the following cache modifications could be eliminated at

caches below the L1, if the cost of implementation is deemed to be not worth the benefit.

Cache operation is conventional, with three important exceptions: (1) a store hit may trigger logging of the
block that would be overwritten, (2) a validation of checkpaimiust find blocks with CNiand then set
CN=null, and (3) a recovery must invalidate blocks with &iill. Since we always recover to RPCN,

there are no patrtial rollbacks. Case (1) can be detected by comparing the processor's CCN and the stored
block’s CN in parallel with a standard tag comparison. A store to the cache thus reads the cache tags (but

not the data) before writing it, but this is also true for normal stores, since they require a tag lookup.

Checkpoint validations and system recoveries can be made to operate globally on the caches in constant
time with two changes. First, we store checkpoint numbers encoded as one-hot bit vectors. This encoding
requiresk bits to suppork active checkpoints, which is not a problem for the srkalle envision (e.g.,

four). Second, we keep the checkpoint numbers in the same SRAM with the cache tags and augment the
cache tags with a flash clear on each CN bit column, similar to the mechanism in caches with flash invali-
dation [61].

We summariz&afetyNemodifications to cache behavior in Table 2-1.

Register Checkpointing.We now discuss specific details of how to checkpoint the processor register
state. There are many possibilities for doing this, and the best design choice depends on the performance
required and the cost of implementation. In Section 3.4.3, we will demonstrat8dfettyNeperformance

is quite insensitive to register checkpointing latency for the checkpoint interval of 100,000 cycles that we

consider, since checkpointing occurs so infrequently. Thus, we choose a simple, unoptimized design that

leverages existing datapaths. A processor maintains register checkpoint contexts that are accegsgible by the
load/store functional unit. On a checkpoint, the processor uses the load/store unit to sequentially copy the
architected registers into a register checkpoint context. On a recovery, the load/store unit extracts the
recovery point register checkpoint and copies it into the architected registers. Unlike more traditional
shadow registers, these do not require extra datapaths between the architected registers and the shadow

registers. Nor do these shadow registers require low-latency accessibility.

For shorter checkpoint intervals, a more optimized register checkpointing scheme may be necessary to
avoid performance degradation. We could employ more traditional (i.e., fast) shadow registers, at the cost
of adding this datapath and using valuable space near the register file, but we do not explore this issue in

this thesis.

2.2.8 Summary of Implementation

We have developed two particular implementations of SadetyNetabstraction. The implementations
address the three challenges that were raised for logging schemes. First, we exploit checkpoint granularity
to reduce the amount of logging necessary. Second, we efficiently coordinate checkpoints across the sys-
tem in logical time, with a different logical time base for each implementation. Third, we enable check-
point validation to be performed in the background, thus hiding the potentially lengthy latency of error

detection (e.g., for timeouts on coherence requests).

These implementations require three changes to the processor and caches. First, the processor must be able
to checkpoint its register state. While modifying the core may be undesirable, register checkpointing is not
performance-critical, since it is uncommon, and copying out registers is straightforward if it does not need

to be fast (we will assume 100 cycles in later results). Second, we must be able to copy old versions of
blocks out of the cache before overwriting or transferring them. This increases cache bandwidth, but we
will show in Chapter 3 that the increase is a small fraction of cache bandwidth used for our commercial
workloads. Third, we add CNs to cache blocks (at least at the L1 cache), to enable optimized logging. Add-

ing CNs to cache blocks requires customization of the cache design in order to support flash clear.

SN-Directoryalso requires three changes to the underlying directory coherence protocol. First, we add
checkpoint numbers on data response messages, so that the requestor knows the transaction’s point of ato-
micity. Second, we allow both directories and processors to nack coherence requests, in order to avoid fill-
ing a CLB. Third, we add a Final-Ack (or Final-Nack) from the requestor to the directory on three-hop
coherence transactions, so that the directory knows in which checkpoint interval the transaction occurred

(or was nacked).

39
Other implementations dbafetyNetare certainly possible, bulBN-Snoopingand SN-Directorydemon-

strate thaSafetyNetan be applied to the two primary classes of cache coherence protocols.

2.3 SafetyNetConclusions

In this chapter, we developed a scheme, cafiedetyNetthat enables globally consistent checkpoint/
recovery. We also describe two specific implementationSadétyNetIn developingSafetyNetwe make
three contributions which provide the intuition for why Chapter 3 will siafetyNeto be efficient in the

common case of error-free execution.
» SafetyNeefficiently coordinates the creation of checkpoints across the system in logical time.
» SafetyNeminimizes the amount of state that must be checkpointed through the use of optimized log-
ging.
» SafetyNehides the latency of error detection by pipelining the validation of checkpoints in the back-

ground. The system can continue to execute while it determines if old checkpoints can be validated.

40

41

Chapter 3

SafetyNet Evaluation

In this chapter, we evaluatafetyNetOur primary focus is on the performance impact of implementing
SafetyNetsinceSafetyNets more likely to be widely used if it does not significantly degrade error-free
performance. Performance is a function of many system and workload parameters, and we explore how
these parameters affect performance. The exploration of the system parameter space sheds light not only
on performance but also on hardware cost. For example, CLB sizing is important to achieving performance
and it also contributes directly to cost. If the only way to achieve acceptable performance was to use unrea-
sonably large CLBs, which is fortunately not the case, then that cost would decrease the viability of
deployingSafetyNetThere are other costs of implementi8gfetyNetsuch as extra cache bandwidth for

logging, and we explore the system parameters that constitute the primary costs.

In Section 3.1, we develop a qualitative model of system performance. The model serves to illustrate the
system and workload parameters and how they contribugafetyNeperformance. While the model is
not intended as a tool for quantitatively predicting performance, we will refer back to the model during the

guantitative analysis to provide insight into the results.

In Section 3.2, we describe our methodology for quantitatively evalus&migtyNet Since this thesis

addresses commercial servers, we use full-system simulation in order to run commercial workloads,
including database and web server workloads. While we focus on commercial workloads in this thesis,
SafetyNetan also be applied to other workloads. We evaluate one scientific benchmark, for comparison,

and we discuss issues involved in supporting other types of workloads.

In Section 3.3, we determir®afetyNeperformance by running three experiments in which we compare

the performance dbafetyNetersus that of a system unprotected from faults. The two key results are that:

» Differences in performance betweSafetyNeaind an unprotected system are statistically insignifi-
cant.
» SafetyNetontinues to run in the presence of hard and soft faults.

To ensure that the design is not overly sensitive to specific implementation parameters, we present sensitiv-

ity analysis in Section 3.4. This analysis will show tisatfetyNeperformance is somewhat dependent on

42
CLB sizing and the checkpoint interval, but it is not sensitive to the latency for register checkpointing.
Analysis will also demonstrate that the additional cache bandwidth requir@hfetyNeis negligible.

Lastly, analysis will illustrate hoBafetyNeperforms as a function of the soft error rate.

3.1 High-Level Performance Model

In this section, we present a high-level modelSaffetyNeperformance. The purpose of the model is to
reveal the system and workload parameters that play important roles in determining system performance
and to illustrate qualitatively how they interact. In the quantitative performance analyses in Section 3.3 and
Section 3.4, we will refer back to this model to provide insight into the results. This model is not intended

to serve as a tool for evaluating detailed design decisions.

The equations for performance are functions of system and workload parameters. The key parameters are
the following:

 checkpoint periodT()

» CLB size(CLBSize)

» workload intensity, i.e., frequencies of stores and coherence re@vWesktoadintensity)

e processor register checkpointing latefSheckpointLatency)

» error ratg(ErrorRate)
Much of the sensitivity analysis in Section 3.4 will involve varying one of these parameters while holding
the others constant. Other significant parameters exist, but we will consider them to be fixed in this evalua-
tion. These parameters include the number of checkpoint contexts (fixed at 4), processor speed, cache

sizes, and interconnection network bandwidth. All of these parameters and their values will be listed in
Section 3.2.1.

3.1.1 Error-Free Performance
Error-free SafetyNetruntime would be equivalent to the error-free runtime of an unprotected system,

except for the three issues illustrated in the following equation:
Runtimdé SN= Runtimé Unprotectet CLBStalls+ CPOverhead MiscOverhead(EQ 1)

The first issue is stall time due to filling a CLB. CLB stall time, in turn, is directly related to the interval

length (T.) and workload intensity, and it is inversely related to the CLB size. The following function for

L . . : _ 43
CLB stall time is non-linearff,), but we place variables in the numerator and denominator to reflect

whether the function is directly proportional or inversely proportional to the variables.

¢ OlcxWorkloadIntensity,

CLBStallTime NLO CLBSize 0

(EQ2)

The non-linearity in this function has a couple of causes. FirsE.@s workload intensity increases, there

are more update-events in the interval, although this is not a linear relationship due to optimized logging.
Workload intensity is also not stationary, and bursts in intensity can cause bursts of CLB stalls, even
though the CLB size may be sufficient for the mean workload intensity. However, since CLB storage is
dynamically allocated to checkpoints (i.e., eaciNafheckpoint contexts isot statically assigned/Nth of

the CLB), a burst of high frequency logging could be counterbalanced by a stretch of lower frequency log-
ging. Second, as CLB size increases, there are fewer CLB stalls, yet the relationship is non-linear. There is
an inflection point in the curve of CLB stalls as a function of CLB size, at the point at which the CLB is
large enough to not fill often. Once the CLB size is sufficiently large, increasing it further offers no benefit.

However, if the CLB size is particularly small, the system is highly susceptible to bursts of CLB stalls.

The second issue is overhead due to checkpointing. This overhead is a linear fuipdnhe processor

register checkpointing latency divided By

ointLatengy
Te 0 (EQ3)

. heckp
CheckpointOverhead L%C

The third issue incorporates all othfeafetyNebverheads. These overheads include many negligible laten-
cies (e.g., extra latency due to extra congestion from checkpoint coordination messages), but the primary
potential component is extra latency for stores that require logging in the CLBs. The overhead is directly
related to the workload intensity, since an increased rate of stores leads to an increased rate of stores that
require logging, although the latter increase is less than the former due to optimized logging of stores. Vari-
ance in the workload intensity is less important The overhead is inversely proportional to the checkpoint
interval, since a longer interval contributes to more optimized logging of stores. The overhead is a non-lin-

ear function of these two parameters.

: _ WorkloadIntensity
MiscOverhead= § g Te 0 (EQ4)

o . : . . .44
The non-linearity can be explained with two extreme examples. First, the workload intensity can increase

without any corresponding increase in the rate of stores that require logging, if the logging optimization
hides the additional stores. Secof@,can increase without any corresponding decrease in the rate of

stores that require logging, if the longer checkpoint interval does not contribute at all to the logging optimi-
zation. While neither of these extreme examples is likely, they still illustrate the potential non-linearity in

this overhead function.

3.1.2 Performance in Presence of Errors
When errors occur, the unprotected system fails @afibttyNetontinues to perform at a degraded level.
The impact uporsafetyNeperformance due to errors is a function of the error rate and the recovery time.

The effects are captured in the following equation:
Runtimé Witkerrors)= Runtimé Nd&rrors) + ErrorRatex RecoveryTime (EQ 5)

Recovery latency consists of four components: discarding unvalidated checkpoint state, restoring the state
from the recovery point, re-configuring (e.g., changing the routing to avoid a dead switch) if necessary, and

re-executing the work that was lost between the recovery point and the fault.
RecoveryTime Discartl Restofe Reconfigire ReplayWork (EQ6)

We do not evaluate reconfiguration latency since it is both difficult to estimate and it is only a one-time
penalty, although it could be a large penalty. The latencies to restore the recovery point and to replay lost
work are both functions of the checkpoint interval and the workload intensity. Re-executing lost work is
likely to dominate, since the recovery point can be hundreds of thousands of cycles in ttapetyiNet

can tolerate longer error detection latencies with less frequent (i.e., larger) checkpoints, but it does so at the
cost of more potential lost workNevertheless, even a one million cycle recovery latency is still only one

millisecond (i.e., much shorter than a failure and reboot).

3.2 Methodology

In this section, we describe both our full-system simulation infrastructure and the commercial workloads

with which we evaluat&afetyNetSince this research addresses commercial servers, we must evaluate our

1. The most significant costs of larger checkpoint intervals are the additional CLB size requirements and longer output commit

penalty.

— : . 45 .
work using important commercial workloads. To simulate systems that can run these workloads requires

full-system simulation.

3.2.1 Simulation Infrastructure and Target System
We simulate a 16-processor target system with the Simics full-system, multiprocessor, functional simulator

[64], and we extend Simics with a memory hierarchy simulator to compute execution times.

Simics. Simics is a system-level architectural simulator developed by Virtutech AB that can boot unmodi-
fied commercial operating systems and run arbitrary unmodified applications. We use Simics/sun4u, which
can simulate Sun Microsystems’s SPARC V9 platform architecture (e.g., used for Sun E6000s) in suffi-
cient detail to boot an unmodified copy of Sun Solaris 8. Simics is a functional simulator only, and it
assumes that each instruction takes one simulated cycle to execute (although 1/0O may take longer), but it

provides an interface to support detailed memory hierarchy simulation.

Processor ModelWe use Simics to model a processor core that, given a perfect memory system, would
execute four billion instructions per second and generate blocking requests to the L1 cache and beyond.
We use this simple processor model to enable tractable simulation times for full-system simulation of com-
mercial workloads. While an out-of-order processor model might have an impact on the absolute values of
the results, it would not qualitatively change them (e.g., whether a failure is avoided). For evaluating pro-

cessor/cache overhead for checkpointing register state, we model a conservative latency of 180\ycles.

TABLE 3-1. Target system parameters

L1 Caches (I and D) 128 KB, 4-way set associative

L2 Cache 4 MB, 4-way set associative, 4ns
Memory 2 GB, 64 byte blocks, 80ns

Miss From Memory 180 ns (minimum, uncontended, 2-hop)
Checkpoint Log Buffer 512 kbytes total, 72 byte entries
Interconnection Network 2D torus, link bandwidth = 6.4 GB/sec
Checkpoint Interval 100,000 cycles = 10€ec

2. If checkpointing was a more frequent event (e.g., if we were USafgtyNeto support speculation), we could optimize register
checkpointing latency by using shadow register copies. As explained in Section 2.2.7 and evaluated in SectBafétyiNg:t

performance is insensitive to this latency, so we do not need to optimize it.

46
conservatively charge eight cycles for logging store overwrites (8 bytes/cycle for 64 byte cache blocks),

but store overwrites that require logging comprise only about 0.1% of instructions.

Memory Model. While we have developed two implementationsS#HfetyNetwe only evaluateSN-
Directoryin this section. We have evaluat8tl-Snoopingbut the results are similar enough not to warrant

their presentation here. We have implemented a memory hierarchy simulator that suppSitisirec-

tory protocol as well as a comparable protocol with8afetyNesupport. The simulator captures all state
transitions (including transient states) of our coherence protocols in the cache and memory controllers. We
simulate a two-level cache hierarchy with a split L1 cache. We enforce exclusion between the L1 caches
and the L2 cache. In Table 3-1, we present the design parameters of our target memory systems. With a
checkpoint interval of 100,000 cycles and four checkpoint cont&etetyNetan tolerate error detection

latencies up to 400,000 cycles (0.4 msec at 1GHz).

We model a two-dimensional torus interconnection network, and we model link latency and contention
within this interconnect, including contention due to checkpoint validation coordination messages. The
interconnection network’s routing is statically determined. The switches within the network are composed
of two half-switches, one for the north/south direction and one for the east/west direction. This design pro-
vides sufficient redundancy in the case that a half-switch is lost (as will be explored in greater depth in

Section 3.3.3), but it incurs extra latency to change directions in a switch.

The memory system, including the coherence protocol, was specified in a domain specific language called
SLICC (Specification Language for Implementing Cache Coherence) that was developed by Milo Martin
at the University of Wisconsin. Protocols were developed using the tabular specification methodology pro-
posed by Sorin et al [101]. To further exercise the protocol implementations, we drove them for billions of
cycles with a random tester that injected errors and stressed corner cases by exploiting false sharing and
reordering messages [119]. We did not perform more formal verificatiddaéétyNeprotocols, but we

have performed manual formal verification of other related protocols [22, 77, 101], and this verification

work has influenced the design of ®BafetyNeprotocols.

I/O Model. As will be discussed in Section 3.2.2, our workloads are scaled down in size to run on our
simulator. In particular, our workloads are scaled to run mostly in memory. The 1/O that does still occur is
not handled by our memory system simulator. Instead, it is handled strictly by Simics, which provides

functionality but little timing fidelity.

Recovery.Since Simics cannot currently be recovered to a point hundreds of thousands of cycles in the

past, we must emulate its behavior after recovery. During normal execution, our memory system simulator

logs memory requests (but not I/O requests) from Simics. If a recovery occurs, we stall Sir#iz:s while
replaying requests from our memory system logs. Since we do not handle 1/O in our memory system simu-
lator, we do not replay I/O requests. Thus, the simulation does not obey the rules for correctly handling the
output commit problem. However, I/O is infrequent in our workloads, and we do not believe that its effect

would be substantial.

Methodology. Commercial workloads running on real operating systems exhibit instability in their runt-
imes, and the simulation methodology must account for this effect or risk coming to incorrect conclusions.
While our simulator is perfectly deterministic, even small perturbations of the workloads can cause wildly
divergent execution paths, perhaps due to reorderings of lock acquisitions or operating system scheduling
decisions. We account for this instability as outlined by Alameldeen et al. [4]. We simulate each design
point multiple times with small, pseudo-random perturbations of memory latencies to cause alternative
executions. When presenting performance results, we plot the mean values and error bars to represent one

standard deviation in each direction (ij@g+xd).

3.2.2 Workloads

Commercial applications are an important workload for high availability systems. As such, we evaluate
SafetyNewith four commercial applications and one scientific application, for compar&afetyNeper-
formance depends on the application, because applications have different workload intensities (i.e., fre-
guencies of update-events). More intense workloads are more likely to fill up the CLBs and cause stalls, as
shown in Equation 2 in Section 3.1.1. Conversely, to get equivalent performance for a more intense work-
load may require larger CLBs. Also, more intense workloads have greater rates of store overwrites, and

this effect can degrade performance, as shown in Equation 4.

The worst-case workload f@afetyNetvould have both a high frequency of update-events and poor local-

ity (thus reducing the benefits of optimized logging). An example of such a workload would be a streaming
multimedia application. Fortunately, these two factors are often inversely related. Poor locality leads to
more cache misses, and cache misses incur latency that delays future update-actions. While systems may
allow for multiple outstanding requests, this optimization does not completely alleviate the negative feed-

back loop due to cache miss%lsarger cache sizes may be used to reduce miss rates, so a workload like

3. Store latency also can be at least partially hidden by more relaxed memory consistency models, such as processor consistency
(PC). As discussed in Section 2.1.6, implementations of PC hold the state of these stores in a store buffer that must be check-

pointed bySafetyNet

: : . o 48
successive over-relaxation (SOR) that performs many writes and fits in the larger cache could exert more
pressure on the CLBs. However, larger caches will make the CLBs look relatively smaller. Conversely, the

CLBs could be made larger, to match the prior ratio of cache size to CLB size.

While this evaluation focuses on commercial workloads, other classes of workloads exist with other char-
acteristics. Other workloads, such as data-intensive scientific applications, maysstiggiNemore than
commercial workloads. If these workloads are important for the sysSafetyNetmplementations may
want to reducd, in order to reduce CLB pressure (as suggested by Equation 2). Moreover, an adaptive

approach to settingj; could be useful for systems that run a variety of workload types.

All of the workloads used in this evaluation are described in greater detail by Alameldeen et al. [4]. That
paper addresses the setup, tuning, scaling, and warm-up of these workloads, as well as details about their
performance characteristics. The workloads are all sized and warmed up to be memory-resident and avoid
disk 1/0. We now briefly describe each workload, and we characterize their execution behaviors (for a sys-
tem unprotected b8afetyNeétin Table 3-2.

Online Transaction Processing (OLTP)Our OLTP workload is based on the TPC-C v3.0 bench-
mark using IBM’s DB2 v7.2 EEE database management system. We use a 1 GB 10-warehouse database
stored on five raw disks and an additional dedicated database log disk. There are eight simulated users per

processor. We warm up for 10,000 transactions, and we run for 500 transactions.

Java Server.SPECjbb2000 is a server-side Java benchmark that models a 3-tier system and includes
driver threads to generate transactions. We used Sun’s HotSpot 1.4.0 Server Java Virtual Machine. Our
experiments use 24 threads and 24 warehouses (~500 MB of data). We warm up for 100,000 transactions,

and we run for 50,000 transactions.

Static Web Server.We use Apache 1.3.19wwv.apacheorg) for SPARC/Solaris 8, configured to use
pthread locks and minimal logging as the web server. We use SURGE [8] to generate web requests. We use
a repository of 2,000 files (totalling roughly 50 MB). There are ten simulated users per processor. We

warm up for 80,000 requests, and we run for 5,000 requests.

Dynamic Web Server.Slashcode is based on a dynamic web message posting system usiasti-by

dotcom . We use Slashcode 2.0, Apache 1.3.20, and Apachadsperl 1.25 module for the web server.
MySQL 3.23.39 is the database engine. The database is a snapdeshaidecom , and it contains

3,000 messages. A multithreaded driver simulates browsing and posting behavior for three users per pro-

cessor. We warm up for 240 transactions, and we run for 50 transactions.

TABLE 3-2. Workload execution behavior

Dynamic Instruction Data L1l Cache L1D Cache L2 Cache

Instruction Footprint Footprint | Misses/ Misses/ Misses/
Workload Count (Mbytes) (Mbytes) | 1000 Instrs 1000 Instrs 1000 Instrs
SpecJBB 3.7 billion 1.6 221 0.9 9.0 4.5
Apache 10.5 billion 1.1 84 11 2.8 24
Slashcode 7.3 billion 2.7 144 1.2 3.2 11
OLTP 8-10 billion 2.0 50 2.8 2.0 1.8
Barnes-Hut 11.4 billion 0.5 21 0.3 3.0 1.6

49

Scientific Application. We usebarnes-hutfrom the SPLASH-2 suite [118], with the 64K body input
set. This scientific application places much less stress on the memory system, and it serves as a comparison
to the commercial workloads. We begin measurement of this application at the start of the parallel phase,

in order to avoid measuring thread forking.

3.3 Experiments
We perform three experiments to evaluafetyNeperformance, and we show their results in Figure 3-1.
For each of our five workloads, we plot five bars: two bars for systems unprotecteafétyNeand three

bars for systems witBafetyNet

3.3.1 Experiment 1: Error-Free Performance

In this experiment, we run two systen&afetyNeand unprotected b$afetyNetin a error-free environ-

ment. In Figure 3-1, the first and the third bars (from the left) for each workload reflect the normalized per-
formances of the unprotected system &adetyNetrespectively. We observe that the two systems perform
statistically similarly for three out of the five workloads. For the other two workloads, jbb and slashcode,
there is a small performance degradation. With 512-kbyte CLBs, stalls occur often enough in these work-
loads to impact performance. However, if CLBs are increased to 1-Mbyte, these workloads suffer no per-

formance penalty witiSafetyNef

Inspecting Equation 1 in Section 3.1.1 provides insight into the similarity bet®aétyNeperformance
and the performance of the unprotected system. First, CLB stalls occur rarely, so they contribute little over-

head. Second, overhead due to processor register checkpointing (100 cycles out of every 100,000 cycles) is

4. Mean performance results for OLTP incorrectly suggest3aéatyNebutperforms an unprotected system. Statistical examina-

tion of the results reveals that performance is comparable.

50

15

. Unprotected error-free

D Unprotected with error

SafetyNet error-free

. SafetyNet with 10 transient errors per second
[safetyNet with a hard error

normalized performance

FIGURE 3-1. Performance comparison oSafetyNetwith an unprotected system

within the noise. Third, overhead due to stores that require logging is negligible, since such stores com-

prise 0.1% of all instructions.

3.3.2 Experiment 2: Dropped Messages

In this experiment, we periodically inject transient errors into the system by dropping a neeseage

one hundred million cycles (i.e., ten times per second). The requestor times out on its request and triggers
a system recovery. The second “bar” reflects the unprotected system performance (failure). The fourth bar
from the right representSafetyNebehavior, and we see that it is statistically similar to the error-free sce-

nario.

Inspecting Equation 5 and Equation 6 in Section 3.1.2 helps to explain this result. Equation 5 shows that
recovery cost is proportional to the error rate. The dominant cost of recoveries in Equation 6 is having to
replay the lost work. Thus, the lack of performance impact is not surprising, since recovering even 400,000
cycles of work (i.e., the very worst case for a system wWith100,000 cycles and four checkpoint contexts)

is a small fraction of the hundred million cycle error period (i.e., error period is the reciprocal of the error

5. We abstract the fault itself (e.g., a cosmic ray uncorrectably garbles a message) for generality.

: . 51
rate). Moreover, the exact system recovery latency is not critical, shafetyNée$ recovery latency Is

orders of magnitude shorter than the latency of failing and rebooting (while preserving data integrity).

In Section 3.4.4, we explor@afetyNeés sensitivity to changing the frequency of soft errors, including error
frequencies as high as one per ten million cycles. As the model would suggest, increasing the error rate

will, at some point, cause a visible degradation in performance.

3.3.3 Experiment 3: Lost Switch

In this experiment, we inject a hard error into an interconnection network switch, killing a half-switch,
after 5 million cyclesff Recall from Section 3.2.1, that each switch in the torus is comprised of two half-
switches, which provides sufficient redundancy in the case that a single half-switch dies. However, the loss
of the half-switch causes the loss of its buffered messages, which must be tolerated. Moreover, the system

must reconfigure the interconnection network to route around the dead half-switch.

The second “bar” reflects the failure of the unprotected system. The fifth bar refafd/Nefperfor-
mance, and we observe that, most importarfigfetyNetavoids a failure. Its performance is slightly

degraded, with respect to the error-free scenario, due to the restricted post-error bahdwidth.

Given a system with enough bandwidth not to be overly impacted by losing some of it due to a dead half-
switch, which is the case in this experiment, the same discussion as in Section 3.1.1 explains why perfor-
mance is not degraded. In a system that was more bandwidth-starved, the loss of bandwidth after the recov-

ery would have a more pronounced effect, but here it has only a small impact on performance.

3.4 Sensitivity Analyses
In this section, we perform sensitivity analyses to gain a better understanding @dfetyNeperforms

for different system parameters and different workload behaviors.

6. We do not model the diagnosis of this error. While we discuss diagnosis for this error earlier in the thesis, the details of model-
ing it are system-specific and do not help to illustrate this example.

7. We do not model the latency to reconfigure the interconnection network, because this latency is both difficult to estimate and a
one-time penalty. The more important result is that the system does not fail and that the long-term performance of the system

may be affected by the loss in interconnect bandwidth.

52

£ 100

=l (S

8]]

> _

2 10, 0 all stores

3 § — stores that use CLB
S ——- al coherence requests
o] 15 e~ coherence requests that use CLB
Q] \

O

o

10000 100000 1000000
checkpoint interval (in cycles)

FIGURE 3-2. Workload intensity (Apache workload)

3.4.1 Checkpoint Log Buffer Storage Cost

As described in Section 2.2.3, an implementatiorSafetyNeseeks to size the CLBs to avoid perfor-
mance degradation due to full CLBs. Total CLB storage is proportional to the number of allowable check-
point contexts and the number of entries per checkpoint. We allow for four checkpoints and a CLB entry is
72 bytes (8-byte address and 64-byte data block). The number of entries per checkpoint corresponds to the
logging frequency which is, in turn, a function of the workload intensity. In Figure 3-2, for the static web
server workload, we plot logging frequencies as a function of the checkpoint interval. We scale both the
andy axes logarithmically. Distinguishing between all stores/requests and only those stores/requests that
require logging, we notice the striking drop-off in the latter as the checkpoint interval increases. These
trends are the same for the other workloads, and the intuition explaining this phenomenon is that spatial
and temporal locality reduce the number of distinct blocks touched per checkpoint interval. Figure 3-2
shows that, on average, only about 100-150 CLB entries are created per 100,000 instructions (although the
variance in this rate requires more storage). Starting at intervals of 10,000 cycles, increasing the interval

length by a factor of ten only increases CLB occupancy by a factor of between five and seven.

Equation 2 in Section 3.1.1 suggests that performance will improve (i.e., CLB stall time will decrease) as
CLB size increases, but the relationship is non-linear. For example, at some CLB size, increasing CLB size
further will have no effect. In Figure 3-3, we plot the performanc&afetyNeas a function of CLB size.

While 1-Mbyte CLBs produce statistically comparable performances across the workloads, 512-byte

53

g |
8 1.0-
e
o)
o Il 1 Mbyte
o | 1512 Kbyte
€ o051 | vz 256 Kbyte
=]
£
S
c

0.0- |

jbb apache dashcode oltp barnes

FIGURE 3-3. Performance vs. CLB size

CLBs slightly degrade the performances of two of our workloads, and 256-kbyte CLBs significantly

degrade the performances of all of our workloads.

3.4.2 Checkpoint Interval Length

The checkpoint intervall, is an importanSafetyNeparameter for several reasons. First, a longer interval
allows for greater tolerance of error detection latencies. Second, the checkpoint interval determines when a
system withSafetyNetan interact with the outside world. Due to the output commit problem, discussed in
Section 2.1.3, the system cannot send data outside its sphere of recoverability until it has been validated.
Since validation latency depends on the checkpoint interval, the checkpoint interval thus plays an impor-
tant role in I/O. For low-performance I/O, such as disks and external networks, delaying communication to
wait for validation is a negligible cost. However, for high performance 1/O, such as cluster communication,

the maximum allowable checkpoint interval may be a function of the required 1/0 performance.

To gauge the impact of varying the checkpoint intefyale plotSafetyNeperformance versus the check-
point interval length in Figure 3-4, normalizing to the base case of 100,000 cycle intervals. The perfor-
mance model in Section 3.1.1 suggests two trends. First, Equation 3 shows that shorter intervals will only

hurt performance if they are so short that the 100 cycle register checkpointing overhead becomes signifi-

8. We do not study its affect upon the output commit penalty, since our workloads are scaled and warmed up so as to reside in

memory and avoid disk 1/O.

54

g 1.01 T
[]
]
£ B 10K
%] 50K
Q 100K
'ﬁ 0.51 I 500K
T 0im
S
o]
C 4
0.0-
jbb apache slashcode oltp barnes
FIGURE 3-4. Performance as a function of checkpoint interval (512 kbyte CLBS)

cant. Second, Equation 2 shows that longer intervals will eventually start to degrade performance as CLB

stalls become more frequent.

What we see in Figure 3-4 are two trends. First, smaller checkpoint intervals perform the best and perform
comparably to each other, because 100 cycles is in the noise even for intervals as short as 10,000 cycles
(i.e., 100 cycles is 1% of this interval Iengl?ly)ur second observation about Figure 3-4 is that intervals of
500,000 cycles and longer perform significantly worse than smaller interval lengths. As checkpoint inter-
vals lengthen, the pressure on the CLBs increases, since CLB usage is a function of interval length (and
workload intensity). While the pressure does not increase linearly with interval length, due to optimized
logging, the increase can be significant. Consider the extreme case in which one interval spans the entire
execution—in this case, CLB usage (distributed across the system) is proportional to the memory image of

the execution.

To further validate this hypothesis, we re-ran this experiment with larger CLBs and noticed striking
improvements in performance. With large enough CLBs, we can attain the same performance as was
achieved with smaller checkpoint intervals. In Figure 3-5 and Figure 3-6, we plot the performance of each
workload with intervals of 500,000 cycles and one million cycles, respectively, as a function of CLB size.
For the 500,000 cycle checkpoint intervals, CLBs of two Mbytes or greater appear sufficient to avoid per-
formance degradation. There is a steep drop-off in performance, though, for CLBs less than this size. For

the one million cycle checkpoint intervals, even two-MByte CLBs sacrifice considerable performance, as

9. OLTP’s performance advantage for 50K checkpoint intervals is a statistical anomaly.

55

Q 1.0
% g
S
S [J4 Mbyte
g_] 2 Mbyte
g 0.5 I 1 Mbyte
= 1512 Kbyte
S
o)
C 4

0.0

jbb apache slashcode oltp barnes
FIGURE 3-5. Performance vs. CLB size for 500,000 cycle intervals

[l 8 Mbyte
(14 Mbyte
7 2 Mbyte
1 Mbyte
0512 Kbyte

normalized performance

/,
/
7
7
7
2
7
Z
7
7
7
7
7
7
/

NONNNNNNNNNNNNNNNE

A\
AN

OONNNNNNNN

jbb apache dashcode oltp barnes

FIGURE 3-6. Performance vs. CLB size for 1 million cycle intervals

evidenced by the performance improvement achieved with four-MByte CLBs. However, four Mbytes

appears sufficient in this case, since there is no performance gain evidenced by going to eight MBytes.

3.4.3 Register Checkpointing Latency
In Chapter 2, we discussed how processors must be able to checkpoint their register state whenever a new

checkpoint is created. There are numerous ways to implement this capability, with varying trade-offs

56

1.0- Z T 2; 7
8 7 /s 7 7
5 7 7 / 7 Z
g é ? 2 é é [10 cycles
“é % g % Z % [1100 cycles

% 7, % 7 7 500 cycles

B os M % Z Z Z Z
5 g é é g é I 1,000 cycles
£ 7 7 7 7
5 7, Z 7 Z Z
= 7 7 7/ 7 Z

oo M Z 7 Z 7, 7

jbb apache dlashcode oltp barnes
FIGURE 3-7. Performance as a function of register checkpointing latency

between speed and complexity. Designers only want to implement what is necessary, so we wish to under-

stand how fast checkpointing must be so as not to perceptibly degrade performance.

To explore the impact of register checkpointing latencySafetyNeperformance, we plot performance as

a function of register checkpointing latency in Figure 3-7. Equation 3 shows that this latency will only mat-
ter if it is an appreciable fraction of the checkpoint interval lengthUnsurprisingly, we observe that reg-

ister checkpoint latency has a negligible effect on performance for checkpoint intervals of 100,000 cycles.
The infrequency of checkpoint creation causes this overhead to be lost in the noise. We conclude from
these results that optimizing register checkpointing is not worthwhile, unless checkpointing is to be done

far more frequently. Thus, the simple but not optimized solution presented in Chapter 2 will suffice.

3.4.4 Sensitivity to the Rate of Soft Errors

In Section 3.3.2, we demonstrated tiafetyNeés performance in the presence of one soft error per hun-
dred million cycles (i.e., ten times per second) was statistically equivalent to its performance in the absence
of errors. In this section, we explore the performance impact of higher error rates. While these hardware
error rates may seem exorbitant for today’s technology, the trends are leading towards ever-increasing error

rates, and it is instructive to te3afetyNées ability to keep up with these trends.

57

N\
A

normalized performance

//
g
é
v/

ANANNNNNNNNNNNNNNNNNNNNN RN

B error-free

[_]1 error per second

10 errors per second
[l 100 errors per second

jbb apache dashcode oltp barnes

NN\

FIGURE 3-8. SafetyNet performance vs. soft error rate

In Figure 3-8, we grapB®afetyNeperformance as a function of the soft error rate. We perform this experi-
ment similarly to the experiment in Section 3.3.2, by periodically dropping a cache coherence message.
Equation 5 shows that performance will degrade as error rates increase. We observe that performance only
begins to suffer, as compared to the error-free case, once soft error rates reach the rate of one hundred
errors per second. At this rate, which is equal to one error every ten million cycles, the recovery time
becomes non-negligible. This experiment uses a deterministic, periodic distribution of errors to provide a
worst-case stress test. Any clustering of errors would impi®atetyNetperformance by overlapping

recovery latencies.

3.4.5 Cache Bandwidth

SafetyNés$ additional consumption of cache bandwidth (i.e., bandwidth not used by an unprotected sys-
tem) depends on the workload intensity, particularly the frequencies of stores that require logging. These
stores consume additional cache bandwidth for reading out the old copy of the block. Logging due to trans-
ferring cache ownership, however, does not incur additional bandwidth, since the cache line must be read
anyway. As shown in Figure 3-2, for the static web server workload and a checkpoint interval of 100,000
cycles, only 2-3% of stores (less than 0.1% of all instructions) require logging. In Figure 3-9, we plot the

percentage of cache bandwidth used by cache hits, cache fills, responding to coherence requests, and log-

58

1.0+
°
5 0.8+
= :
2 0.64 B Logging
87 [Coherence
8 o4 /74 Cache Fills
3z Il Cache Hits
£
S 0.2-

0.0-

10k 50k 100k 500k 1M
checkpoint interval (cycles)
FIGURE 3-9. Bandwidth vs. checkpoint interval (static web workload)

ging due to store overwrites. The additional cache bandwidth us&atatyNetanges from 0.3% for mil-

lion cycle intervals up to 4% for short 5,000 cycle intervals.

3.5 Summary

In this chapter, we have evaluat8afetyNetWe developed a qualitative analytical model fafetyNet
performance, and this model illustrates the system and workload parameters that influence system perfor-
mance. We discussed our evaluation methodology, which incorporates full-system simulation and com-
mercial workloads. We then quantitatively evaluat@afetyNetperformance, comparing it to an
unprotected system. We discovered tBafetyNeperforms comparably to an unprotected system if the
CLBs are sized appropriately. Moreov&afetyNetavoids failures in the presence of hardware errors.
Lastly, we explored several sensitivity analyses to determine the impact of varying system and workload
parameters. Sensitivity analysis showed thatetyNeperformance is relatively robust, although it can be

degraded significantly if the CLBs are not sized sufficiently.

59

Chapter 4

Availability

This chapter discusses how to improve system availability WafetyNetGiven a checkpoint/recovery
mechanism, the challenge of providing availability is reduced to the easier problem of error detection.

SafetyNetan tolerate any device fault, provided that:

» The fault does not corrupt ECC-protected architectural state or other state that maintains the recovery

point (e.g., CLB state).
« A system can be augmented with a mechanism to detect the resultant error (or determine its absence).

» The resultant error is detected whiafetyNestill maintains an error-free recovery point. An error

that is not detected promptly can become latent and unrecoverable.

« The fault is transient or it is a permanent error that permits execution to resume after recovery, possibly

after system reconfiguration.

We highlight a few example errors due to device faults in Table 4-1 (in which the first three rows comprise

the first three rows of Table 1-1).

Numerous error detection schemes have been proposed in the literature and several have been used in prac-
tice. In the absence of a global recovery scheme, only localized error detection is applicable. Local error
detection schemes, for the most part, are optimized for latency, since error detection is on the critical path.
Thus, they often trade some detection rigor to avoid degradation of performance (e.g., using shorter error

detecting codes).

SafetyNetan tolerate much longer error detection latencies, for two reasons. First, it is a global recovery
scheme, so error detection is off the critical path for inter-component communication. With only local
recovery, there is an output commit problem between components that forces error detection to be per-
formed before communication. Secor8afetyNepipelines checkpoint validation, and thus hides error
detection latency equal to the product of the checkpoint period and the number of checkpoint contexts pro-
vided by the systenSafetyNetan maintain a recovery point as long as necessary, in the worst case, by

stalling execution. However, error-free performance is best if, in the average case, error detection mecha-

60

TABLE 4-1. Classification of illustrative errors due to device faulté

Recoverable Resumability
Error Fault Detection with SafetyNet | Mechanism
2 dead switch in ICN hard device fault timeout on requast yes reconfigurgtion
E dropped coherence | soft device fault | timeout onrequest yes none needed
3 message
é proc-cache chipkill hard device fault| watchdog timer no not available
% bit flip on ICN link soft device fault | error detecting codle yes none needef
3 bit flip in switch buffer | soft device fault| error detecting code vyes none needed
g bit flip in CPU core soft device faultf redundant thread yes none needg¢d
o stuck bit in CPU hard device fault| redundant thread | yes not available

a. We shade the device faults tBatfetyNetannot tolerate.

nisms validate checkpoints error-free in one or a few checkpoint intervals (e.g, in 100,000 cycles or 0.1

milliseconds).

We begin in Section 4.1 by describing previously developed error detection techniques. In Section 4.2, we
compare global recovery witBafetyNeto localized error recovery schemes. In Section 4.3, we develop
innovations in error detection that are enabled3afetyNes tolerance of long detection latencies. Most
notably, we can innovate in hardware error detection by using long-latency, inter-node communication to

periodically assert that certain system properties hold.

4.1 Traditional Hardware Error Detection Mechanisms

This section considers errors tt&afetyNetould tolerate using traditional (i.e., localized and low-latency)

error detection mechanisms. Section 4.1.1 to Section 4.1.5 focuses on errors due to faults in various parts
of the system and how they can be detected. We do not focus on error diagnosis, since it does not signifi-
cantly affect this discussion, but we will address diagnosis in later sections when it interacts with non-tra-
ditional uses oSafetyNetWe conclude in Section 4.1.6 with a discussion of errors that cannot be tolerated
with SafetyNet.

4.1.1 Interconnection Network Errors

A typical interconnection network error model focuses on link errors, trying to detect single, double, or

burst errors. Link errors are normally detected with error detecting codes (EDC), such as parity, single
error correcting double error detecting (SECDED), or cyclic redundancy check (CRC) [30, 75, 80]. Cur-

rent systems, such as the SGI Origin’s Spider router [36], use short codes (e.g., on eight or sixteen bytes),

. . . 61
since the code must be checked before the data is forwarded orSafetiyNepermits the use of longer
and inherently stronger codes [76] because of its ability to tolerate long error detection latencies, as dis-
cussed in Section 4.2. Stronger codes may become more necessary for optical and RF interconnect tech-

nology, since these interconnects must use more power to achieve lower bit error rates [46].

SafetyNeis also compatible with other interconnection network error models. Lost and misrouted mes-
sages can be detected with time-outs. Time-out latency must be less than the error detection latency toler-
ated bySafetyNeti.e., the checkpoint period times the number of checkpoint contexts), yet it should be
long enough to avoid false positives (i.e., time-outs due to bad congestion). In our experiments, we choose
a time-out latency that encompasses two or three congestion-free hops through the interconnect plus some
slack for congestionSafetyNetcan also be used to recover from corrupted internal switch state (e.g.,
detected with internal EDC) and switch controller malfunction (e.g., detected with internal consistency

checks).

4.1.2 Coherence Protocol Errors

There are numerous soft errors in the protocol engine that can be tolerated with global checkpoint/recov-
ery. Transient faults in the protocol engine can produce errors such as sending the wrong message or send-
ing duplicate messages, as well as errors in the reception of messages. Many of these errors are
undetectable with error detecting codes, such as sending the wrong type of message or sending it twice.
These messages are self-consistently correct and will not be flagged as errors by EDC even if they happen
not to be the correct messages. These errors can, however, be detected by other mechanisms. An incorrect
message or a duplicated message will always lead to an invalid transition at a coherence controller. For
example, if a processor in a broadcast snooping protocol issues a Get-Shared instead of a Get-Exclusive, it
will not be prepared to observe its own Get-Shared request when it arrives back on the address network. An

invalid transition, such as the one in this example, will trigger a system recovery.

4.1.3 Cache Hierarchy and Memory Errors

Fault tolerance schemes for memory, both SRAM and DRAM, are already well-established, and we
present the error model and prior detection techniques for completeness. A systefafgitNehas to
protect the cache hierarchy and memory with ECC, since they contain memory blocks that could poten-
tially be the only valid copies in the system, so an uncorrectable error could be unrecov8edbtgNet

might thus encourage stronger error correcting codes. Memory chip kills can be tolerated by using a

RAID-like scheme for DRAM [28]. Unfortunately, a processor-cache chipkill partitions that chip’s associ-

. : . . 62
ated memory from the rest of the system, even if that memory itself is error-free. Tolerating this error

model could be achieved with distributed parity techniques similar to those used by ReVive [82].

4.1.4 Processor Core Errors

Processor errors can be detected with numerous schemes. Re-computation with shifted operands [98]
detects errors due to transient faults as well as some permanent faults. Redundant processors detect errors
in high-availability systems, such as IBM mainframes [102] and Stratus machines [117]. These redundant
processor schemes can tolerate processor faults, as well as detect their resultant errors, for a significant cost
in replicated hardware. Recently, redundant threads have been used to detect transient processor errors.
AR-SMT [91] was the first proposal, and subsequent research has further developed these ideas [87, 106,
69].

SafetyNemay not be the best solution for handling processor errors, since localized forward error recovery
(FER) schemes can also tolerate processor faults. DIVA [6] implements dynamic verification of an aggres-
sive processor core using a simple, verifiable checker core. Simultaneously and Redundantly Threaded
processors with Recovery [110] tolerates processor faults using redundant threads. While these FER
schemes could be used insteadSeffetyNet, SafetyNptovides a unified mechanism that tolerates these
faults, as well as others. Moreov&afetyNetoes not suffer a performance penalty due to the output com-

mit problem between processors, whereas error detection and correction is on the critical path for localized
FER schemes. With coordinated global recovery, nodes can exchange data with each other without having
to first perform error correction, since the system can be recovered if an error is detected later. We explore

this issue further in Section 4.2.

4.1.5 SafetyNetHardware Errors

The SafetyNehardware itself is also susceptible to faults, and we target single fault instances. We ensure
that the service processor is not a single point of failure by using redundant service processors. Another
possible single point of failure is the checkpoint clockSN-Directory so we distribute it redundantly.

Most other faults in th&afetyNehardware only manifest themselves during a recovery, which implies a
double fault situation. While many double faults are tolerate@hafetyNeta comprehensive coverage of

them would require heavier-weight hardware support. One important error model that results from a form
of double fault is the situation in which a cache or memory controller fails to log a block in the CLB and
then another fault soon thereafter (i.e., before that unlogged block would have been deallocated) triggers a

recovery.

Checkpoints of architectural state—processor registers, caches, CLBs, and memories—are prgtsected with
ECC, since an error in this state is unrecoverable if we have to restore a checkpoint. The CNs in the caches,
however, cannot be protected with ECC, since a flash clear operates independently on a single bit of a
word. Thus, we can protect the CNs by storing them redundantly. More efficient solutions may exist, but

we do not pursue this issue further.

The mechanism for communicating messages regarding checkpointing (e.g., a message telling each node
to validate a checkpoint) must tolerate faults. We assume a redundant transmission of these messages over
the existing interconnection network. One possibility is time redundancy, in which a message is sent multi-
ple times, possibly over different paths. Triple modular redundancy (TMR) with voting can mask a cor-
rupted or lost message in any of the redundant transmissions. Performance is not critical for these

messages, but reliable delivery is crucial.

4.1.6 Device Faults Not Tolerated witlbafetyNet

SafetyNet as currently specified, does not tolerate certain fault models. As previously discussed in
Section 1.5.3, there are three primary reasons why a fault would be unrecoverable. First, if detection mech-
anisms do not exist to detect the resultant error, then the fault cannot be tolerated. While this may seem
obvious, it is important to realize that an fault tolerance scheme is only as good as its corresponding error
detection scheme. Second, if the fault corrupts the recovery point state, the system is unrecoverable. Such
faults result in an error model that includes uncorrectable errors in architectural state as well as chipkill of
a processor-cache chip. Third, a fault that prevents the resumption of execution after recovery is not toler-

ated. For example, a fault that partitioned the interconnection network would not be tolerated.

4.2 Global Recovery versus Local Recovery

In this section, we compare global recovery wihfetyNetand local error detection to localized error
recovery schemes. Local recovery schemes may be simpler and faster than global recovery. However, they
place error detection on the critical path, since there is an output commit problem for inter-component
communication if global recovery is not available. Thus, error detection mechanisms must be fast. Global
recovery takes error detection off the critical path, thus enabling longer latency error detection mecha-
nisms. Global recovery exchanges the problem of local emorectionto the simpler problem of local

errordetection

In Section 4.2.1, we illustrate a general tradeoff between forward error recovery (FER), which is inherently

a local recovery scheme, and global backward error recovery (BER). In Section 4.2.2, we illustrate two

64

144

1.2

0.8
performance

0.6
0.4

0.2

0 02 0.8 1

0.4 0.6
fault rate
Legend

FER
BER

FIGURE 4-1. Rough comparison of BER vs. FER

We use a very simple linear model (with non-specific units) to compare BER and FER. FER riyintime
overhead is assumed to be 10% more than BER error-free performance. However, when errofs occur,
BER performance degrades by a constant recovery cost times the error rate. At the point where the

two curves intersect, FER’s runtime overhead equals BER’s overhead due to error recoveries|

examples of trading local recovery for global recovery on links in the interconnection network. In

Section 4.2.3, we discuss a similar tradeoff at the processors.

4.2.1 General Discussion of FER vs. Global BER

As a global checkpoint/recovery scherBafetyNeallows the system designer to trade FER for BER. Glo-

bal BER avoids the output commit problem for communication between components. In some places
where FER schemes are used to correct errors on transient or non-architectural (e.g., ECC on links), we
can replace error correction with the inherently simpler task of error detection. Trading FER for BER,
however, reveals a performance tradeoff that depends on error rates. If errors are frequent, FER is superior
to a BER scheme which requires a costly recovery for each error. However, if errors are infrequent, BER is
superior, since it optimizes the case of error-free execution and only pays a penalty when an error occurs.

This tradeoff is illustrated with a very rough model in Figure 4-1.

65
4.2.2 Interconnect Link Errors

There are numerous local recovery schemes for tolerating faults that cause errors on links in the intercon-
nection network. We discuss two examples of local recovery, one FER scheme and one BER scheme, and

we compare them to using local error detection in conjunctionSefbtyNet.

Local Recovery with Error Correcting Codes.Many systems use error correcting codes (ECC) to
tolerate faults that cause bit errors on links. Since this state is non-architectural, we can trade ECC for
EDC/SafetyNetWith global recovery, the system can detect (not correct) errors in the background, after
having speculatively—in the sense that the data is predicted to be error-free—used or communicated the

data. There are two advantages to this approach:

» Taking ECC off the critical path improves error-free performance and allows for longer latency error

detection. This advantage is a specific case of BER’s general advantage over FER for “low” error rates.

» Error detection is inherently easier than error correction. That is, an EDC code with a given number of
redundant check bit&, can detect more errors than an ECC code kwitieck bits will correct. For
example, to detect bit errors with a Hamming code requires a Hamming distanoe lyfwhile cor-

rection of n bit errors requires a Hamming distanc2nefl.

One caveat of using EDC instead of ECC is that we can only do this for non-architectural state. Thus, we
must still use ECC to protect the trusted architectural state in the caches and memories (and in the proces-
sors’ register checkpoint state, if that is not mapped to memory). With EDC instead of ECC, a fault in this
state would produce a detectable error, but it would be unrecoverable and necessitate a system failure and

reboot.

Another caveat of using EDC instead of ECC is that ECC is preferable if the error rate is sufficiently high.
This issue is just a specific case of FER'’s general advantage over BER for high error rates. However, even
then, a combination of the two schemes may be preferable. A short ECC masks the “easy” errors, while
long EDC is performed in the background. For “tough” errors that ECC does not correct, EDC detects

them and the system recovers witifetyNet

Local Recovery with Link-Level Retry. Besides EDC, other local recovery schemes exist for tolerat-
ing faults that cause link errors. The Spider router [36] in the SGI Origin uses link-level retry in the data
link layer to handle errors on links. Link-level retry is a local BER scheme that only partially takes error
detection off the critical path. Error detection does not slow down data link execution, but it must still be
performed before data can be provided to the next highest layer in the protocol, the message layer. If,

instead of link-level retry, we used EC8affetyNetwe would not have to wait for local error detection.

66
4.2.3 Processor Errors

Two choices for tolerating faults in a processor are to use either a recent scheme for localized FER or a
combination of processor error detection &BafetyNetDIVA [6] is a localized FER scheme for proces-

sors that uses a provably correct checker processor to gate possibly erroneous data from leaving an aggres-
sive processor. The checker processor is on the critical path, but it does not significantly degrade error-free

performance for quickly-detected errors.

Instead of using DIVA, we can use local error detection SafetyNetRecent processor error detection
mechanisms, such as AR-SMT [91], have used redundant threads to detect errors due to transient faults.
Combining AR-SMT withSafetyNeprovides transient fault tolerance comparable to DiW#thout put-

ting a checker processor on the critical path. Since DIVAs checker processor is not a major performance
problem, the decision to use DIVA versus AR-SNsafetyNetlepends mainly on other factors, including

cost and complexity.

4.3 Innovations in Hardware Error Detection

SinceSafetyNeis a global BER scheme that takes error detection off the critical path, we no longer need to
optimize error detection for latency. Tolerating detection latency enables the use of error detection tech-
niques that would otherwise be too costly in terms of performance. Most importantly, it allows for detec-
tion techniques that involve inter-node communication to determine whether end-to-end system properties
are being maintained. The power of end-to-end error detection is appealing, if we can develop system-wide

invariants that can be checked at a reasonable hardware cost.

Ideally, we would like to check that the system’s memory consistency model is maintained, since consis-
tency is the highest level of memory system correctness, but dynamic verification of memory consistency
is a difficult problem (in fact, it is NP-complete in theory [38], although perhaps easier in practice) for

future work. In this chapter, we will present two schemes for checking slightly lower-level system invari-

ants. Verifying system-wide properties enables us to catch errors that are more difficult (or even impossi-
ble) to detect with localized error detection. Moreover, a higher-level error model can catch errors not
specified in lower-level error models, and we will demonstrate examples of this property. However, a high-

level error model does not necessarily help to diagnose the low-level error, similar to how a low-level error

1. DIVA also tolerates permanent faults and design faults in the aggressive processor.

67
model does not necessarily help to diagnose the fault that cauddhits, if a high-level invariant fails

repeatedly, the system must undertake a somewhat general diagnostic check.

In Section 4.3.1, we first discuss how to check system invariants, in generasigyititure analysisCom-

ponents compute local signatures and perform a global reduction to detect errors. In Section 4.3.2, we
sketch a simplified example of a signature analysis scheme. We then describe two realistic examples of sig-
nature analysis schemes. In Section 4.3.3, we describe how to check message-level invariants. In

Section 4.3.4, we develop a technique for checking coherence-level invariants.

4.3.1 Detecting Errors with Signature Analysis

In this section, we describe in general how to sgmature analysiso detect violations of system invari-

ants due to errors. Signature analysis takes a large amount of input data—in this case, system states and
events—and produces a small output, calledignature that almost-uniquely characterizes the large
amount of input data. The idea of signature analysis has existed for a long time, and it is widely used in
built-in self-test (BIST) [1]. We will now discuss signature analysis, in general, before delving into the spe-

cifics of our signature analysis schemes.

All components in a signature analysis scheme maintain a local sign&firevherei is the identity of the
component. The local signature is updated for every event of interest, whedBelent at componelitis
denotedE(i,k). When obvious, we will denote an event simplyEgdor clarity of notation. Signatures are
updated according to an update functldnhat takes two parameterS(i) andE(i,k). Thus,S(i) = U[S(i),

E(i,k)]. We assume that events are processed in order of occurrence. To check for errors, a global reduction
of the local signatures is performed. The checking funct@rtakes all of the local signatures as its vari-
ables, and produces a boolean result of the f@8(0), S(1), ... , S(N-1)] = {true, falsewheretrue

denotes that a error was detected.

There are certain properties that are desirabld.ifthe functionU should be chosen so that the same sig-
nature almost never characterizes two different input streams (i.e., sequences of events), a phenomenon

known asaliasing We say that aliasing occurs if:

(S(1) = S())) OOK|E(, k) # E(], k) (EQ7)

2. Auseful analogy is that a high-level error model is to a low-level error model what a low-level error model is to a fault model.

A higher-level model can detect a wide range of lower-level faults, but it cannot diagnose them.

With perfect anti-aliasing itJ, C will not miss any errors detected by the signature analysis scr?gme. In
practice, however, engineering restrictions limit signatures to a finite number of bits, aagb bits can

only represeng® sequences of events. Since systems will have morezhpassible sequences of events,
different sequences will necessarily map to the same signature. A goal of signature analysis is to ensure
that sequences that are almost identical do not map to the same signature, at the cost of allowing radically

different sequences to map to the same signature.

In addition to anti-aliasing, is also chosen to achieve certain properties that depend on the specific signa-
ture analysis scheme that is being used. For example, the signature analysis scheme in Section 4.3.3 will
requireU to be a commutative function, and the scheme in Section 4.3.4 will require a non-commutative

function. A functionU is considered commutative if:
UTU(S(i),E(1, m)),E(i,n)]= U[U(S(i),E(i, n)),E(i, m)] (EQ8)

To perform signature analysis BafetyNetall cache and memory controllers will maintain local signa-
tures, update their local signatures with functidnand then the reduction ched®, will be performed at

each checkpoint to detect errors. Thus, designing a signature analysis scheme entails choosing two func-
tions,U andC. The reduction can be implemented on top of the existing mechanism for validating check-
points. In Section 2.2.5, we explained how all cache and memory controllers send a message to the system
service processor when they are ready to validate a checkpoint. We now add a signature as the payload of
that message (i.e., componésendsS(i)), and the service processor performs the checking reductitin

the check detects no errors (i.€=false), the service processor completes the validation by notifying

every node. Otherwise, the service processor triggers a system recovery.
Signature analysis will detect the targeted errors unless one of three aliasing situations arises.

« Aliasing could occur due to finite resources for implementing the signature analysis scheme. We do
not address this issue further in this thesis, since it is simply an engineering tradeoff, and this type of
aliasing can be made arbitrarily small at the cost of additional hardware. Many typical signature analy-
sis functions convolve the input stream with a pseudo-random number generator so as to reduce alias-
ing to an arbitrarily small probability. In hardware, pseudo-random number (PRN) generation is often

implemented with a linear feedback shift register (LFSR) [40].

« Aliasing could occur because of a fault in the signature analysis hardware itself. This is a double fault

scenario, and it could be tolerated with additional mechanisms, but we do not address this issue further.

« Aliasing could occur because the chosen update functiprinherently suffers from aliasing.6I%or
example, if an update function adds the address of an incoming mess&@atud the address is zero,
then the occurrence of this event (the incoming message) is indistinguishable from the case in which it
did not occur. As such, aliasing could occur even with infinite hardware resources for implementing
the signature analysis. We address this form of aliasing in our examples of signature analysis, since it

is a fundamental property of the schemes and not an implementation artifact.

4.3.2 Developing a Simplified Signature Analysis Example

In this section, we develop a simplified signature analysis scheme for purposes of illustration. The scheme

is based on the “Kirchoff's Current Law” (KCL) reduction performed by the Thinking Machines CM-5

[62]. The CM-5 check ensured that the number of data messages entering any region of the interconnection
network equaled the number of messages leaving the region. We simplify this invariant and check that the
sending of each message has a corresponding reception. We assume that all messages have a single desti-
nation. An eventE, is the sending or reception of a data message. If sending corresponds to addition and

reception corresponds to subtraction, a system-wide reduction should sum to zero.

The update functiorjkcy, is:

() +1,ifEisasend _

Ued[S(), E]= 05(i) -1, if E is a receive’

(EQ9)
Note that function arithmetic uses a finite number of bits with wraparound. The corresponding check func-

tion, Ckcy, is:

rue, if ¥ S(i)#0
CKCL[S(O)ls(l)!"' !S(N)] = g |Z E (EQ 10)
U false otherwisel

Aliasing can occur here for a variety of reasons. For example, if a double fault occurred such that one mes-

sage was dropped in the network and another message was accidentally sent twice, this signature analysis

scheme would not detect the error.

4.3.3 Checking Message-Level Invariants with Signature Analysis
In this section, we develop a signature analysis scheme for detecting message-level &xb&niooping

We will detect all errors that lead to the loss, corruption, or reordering of messages in the snooping system.

We now develop a simplified update functidsy, , for detecting message-level errors in the addrgs(?s net-
work, and we will gradually describe a more sophisticated example. For each checkpoint that a cache or
memory controller agrees to validate, it computes a signature based dp taherence requests (i.e.,
address messages) it processed in that checkpoint interval. An Egigotis the processing of thi!
incoming coherence request at componeAtsimple update functiort)y, , adds the address of the coher-

ence requesfddress(E)to the current value of the signatusgi).
Uw [S(1), E]= S(i) + Addresg¢ B (EQ 11)

The check functionCy, , detects if any component did not observe the same sequence of broadcasts as the

rest of the components:

CulS(0),8(1).... S(N]= [s [SO S= .= SN (EQ12)
CombiningCy,,_ with this simpleUy,_detects corrupted messages, some lost messages, and no reordered
messages. First, we discuss aliasing that hides lost messages. Imagine the case in which a fault causes
cache controllei to lose an incoming address message for address 22, and this wﬁéhtheessage.
Moreover, theTC+1th message is also for address 22. At this point, cache contiatlmputes the “cor-

rect” signature and sends it to the service processor, and the error is not detected due to aliasing. A simple
solution to this problem is to computé, based on more fields of the message than just the address, such

as the requestoRequestor(B)or request type, for example. We denote concatenation with a comma.
Uy [SC), EI= S(i) + (Addresg B, Requestof) (EQ 13)

The scheme described thus far still suffers from aliasing that may not detect reordered messages. In many
broadcast snooping systems, the totally ordered address network is not implemented as a bus, but rather as
a collection of buses [18] or a hierarchy of switches. In these interconnection networks, a fault can poten-
tially lead to reordering of messages, which violates the required total order. An update function based on
addition, which is commutative, will not detect these errors, since adding Message A before Message B
produces the same signature as if they had been added in the other order. To avoid this form of aliasing

requires a non-commutative functibiy . An example of such a function is:
U IS0D), El= (2% S(i)) + (Addresg B, Requestof B) (EQ 14)

So far, we have established two necessary qualitidgyfpr

. . : . 71
» The input per message must be more than just the address, since otherwise repeated addresses can mask

dropped messages.

* Uy must be non-commutative, since otherwise re-ordered messages will not be detected.

The function that we choose)y, " , is a variant ofUy, " that is easier to implement in hardwalé, "
shifts S(i) one bit to the left (denoted b$(i) << 1) and then Exclusive-ORs (XORs) the address and

requestor of the incoming coherence request:
UML"'[S(i), E]= [S(i) «1] O [Addres$ B, Requestof K (EQ 15)

This function satisfies our two requirements and is also easy to implement in hardware. Similarly, we could
have implemented a function using an LFSR, since signature analysis based on LFSRs is non-commutative
and will therefore detect reordering errors, as well as corrupted or lost messages. LFSRs have better anti-
aliasing properties (in terms of implementation-limited aliasing) than the function we ctggé. is

intended more for illustrative purposes than as a final design point.

This signature analysis scheme avoids inherent aliasing, which enables it to reliably detect a wide class of
errors. We detect all single instances of corrupted mes%ag@qaped messages, and reordered messages.
We detect many multiple fault situations, although any fault that affects the reception of the message at

every node in the same way will elude detection.

We implemented this signature analysis detection scheme on ®N-&nhoopingTo further test its capa-

bility to detect errors in this error model, we injected them into the system. The signature analysis scheme
successfully detected the errors and triggeBafetyNetecoveries of the system. This signature analysis
scheme catches some errors that are difficult to detect with localized error detection schemes. Most nota-
bly, it is difficult to detect in a broadcast snooping system if a node with shared permission to a block does
not receive a Get-Exclusive for that block. In most directory protocols, lost messages are easy to detect
because requests must be acknowledged. However, if this error is not detected in a broadcast snooping sys-
tem and that shared node continues to load from the block, then a violation of coherence as well as the

memory consistency model is possible.

The primary cost of this signature analysis scheme is extra hardware, since the latency of performing the

signature analysis is hidden. Extra hardware is required to®@)dout this hardware is simply a shift reg-

3. To be more precise, we detect all message corruptions in which the Address or Requestor field is corrupted. Detecting corrup-

tions of other fields simply requires computing updates based on those fields, too.

72
ister. Hardware is also required for performing the update functigp,” . Since the signature is held in a

shift register, computation of the new signature only requires XOR logic.

4.3.4 Checking Coherence-Level Invariants with Signature Analysis

In this section, we develop a scheme for testing coherence invariants in a cache coherence protocol. With
update and check functions different from those in Section 4.3.3, we can check high-level invariants of the
coherence protocol. For example, we can detect if a sharer did not downgrade permission to a block after
an invalidation was received. Unlike the message-level scheme, we want a commutative fulgtion

since there are no ordering requirements for coherence. We just care that the coherence invariants are met

within the checkpoint interval, but there are no ordering requirements within the interval itself.

The cache coherence invariant we choose to test is that every upgrade of coherence permissions at a con-
troller (cache or memory) is reflected in an appropriate downgrade at one or more other controllers. This
invariant is somewhat similar to an invariant that was statically checked off-line during the verification of
the Alpha 21264 microprocessor [108]. At a high level, if an upgrade is considered an addition of a con-
stant times the number of downgraders, and a downgrade is considered a subtraction of the same constant,

the global reduction should sum to zero at the end of every checkpoint interval.

The check functionC¢|, is the same a€y | in Section 4.3.2, since this invariant is similar to the KCL

invariant checked in that example:

rue, if S S(i)#0
CalS(0).5(1),...s(n]= B 2 : (EQ 16)
U false otherwisel

The update functiorl)|, operates on the address of the coherence reqhdditess(E)i.e., Address(E)s

the constant that is added/subtracted for each upgrade/downgradé Avenpgrade addaddress(E}o

S(i), and a downgrade subtractsidress(E)from S(i). For Get-Shared and Put-Exclusive requests, the
update process is simple, since there is one upgrader and one downgrader. For a Get-Shared, the owner
who satisfies the request is considered the downgrader. However, since a single Get-Exclusive upgrade can
cause multiple downgrades, we would need to multiply the address that is to be added by the number of
controllers that should downgrade as a result. There are different issues involved in implementing this

analysis in snooping and directory coherence protocols, and we discuss both now.

4. To avoid aliasing due to situations in whidkldress(E)=0Qwe can use more sophisticated constants, suglddsess(E) || 1To

simplify notation, though, we simply ugeldress(E)n this discussion.

73
TABLE 4-2. Coherence-level signature update functiongN-Snooping?®

EventE Controller State | UcL[S(1), E]
Own Get-Shared I->S S(i) + Address(E)
Own Get-Exclusive lorS->M S(i) + N*Address(E)
o © | Own Put-Exclusive OorM->1 S(i) - Address(E)
:__% g Other Get-Shared lorS S(i)
°s OorM S(i) - Address(E)
Other Get-Exclusive I, S, O,orM S(i) - Address(E)
Other Put-Exclusive I, S, O,orM S(i)
Get-Shared lorS S(i) - Address(E)
>3 OorM S(i)
% g Get-Exclusive I, S, O,orM S(i) - Address(E)
€ 9 | Put-Exclusive OorM S(i) + Address(E)
address not at home S(i)

a. Shaded entries reflect updates that have no eff&tijon

SN-Snoopingln SN-Snoopingthe upgrader does not necessarily know how many downgraders exist.
Ignoring the possibility of silent downgrades from Shared (Put-Shared requests), this problem can be
solved by having the response from the owner to the upgrader (i.e., the data or the acknowledgment)
include the number of downgraders, since the owner can keep track of this. However, most protocols do
allow silent Put-Shared requests, so we solve this problem differently. Our solution to not knowing the
number of downgraders for a Get-Exclusive is to assume that all other cache controllers and the home
memory controller are downgraders. As shown in Table 4-2, a Get-Exclusive requestor increments by the
request’s address multiplied by the number of nodes in the sy®grar{d every other cache controlléN-(

1) plus the home memory controller decrements by the address (regardless of whether they have the
block). A Get-Shared requestor increments by the address, and the owner who satisfies the Get-Shared
request (either the memory controller or a cache controller in O or M) decrements by the address. A Put-
Exclusive requestor decrements by the address and the memory controller increments by the address now
that it is the owner. All of these transactions sum to zero if no errors occur, as shown in the equation for
CcL-

We implemented this coherence-level signature analysis error detection scheme orSid{Snboping

We injected errors into the system, including dropped messages and incorrectly processed messages, and

the signature analysis indeed detected all of these errors. This signature analysis scheme, like the message-

level scheme presented in Section 4.3.3, can also detect errors that would be difficult to detect7€vith more
localized error detection schemes. If a Shared node processed an incoming Get-Exclusive from another
node but did not invalidate its copy of the block, then the system can violate both cache coherence and the
memory consistency model. This error example differs from the one in Section 4.3.3 in which the other

node’s Get-Exclusive was dropped before it could arrive at the Shared node.

The primary cost of this signature analysis scheme is also extra hardware, since the latency of performing
the signature analysis is hidden. The current value of the signature is held in a register. Hardware is also
required for re-computing the signature upon the arrival of every coherence request. The hardware to per-
form this computation is more complicated than that required for the message-level signature scheme,
since the coherence-level signature function requires either subtraction or the combination of addition and

multiplication. Thus, an adder and a multiplier are needed.

SN-Directory.While SN-Directoryhas less trouble thaBN-Snoopingvith silent Put-Shared requests, it

has two different problems. First, in three-hop transfers, a sharer that gets invalidated by a Forwarded-Get-
Exclusive does not know the associated request’'s point of atomicity. In a three-hop transfer, the initial
request is sent to the directory, which then forwards the request to the owner and sends invalidations to the
sharers. The request’s point of atomicity, however, is not determined until the forwarded request is pro-
cessed by the owner. Second, it is difficult for a node to determine that it can send its signature for check-
point CP to the service processor, since there could be Forwarded-Get-Exclusives in-flight towards that
node. If these Forwarded-Get-Exclusives are part of a transaction with a point of atomicity in checkpoint
CP, then the node would have needed to include them in its signature computation. Both of these problems
can be solved with additional messages and complexity, but this brute force solution may not be worth-

while. Finding a more attractive solution is an open problem.

Summary of Coherence-Level Signature Analysisthis signature analysis scheme detects all sin-
gle instances in which a transaction incurs a mis-matched number of coherence upgrades and downgrades.
It also detects many multiple error situations, although not all. For example, a byzantine fault that caused

an upgrader to downgrade and a downgrader to upgrade would cause an undetectable error.

4.4 Summary of Availability
In this chapter, we have addressed the issue of availability and how to improve BafiettyNetWe first
described some traditional error detection mechanisms and how they interachafittyNetWe then

developed some innovative error detection technigues that are enabtafdtyNes$ ability to tolerate

. : . 75 .
long detection latencies. Longer latency detection can be more powerful and more end-to-end (i.e., less
localized) than schemes whose latencies are on the critical path. Notably, we developed two signature anal-

ysis schemes for detecting violations of system-wide invariants.

76

77

Chapter 5

Designability

Systems are becoming increasingly complicated, making both design and verification increasingly diffi-
cult. We would like to ease these problems by relyingSaietyNetour checkpoint/recovery scheme, in

the case of design errors, whether they are dusptculatively correct desigor unintentional design
faults. SafetyNetheckpoint/recovery unifies the support for designability with the support of availability

that was discussed in Chapter 4.

In Section 5.1, we discuss speculatively correct design, and we discuss how to enable two examples of it
with SafetyNetln Section 5.2, we discuss how to USafetyNeto tolerate certain classes of unintentional

design faults.

5.1 Errors due to Speculatively Correct Design

Speculatively correct design of systems can improve performance and reduce costs, provided that errors
due to mis-speculation can be detected and tolerated. The cornerstone of our philosophy is to allocate our
resources—transistors, design time, verification effort—towards common-case events rather than rare cor-
ner-case events. If possible, we would like to reduce the cost of infrequent and complex events by simply
treating them as “errors” and recovering from them. In the past, this approach has been employed for solv-
ing complex processor hardware problems in software. For example, processors have trapped to software
for standard floating point arithmetic, such as the Intel 80386 without the 80387 floating point coprocessor.
No recovery is necessary for these traps to software. Also, numerous architectures give the user the option
of trapping to software for IEEE standard denormalized floating point arithmetic, including SPARC v9
[105] and Intel 1A-64 [51]. Localized processor recovery may be necessary in these cases to support pre-
cise interrupt semantics. We seek to extend speculatively correct design beyond the processor and into the
system. Since system components can thus communicate speculative data amongst themselves, we must

provide global recovery to recover from these errors.

Errors due to speculatively correct system design fall into a specific region of the error space. In Table 5-1
(identical to the middle two rows of Table 1-1), we illustrate two examples of errors due to speculatively

correct design. The cause of these errors (the fault) is mis-speculation, i.e., the designer intentionally did

78

TABLE 5-1. Classification of illustrative errors due to speculatively correct design

Detection/ Recoverable Resumability

Error Fault Manifestation with SafetyNet | Mechanism
%‘ deadlock due to insuf{ speculative timeout on request| yes slow-start exd-
2 ficient buffering in underdesign cution after
S < | ICN (Section 5.1.1) recovery
o .2
Q & | out of order message| speculative use | invalid transition in | yes disable adap-
g T | arrivals on “in-order” | of adaptive protocol engine tive routing dur-
< © | ICN (Section5.1.2) | routing ing re-execution
3 8
2
e
o}

not design for certain circumstances, in effect predicting that these circumstances are rare. Detection is
easier than in general because, by definition, the designer knows exactly where the faults are and how they
manifest themselves as errors. Also, the errors that can arise due to the speculatively correct designs that
we explore in this thesis are all recoverable witaifetyNet-otherwise, we could not employ speculation

and maintain correctness in all situations. Lastly, speculatively correct designs must ensure resumability by
avoiding livelock. Naively re-executing after recovery can lead to livelock, since the resumption of execu-
tion may keep encountering the same design error immediately after each recovery. For both examples of
speculatively correct design that we present later in this section, we will explicitly describe our approach
for avoiding livelock. We also address how to avoid high mis-speculation rates due to pathological situa-

tions.

In the rest of this section, we explore two examples of speculatively correct designs. First, in Section 5.1.1,
we discuss how to simplify the design of deadlock avoidance in interconnection networks. Second, in
Section 5.1.2, we enable adaptive routing in the interconnection network, even though the interconnect
must guarantee point-to-point ordering of messages. Lastly, in Section 5.1.3, we discuss how to avoid

pathologically bad mis-speculation rates.

5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design
Interconnection networks for multiprocessors are difficult to design, largely because it is difficult to
achieve high and robust performance while verifying that deadlock is impossible under all situations. Inter-
connect deadlock (as opposed to coherence protocol deadlock) can occur due to the combination of cross-
coupled requests and insufficient buffering for in-flight messages. For example, consider the simple exam-

ple illustrated in Figure 5-1. In this example, switch S1 wants to send message M1 to switch S2, and S2

79

— full —» switch S1

switch S2 <«— full -

FIGURE 5-1. Example of deadlock in interconnection network

wants to send M2 to S1. However, the buffer from S1 to S2 and the buffer from S2 to S1 are both full and
unable to accept new messages. Moreover, neither switch will process its incoming queue until it can send
its outgoing message. Thus, if incoming message buffers are processed in FIFO order, the interconnection

network is now deadlocked, since neither M1 nor M2 can make progress through the interconnect.

To avoid deadlock, interconnects either use worst-case buffering or some scheme, such as virtual channels
[25], to break the cyclic dependences that can lead to deadlock. Employing worst-case buffering at each
switch is the simplest solution, but the worst case is often far worse than the common case. Worst-case
buffering can, for example, be proportional to the product of the number of nodes, the number of outstand-
ing messages a node can have simultaneously, and the size of a message. Moreover, the worst case occurs
exceedingly rarely, if at all, so we would like not to devote a disproportionate share of our resources to han-
dling it.

To avoid the costs of worst-case buffering, a host of other techniques can be used to ensure that deadlock
cannot occur. Flow control techniques restrict the flow of messages in the interconnect so that buffers are
kept from filling up and potential deadlocks are avoided. The most common flow control technique is vir-
tual channel flow control [25], a scheme that breaks the circular dependencies among messages that are
necessary to get deadlock. Virtual channels break dependencies by assigning dependent messages on
higher priority virtual channels. In our simple example, if M1 was on virtual channel 1 (VC1) and M2 was

on VC2, then deadlock would have been avoided. Flow control techniques are well-understood, yet they
are not simple to implement nor are they easy to verify correct. For example, the SGI Origin 2000 directory

protocol [60] has only two virtual channels instead of the three (Request, Forwarded Request, and

Response) that would have ensured deadlock avoidance in all protocol situations. Instead, the (%(Pigin relies
on a higher level mechanism to nack its way out of the deadlocks that occur due to this limitation. Given
the expertise of the Origin’s architects in this area, we do not suggest that this is a design error; rather, we
use the Origin as an example of designability trade-offs. At the other extreme, the Alpha 21364 intercon-
nect uses seven virtual channels [68], demonstrating that virtual channels are not prohibitively compli-

cated.

Existing techniques for ensuring deadlock-free interconnects are either costly (worst-case buffering) or at
least somewhat complicated (virtual network flow control). We would like to be able to design a simple
network without resorting to worst-case buffering. The key to achieving this goal is to fall baBkfety-

Netin those rare situations in which such an interconnection network deadlocks. We treat deadlocks as

errors, similar to the device errors that were discussed in the context of availability.

Fortunately, the error model for this type of underdesign is clear and detection is straightforward. Deadlock
in the interconnection network can be detected simply by time-outs at the requestor. Time-out latency is
chosen to be long enough to mitigate false positives while short enough to be hidGafebyNes pipe-

lined checkpoint validation. We set time-out latency equal to the sum of the latencies of three hops of con-
gestion-free traversals through the interconnect, cache/memory access, and slack for congestion. If a
message gets stuck in the network, the coherence transaction to which it belongs will not complete. The
requestor of the transaction will timeout and trigger a system recovery. If time-outs are being detected
repeatedly, the system performs diagnostics to determine the cause. If no switch or link is found to be dead,

the system then assumes that the speculatively correct design is the culprit.

To avoid livelock,SafetyNemust ensure that the system will not continually deadlock due to insufficient
interconnect buffering. Thus, the system temporarily enters a “slow-start” mode, in which nodes are only
allowed to have one outstanding request. As long as we provide enough buffering in the interconnect to

satisfy this restricted number of requests, slow-start provably avoids livelock.

To demonstrate the utility of easing interconnection network design, we implemented a network with buff-
ering sufficient for the average case (i.e., less than worst-case buffering) and one virtual channel (i.e., the
virtual channel is the physical channel). On top of this interconnection network, we run our MOSI direc-
tory protocol that normally requires four virtual channels to ensure deadlock avoitlameee case that
deadlock is detected, the system recovers and resumes execution. If deadlock is frequent, the cost of recov-

eries will degrade performance, but infrequent deadlock will have negligible impact on performance.

1. Most directory protocols only require three virtual channels, but this protocol has a fourth for Final-Ack messages as explained

in Chapter 2.

To determine the performance impact of such recoveries, we compare the performance of ?hlis system
against a system with the same protocol running on an interconnection network with four virtual channels.
We discover that the performance difference between the two systems is indistinguishable, for two reasons.
First, deadlock does not occur. We can only get the system to deadlock when we reduce the buffering to the
size of one entry per buffer and, even then, deadlocks are exceedingly rare. (Deadlocks are far more fre-
guent when the memory system is driven by our random tester, which enables us to test our system more
thoroughly.) Second, this experiment only measures performance loss due to deadlock recovery and not
because of stalls due to limited buffering. Other buffers in the system, including those at the endpoints of
the interconnect (i.e., where the interconnect meets the nodes) are infinite, so the system can drain unless
deadlock occurs due to cross-coupled requests. Thus, buffers of size one perform equivalently to buffers of

size five, except for the cost of the recoveries due to deadlock.

We conclude from this experiment that speculatively under-designing the buffering in the interconnection
network is a viable solution to deadlock avoidance that allows the designer to target common-case execu-

tion. With SafetyNeta designer can size the interconnect buffers for performance and not for correctness.

5.1.2 Enabling Adaptive Routing in the Interconnection Network

Interconnection networks can often achieve greater performance by using adaptive routing. Such intercon-
nects allow, for example, two messages from switch S1 to switch S2 to take different paths. Adaptive rout-

ing can improve performance by distributing traffic more evenly across the interconnect and by enabling

messages to be routed around localized congestion in the interconnect. In general, the flexibility of adap-

tive routing provides opportunities that system designers would like to be able to exploit.

A problem with adaptive routing, however, is that it complicates the enforcement of point-to-point order in

the interconnection network. We illustrate this problem in Figure 5-2, in which two messages are sent from

a source node to a destination node. The source sends message M2 after sending message M1, but M2
arrives first at the destination. The reversal in arrival order could be due, for example, to higher contention
along the path taken by M1. With static routing, both messages would have followed the same path and

thus arrived in order.

Some directory-based cache coherence protocols rely upon point-to-point order to avoid certain race con-
ditions. One common example of these races occurs when the owner of a block, processor P1, sends a Put-
Exclusive to the directory and another processor, P2, sends a Get-Exclusive for the same block to the direc-
tory that arrives first. The directory responds to both messages by sending a Put-Exclusive-Ack and a For-

warded-Get-Exclusive to P1. If those messages arrive in the reverse order of when they were sent (i.e., the

82

message M1
SOURCE NW NE
Switch Switch
message M2 message M1
SW SE DESTINATION
Switch % Switch
message M2

FIGURE 5-2. Violating point-to-point order with adaptive routing

Message M1 and message M2 are sent, in that order, from the NW Switch to the SE
Switch. Message M2, however, arrives before message M1.

Put-Exclusive-Ack arrives first), then P1 sees the Put-Exclusive-Ack and downgrades to Invalid. Thus, it
cannot handle the incoming Forwarded—Get—Exclu%i%cectory protocols can be designed to handle this

race, but doing so complicates the protocol.

SafetyNets well-suited to speculatively providing the illusion of a point-to-point ordered network in the
presence of adaptive routing. First, the routing algorithm, while adaptive, is still unlikely to violate point-
to-point ordering. Second, even when it does violate ordering, very few re-orderings impact correctness.
Except in the example described above, re-ordering does not matter, for several reasons. First, in this proto-
col, point-to-point ordering is only required on one virtual network (the Forwarded Request virtual net-
work). Second, ordering only matters for messages concerning the same block of memory. Third, even for
messages concerning the same block, only certain messages need to be ordered. For example, multiple
Forwarded-Get-Shared messages can be sent from the directory to the owner of a block, but the order in
which they arrive does not matter for correctness. In particular, the situation in which a Put-Exclusive-Ack

races a Forwarded-Get-Exclusive is particularly rare, since Put-Exclusive requests themselves are rare;

2. There is another common race case that is avoided by point-to-point ordering, although this case does not exist in our particular
protocol. If the directory forwards a Get-Shared and then a Get-Exclusive for the same block to the owner, and the owner
receives these forwarded requests out of order, then the owner will observe a Forwarded-Get-Shared in state Invalid (or some

other incorrect state).

83
moreover, it is unlikely that a block that is being evicted at one node is actively wanted by another node.

(This race happens much more frequently in our random tester than for real workloads.)

We implemented &afetyNesystem with an adaptively routed interconnection network and a directory
cache coherence protocol that relies upon point-to-point ordering. The interconnection network, which is a
two-dimensional torus, supports multicasts and broadcasts by splitting multicast/broadcast messages along
their traversals. The adaptive routing algorithm allows messages (unicasts, multicasts, or broadcasts) to
choose among minimal distance paths based on outgoing queue lengths in each direction. While adaptive
routing can break point-to-point order, it can also cause deadlock. To isolate the issue of adaptive routing
in this experiment, we avoid deadlock in this discussion by providing full buffering, although numerous

more clever solutions exist, such as Duato’s scheme for deadlock-free adaptive routing [29].

Classifying this error model in the error space clarifies the issues involved. Faults manifest themselves, as
errors, as invalid transitions in coherence controllers, so we detect illegal message re-orderings by having
cache controllers detect the specific incorrect transition in the coherence engine. For our race case, a cache
with a block in state Invalid that receives a Forwarded-Get-Exclusive determines this situation to be an
“error” and triggers a system recovery. This “fault” cannot manifest itself in any other fashion. Diagnosti-
cally, we assume that this situation arose because of a speculative re-ordering, even though it could be due
to another cause/fault. We could use a more sophisticated diagnosis mechanism, possibly labeling mes-
sages with small sequence numbers. However, the simple solution which leads to occasional false positives
(i.e., situations in which a cache controller receives a Forwarded-Get-Exclusive in Invalid for reasons other

than speculative re-ordering), is sufficient.

This system appears to have more errors than a similar system without adaptive routing. To ensure resum-
ability, we allow the interconnection network to disable adaptive routing temporarily, so that forward
progress can always be made. Our heuristic disables adaptive routing until the resumption of execution has

progressed beyond the point at which the error occurred that triggered the recovery.

We evaluated the performance of this system to determine if the positive benefits of adaptive routing out-
weigh the performance cost of recoveries due to illegal re-orderings. In Figure 5-3, we plot the relative per-

formances of three systems with link bandwidths of 400 MBytes/second:
« Unprotected with static routing
» SafetyNetvith static routing

« SafetyNetvith adaptive routing

84

15

N
N

NN

1.0+

[unprotected - static routing
[SafetyNet - static routing
SafetyNet - adaptive routing

0.5

]

normalized performance

NN

N

0.6-

jbb

FIGURE 5-3. Performance of a system with adaptive routing

apache dlashcode oltp barnes

SafetyNetprovides the illusion of a point-to-point ordered interconnection network.

The adaptive routing scheme used in this experiment allows switches to route a message along any mini-
mal-length path to its destination. Among these choices, the switch chooses the outgoing link with the

smallest buffer occupancy.

We normalize the results to the performance of the unprotected system, and we observe that adaptive rout-
ing achieves a significant speedup for our workloads. There are two reasons for this speedup. First, the
adaptive routing enables the system to better utilize its links. Link utilization was greater for every link
with adaptive routing. Second, adaptive routing incurs very few recoveries, despite frequent re-orderings,
because the vast majority of re-orderings do not affect correctness. In fact, we only observed a handful of
recoveries in all of our simulations! However, we reassure ourselves that this race is possible and must be
handled correctly, since it does occur occasionally in our workloads and it occurs much more frequently

when we drive our system with a random tester instead of real workloads.

The performance impact of adaptive routing is partially a function of the available bandwidth provided by
the interconnection network. With less bandwidth, adaptive routing has more opportunity to route around
congestion. In the results just shown, we decreased the link bandwidth to 400 Mbytes/second, which is far
less than the 6,400 MBytes/second assumed in Chapter 3. While this example may thus appear somewhat
contrived, this experiment still provides a proof of conc&afetyNetnables adaptive routing in a situa-

tion in which it was not previously possible.

85
5.1.3 Avoiding Pathological Mis-speculation

Speculatively correct designs will mis-speculate. The key is to ensure that mis-speculation rates cannot
severely degrade performance. Mis-speculation rates must not rise too quickly as system parameters (e.g.,
processor speed, number of outstanding requests) or workload characteristics change. Both of these trends
could increase the workload intensity and could cause more mis-speculations. Mis-speculation must also

not fall victim to a pathologically bad situation, whether unintentional or due to malicious software.

Our two examples of speculatively correct design have both a natural feedback mechanism for reducing
mis-speculation and fail-safe mechanisms for ensuring forward progress in pathologically bad situations.
First, the natural feedback loop is the latency through the memory system. As workload intensity increases,
due to system or workload trends, the memory system bottleneck limits the throughput of cache coherence
transactions. Since these are closed systems, the feedback mechanism reins in even the most intense

offered loads.

Second, both speculatively correct designs have a fail-safe mechanism for ensuring forward progress, even
in the most pathologically bad situations. For the under-designed buffering example, the system can enter a
slow-start mode for which the limited buffering satisfies the worst-case offered load in slow-start. For the

adaptive routing example, the adaptivity can be temporarily disabled.

5.2 Errors Due to Unintentional Design Faults

SafetyNetan be used to tolerate unintentional design faults, if their resultant errors can be detected reli-
ably [16, 34] and they permit resumption of execution after recover. The ability to tolerate unintentional
design faults that slip through testing and verification could speed up a system’s time to market. However,
since these types of design faults are unintentional, it is difficult to target them with specific error detection
mechanisms. By definition, these faults are not included in the fault model. Ironically, if we knew the fault

modela priori, we would have avoided the design fault in the first place!

Unintentional design faults manifest themselves as errors at some point either late in the design/verifica-

tion cycle or even after the system has been shipped. At this point, the producer has several unappealing

options:

» Re-design the system to eliminate the fault and re-verify the system, possibly after having to recall the
shipped product.

» Publish the existence of the fault.

» Ignore the fault.

86

TABLE 5-2. Classification of illustrative errors due to unintentional design fault8

coherence protocol

design fault

Recoverable Resumability
Error Fault Detection with SafetyNet | Mechanism
" unspecified edge case unintentional invalid state in pro-| yes slow-start
< | in coherence protocol design fault tocol engine execution after
& recovery
c
‘3 % Intel's FDIV bug [13] | unintentional self-checking yes software FP
=R design fault program routine
g g routing bug in unintentional invalid state in pro-| yes depends on
= £ | half-switch design fault tocol engine or tim- specific bug
g eout
g deadlock situation in | unintentional timeout at requesto| yes depends on spe

cific deadlock

a. We shade the errors tf#dfetyNetannot tolerate (or may not be able to tolerate) without software support.

It would be preferable to instead tolerate errors due to the faultafletyNeand then perhaps re-design

and re-verify a future spin of the system.

Classifying errors due to unintentional faults, which we will refer tadasign errorsin the error space

helps to focus on the difficult issues in tolerating these faults. We illustrate examples of design errors in

Table 5-2 (in which the first two rows are identical to the last two rows in Table 1-1). The cause of these

errors is design faults that did not get caught by testing or verification. Detection of design errors is diffi-

cult in general, but fortunately some types of design faults manifest themselves in ways similar to device

faults. For example, a device fault that corrupts a coherence message by changing a Get-Shared request to

a Get-Exclusive request looks much like a design fault that leads to a cache controller issuing a Get-Exclu-

sive instead of a Get-SharesiafetyNetan recover from some design faults, such as Intel's FDIV bug, that

may require software intervention to avoid subsequent livelock in this case. Other types of design faults are

simply unrecoverable.

For those unintentional design faults that manifest themselves equivalently to device faults, the error detec-

tion techniques presented in Chapter 4 suffice for detecting both classes of errors. Particularly for design

errors, the end-to-end signature analysis detection methods will be effective. More localized error detec-

tion techniques are less able to detect errors due to system-level design faults. For example, link-level ECC

in the interconnection network will not detect that a Get-Exclusive message was sent instead of a Get-

Shared message, since the erroneous Get-Exclusive message will pass ECC. However, the coherence sig-

nature analysis technique presented in Section 4.3.4 will detect this design error. Another option for detect-

ing design errors might be a field programmable detection mechanism for targeting faults in the field.

Diagnosis of an unintentional design error is a difficult challenge. When it is first detected, the8d7esigners
and verifiers must try to reproduce it and determine its cause. The FDIV bug was diagnosed after reports
from users that floating point division occasionally produced incorrect results. After initial diagnosis by the
producer, the designers must determine whether the system can diagnose this error in the field and handle
it appropriately. For the FDIV bug, this was not the case. For the design error that will be presented in
Section 5.2.1, which is due to an unspecified corner case in a cache coherence protocol, the system can
diagnose the error based on the specific invalid transition in a protocol engine, and it can take appropriate

measures to ensure resumability.

In the rest of this section, we first present an example of an unintentional design fault that can be tolerated

with SafetyNetand then we present a more general discussion of which design faults can be tolerated.

5.2.1 An Example in the Cache Coherence Protocol

Cache coherence protocols define the behaviors of the cache and memory controllers. Each controller is a
finite state machine (FSM) that has some number of states (per cache block) and handles some number of
events that can happen to a block. Numerous controllers concurrently interact with each other with respect
to many different blocks. While protocols are simple at a high level, they are much more complicated to
design at a low level. Textbooks often abstract protocols into a handful of stable states (MOESI) and a
handful of messages that are exchanged (in the easiest order for the reader to understand!) [24, 47]. In real-
ity, though, protocols have numerous transient states, and messages race with each other in the intercon-

nect and can arrive in many different orders.

Cache coherence protocols are notoriously difficult to design and (statically) verify. The state space explo-
sion problem—an exponential function of the number of controllers, memory blocks, and block states—
limits the effectiveness of formal verification methods [20], such as model checking and theorem proving.
Testing is a valuable complement to formal verification techniques. Directed testing or random testing [9,
119] can uncover many bugs. Unfortunately, the complexity of coherence protocols is often due to subtle

race conditions, especially those that are infrequent and thus less likely to be uncovered during testing.

We now present an example of a protocol rac&MrSnoopinghat the designer (the author!) did not ini-

tially consider. The designer overlooked this case until weeks later when random testing happened to
uncover it (by crashing the simulator). We explore the potential to simplify coherence protocol design by
treating this edge case as an “error” that triggers system recovery. As with the examples of speculatively
correct designs in Section 5.1, the frequency of these now-allowable errors determines the viability of the

speculation. If this protocol situation occurs more than rarely, the performance degradation due to recover-

. 88
ies could negatively impact performance. However, if we only recover in rare corner cases, then the impact

of the infrequent recoveries should be negligible.

To test this hypothesis, we developed a version of3NeSnoopingrotocol that treats a certain situation

as an “error” instead of handling it. The situation arises when a cache controller has a block in state Modi-
fied (or Owned) and then issues a Put-Exclusive for the block, transitioning to a transient state. In this tran-
sient state, a Get-Exclusive arrives from another node, causing the cache controller to transition to a
different transient state. Then, in this second transient state, the cache controller observes another Get-
Exclusive from another node. This sequence of events is exceedingly unlikely, especially since it originates
with a writeback from the cache controller. Compounding its rarity is that a block that is evicted by a write-
back is unlikely to be requested by two other nodes. Moreover, both nodes must request exclusive access to
the block in the interval of time between when the cache controller issues its Put-Exclusive and then
observes its own Put-Exclusive on the address network. While this scenario is unlikely, it can occur. Our
random tester took a long while to uncover this edge case, but it did occur. Thus, we must handle it appro-

priately.

In the error space, errors due to encountering a coherence transition that was not specified manifest them-
selves as invalid transitions. In this particular example, a cache controller that observes another node’s Get-
Exclusive while in the transient state described above triggers a system recovery. In the random tester, this
is sufficient to preserve correctness. It may appear that no resumability mechanism is needed, since this
error only occurs due to a timing race and the timing after recovery should be different than the timing that
led up to the recovery. However, emsureresumability, we must ensure a different timing. Thus, we tem-

porarily enter a “slow-start” mode, in which nodes are only allowed to have one outstanding request.

We then tested the protocol on our set of commercial workloads, and all of them ran to completion without
needing to recover from reaching the edge case. Thus, performance of the protocol is, for these workloads,
identical to that of the fully designed protocol. While this obviously does not guarantee that the under-
designed protocol will never have to recover, it does suggest the infrequency of recoveries due to encoun-

tering this corner case in the cache coherence protocol.

We conclude from this experiment that we can tolerate an unintentional design error in the cache coher-
ence protocol withSafetyNet Even if recoveries due to this error slightly degrade performance, the
reduced time for design and verification provides a gain in performance (due to Moore’s Law) that is likely

to more than offset the cost of recoveries.

89
5.2.2 General Properties

While SafetyNetan tolerate the design fault example described in Section 5.2.1, this is by no means a gen-

eral solution to design faults. Tolerating an unintentional design fault requires three properties:

1. Detection: The system can detect the error caused by the design fault.
2. RecoverabilitySafetyNetan recover from this error model.

3. ResumabilitySafetyNetan resume execution (without livelock) after recovering.

Currently, achieving any of these three properties is probabilistic. Moreover, the probability of achieving
the second property is difficult to improve. However, we can improve the probabilities of the other two

properties.

Detection.The probability of detecting design errors can be improved by adding better error detection
capabilities to the system. Detection of design errors happens when detection mechanisms that target other
error models also detect the manifestations of design faults. Checking for other error models helps to
detect design faults that manifest themselves in similar ways to these newly detectable faults. Thus, we

encourage the use of stronger error detection schemes.

Stronger error detection can be achieved with higher-level error detection mechanisms, because higher-
level error detection can detect errors that are not in the low level error model. Higher-level error detection
can be performed in hardware and in software. In hardware, end-to-end checking of high level invariants,
such as the signature analysis schemes presented in Section 4.3.3 and Section 4.3.4, can detect numerous
lower level errors. In software, self-checking programs [12] can similarly detect a wide range of errors,

including design errors like Intel's FDIV bug.

Diagnosis is a component of detection that we would also like to improve, although this is certainly a diffi-
cult problem. We encourage the use of better diagnostic mechanisms, such as hardware instrumentation
and system software diagnostics. Without diagnosis, the system cannot decide what action to take, if any,

upon detection of an error.

Resumability. The probability of being able to resume execution can be improved by adding mecha-
nisms that change an execution after a recovery. One example used thus far in this thesis is a slow-start exe-
cution mode, in which nodes issue requests at a slower rate. Slow-start enables a different, but still correct,
execution by changing the timing in the multiprocessor system. Another example was developed in

Section 5.1.2, where we described how to turn off adaptive routing after recovery.

The ability to dynamically turn off system features can help to avoid livelocks. Many industrialggystems
have followed this philosophy in order to more quickly ship a functional, if not fully-utilized, system. For
example, Sun Microsystems shipped UltraSparclll processors with hardware prefetching of floating point
data, but they disabled this prefetching when it was discovered to be faulty [90]. In a later revision of the

UltraSparclll, the design fault was fixed and hardware prefetching of floating point data was enabled.

In general, more adaptive and more flexible systems are more likely to tolerate unintentional design faults.
Field upgradable systems may also help in this regard. Since adaptivity and flexibility are also desirable for

other reasons, we argue for designing systems with these properties.

5.3 Summary of Designability

In this chapter, we have addressed the problem of system designability. We discussed hoBafetydéet

to enable speculatively correct designs. Speculative correctness allows the designer to allocate resources
towards the common case scenarios while falling bacBafietyNetor rare, unimportant cases. Lastly, we
addressed the issues involved in usBafetyNeto tolerate unintentional design faults. While the ability to
tolerate a fault for which the designer did not plan is probabilistic, we describe several avenues for improv-

ing the probabilities in this area.

91

Chapter 6

Related Work

SafetyNets related to research in a number of different areas. Most of the related research addresses avail-
ability in the presence of hardware errors (Section 6.1), although some recent work has begun to address
designability (Section 6.2). There also exists related research in checkpoint/recovery or versioning of data
for use in other domains of computer science (Section 6.3). Finally, we discuss related work in using logi-

cal time to order events in distributed systems (Section 6.4).

6.1 Availability
Prior work in availability can be classified into two broad categories: backward error recovery (BER)
through checkpointing or logging and forward error recovery (FER) through redundant hardware. We fur-
ther distinguish BER schemes by whether they are implemented in hardware, software, or message-pass-

ing systems.

6.1.1 Hardware Backward Error Recovery

In BER schemes, the state of the system is checkpointed periodically or differences are logged. An error is
tolerated by recovering to a previously checkpointed state or unrolling the log. IBM mainframes [44, 102,
96], which have been the archetypal high availability systems, have long used register checkpoint hardware
and store-through caches to recover from processor and memory system errors, respectively. To tolerate
some of the latency of error detection, Tamir and Tremblay [107] developed a micro rollback scheme that
allows the recipient of erroneous information to rollback several clock cycles (which is the length of the
window of opportunity for receiving erroneous informatioBpfetyNetiffers from these approaches by

tolerating hundreds of thousands of cycles of error detection latency.

Hardware BER schemes have often utilized the caches and/or the cache coherence protocol. The Cache-
Aided Rollback Error Recovery (CARER) scheme [48] for uniprocessors uses a normal cache with a
writeback update policy to assist rapid rollback recovery. This scheme is integrated with the cache control-
ler, checkpointed system state is maintained in main memory, and checkpoints are established whenever a

modified cache block needs to be replaced. Ahmed et al. [2] extend CARER for multiprocessors by syn-

chronizing the processors whenever any of them need to take a checkpoint. Wu et al.’s [120] mguzltiproces—
sor extension of CARER allows a processor to write into its private cache between checkpoints.
Checkpointing, which flushes all modified blocks, is performed when ownership of a block modified since
the last checkpoint changeSafetyNets more efficient, since it does not checkpoint before every owner-

ship transfer.

Other hardware BER schemes rely entirely upon memory to hold recoverable checkpoint state. The
Sequoia computer system [10] uses private caches to hold state between checkpoints. The memory holds
the consistent (checkpoint) state, and all dirty cache blocks are flushed to the main memory at every check-
point. ReVive [82] employs a similar scheme, although it can tolerate the loss of a node by distributing
memory and its parity across the nodes. Banatre et al. [7] describe a scheme that is identical to a normal
bus-based SMP, except that the traditional memory module has been replaced by an RSM (Recoverable
Shared Memory) module. RSM requires a shadow copy of the entire memory as well as a mechanism for
maintaining the inter-processor dependence graph to establish consistent recoverpptehbdlediffers

from all of these schemes by allowing checkpoint state to reside in the caches and by not requiring cache

flushes to memory at every checkpoint.

IEEE’s Scalable Coherent Interface (SCI) standard specifies potential hardware support for backward error
recovery [49], but this recovery is limited to localized SCI ringlets. The designers deemed hardware sup-

port for end-to-end transaction recovery to be likely to introduce more problems than it would solve.

6.1.2 Software Backward Error Recovery
Software checkpointing have been developed, at radically different engineering costs from hardware BER
schemes. In this section, we discuss checkpointing in software distributed shared memory (DSM) systems

and in more general contexts.

Software DSM, as the name suggests, is a software implementation of shared memory. Accordingly, there
are software schemes that provide support for improving the availability of these systems. Sultan et al.
[104] develop a fault tolerance scheme for a software DSM scheme with the home-based lazy release con-
sistency (HLRC) memory model. Wu and Fuchs [121] use a twin-page disk storage system to perform
user-transparent checkpoint/recovery. At any point in time, one of the two disk pages is the working copy
and the other page is the checkpoint. Similarly, Kim and Vaidya [55] develop a scheme that ensures that
there are at least two copies of a page in the system. Morin et al. [67] leverage a Cache Only Memory

Architecture (COMA) to ensure that at least two copies of a block exist at all times; traditional COMA

93
schemes ensure the existence of only one copy. Feeley et al. [33] implement log-based coherence for a

transactional DSM.

Software checkpointing has also been developed for systems that do not employ DSM. Tandem machines
prior to the S2 (e.g., the Tandem NonStop) use a checkpointing scheme in which every process periodi-
cally checkpoints its state on another processor [92]. If a processor fails, its processes are restarted on the
other processors that hold the checkpoints. Condor [63], a batch job management tool, can checkpoint jobs
in order to restart them on other machines. Applications need to be linked with the Condor libraries so that
Condor can checkpoint them and restart them. Other schemes, including work by Plank [78, 79] and Wang
and Hwang [112, 111], use software to periodically checkpoint applications for purposes of fault tolerance.
These schemes differ from each other primarily in the degree of support required from the programmer,

linked libraries, and the operating system.

IEEE’s Scalable Coherent Interface (SCI) standard specifies software support for backward error recovery
[49]. SCI can perform end-to-end error retry on coherent memory transactions, although the specification
describes error recovery as being “relatively inefficient.” Recovery is further complicated for SCI accesses

to its non-coherent control and status registers (CSRs), since some of these actions may have side-effects.

SafetyNetliffers from all of these works in that it is a hardware solution with different engineering costs/
benefits. There exist similarities in thaafetyNeand these schemes both implement checkpoints, but soft-
ware schemes can be much more elaboiBédetyNetan be used as a complementary piece of an avail-
ability scheme that also includes software checkpoint/recovery. Integr8tmetyNetwith a software
scheme is an interesting area of future research, because it is likely to require at least some cooperation

between the two levels of availability mechanisms.

6.1.3 Message Passing Backward Error Recovery
Numerous BER schemes exist for message passing systems, and they can be classified based on whether
checkpointing is coordinated/consistent or not. EInozahy et al. [31] provide an excellent tutorial and survey

of this area of research, which we will now discuss in some more detail.

In uncoordinated/independent checkpointing schemes, such as Manetho [32], processors independently
decide when to take checkpoints. There is no overhead for coordinating checkpoints, but these schemes are
susceptible to rollback propagation (i.e., cascading rollbacks). Uncoordinated schemes can log incoming
messages with approaches that are either pessimistic or optimistic. Pessimistic logging involves synchro-
nously logging every message before processing it. Logging is thus costly, but the recovery scheme is

much simpler and output commit is much faster. Optimistic logging assumes failures are rare, so it logs

. . : : _ 94
incoming messages asynchronously. The logging cost is less, but the recovery scheme is complicated and

output commit requires coordination.

In coordinated/consistent checkpointing schemes, processors must agree when to take a global checkpoint.
This is more similar t&safetyNetalthoughSafetyNetmplicitly coordinates in logical time, whereas these

schemes coordinate in physical time. Koo and Toueg’s scheme [56] uses an exchange of messages to coor-
dinate checkpointing, whereas several other schemes assume synchronized physical clocks to coordinate

checkpointing without an exchange of messages [84, 23].

6.1.4 (Hardware) Forward Error Recovery

FER schemes use redundant hardware to mask errors. ECC is the canonical FER scheme, and it uses
redundant bits to mask bit errors. A typical FER scheme is triple modular redundancy (TMR), in which
three identical components feed their results into a majority voter. Thus, TMR can mask a single error
(except in the voter itself). Other FER schemes can be used to detect errors (requiring only duplicate
redundancy) or mask more than just a single error (with higher degrees of redundancy). Most heavyweight
fault tolerance schemes employ redundancy, and some lightweight schemes employ lighter redundancy

(e.g., redundant threads instead of redundant processors).

At the processor level, numerous FER schemes exist for detecting errors and tolerating the faults that cause
them. Redundant processors [6, 53, 54, 117] or redundant threads within a processor [106, 110] can be
used to detect and/or mask processor faults. The Stratus [117] computer system uses two pairs of proces-
sors to mask errors. Within each pair, the two processors compare results—if the results do not match, an

error has been detected and the other pair is how responsible. The Tandem S2 [53] uses triply modular
redundant (TMR) processors to mask errors. Slipstream [106] is a lighter-weight processor FER scheme

that can use redundant threads within a processor to mask errors. DIVA [6] uses a checker processor to

implement FER on the processor (but not on the system).

FER schemes can also be used beyond just the processor. The Intel 432 [54] uses replication of VLSI com-
ponents (i.e., commaodity parts) to achieve a range of fault tolerance needs across the system. Interconnec-
tion networks have long used redundant paths and adaptive routing to allow packets to be routed around
faulty switches and links [26, 30]. At the disk level and more recently at the DRAM level, RAID (redun-
dant array of inexpensive disks [73] or DRAMs [28]) has been used to mask errors. RAID schemes have

various flavors, known as levels, which trade off redundancy costs for fault tolerance capabilities.

: - 95
6.2 Designability

Designability has not been explored in great depth, although a couple of recent papers have addressed it in
the context of dynamic verification. DIVA [6], discussed in Section 6.1.4 for its use in availability, also
addresses designability. The simple checker processor ensures that the system will function correctly even
if the highly optimized core processor has a design fault. Other recent research seeks to dynamically verify
complex cache coherence protocols by implementing checker coherence controllers that simultaneously
run a much simpler version of the optimized protocol [16]. This research strives to extend designability

support beyond the processor core.

6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes

While checkpoint/recovery is clearly useful for supporting availability and designability, it serves purposes

in numerous other areas of computer architecture and, more generally, computer science. In architecture,
prior research for supporting speculation has logged changes in state that is local to a given node. Dynami-
cally scheduled processors, such as the MIPS R10000 [122], must either log changes to architectural state
or checkpoint architectural state, in case they need to recover from mis-speculations. Since dynamically
scheduled processors are limited in terms of how much speculative state they can hold (i.e., in their reorder
buffers), other research has sought to extend the amount of speculative state that can be maintained, so as
to enable deeper speculation. SC++ [39] augments the reorder buffer with a Speculative History Queue
that logs changes to the cache state due to speculative stores. In the case of a misspeculation, the actions
logged in the Speculative History Queue are undone. Speculative Retirement [85] uses a speculative his-
tory buffer to speculatively retire instructions that would otherwise clog up the reorder buffer. Unlike SC++
that logs only store instructions, Speculative Retirement logs every speculative instruction that writes to a
register. As with dynamically scheduled processors, both SC++ and Speculative Retirement require a
mechanism to detect if another processor’s store would violate the local specubatietyNés logging is

logically similar to these schemes, exc&afetyNets a global scheme; thusSafetyNemust locally log

transfers of coherence ownership and globally coordinate checkpoints across nodes. Implementations of
SafetyNetan also leverage some properties of the application (availability/designability) that differ from
speculation. For exampl&afetyNetan checkpoint at a coarse granularity and not optimize the recovery

process, since recovery due to errors is presumably far less frequent than violations due to misspeculation.

Beyond traditional (uniprocessor) speculation, the arespetulative multithreadingses data versioning
(often implemented with logging) to implement sequential program semantics [3, 19, 41, 70, 81, 103]. In
speculative multithreading, different processors (or processing elements within a processor) are assigned

different sequential tasks which they speculatively execute in parallel. Thus, the same address can have

multiple outstanding values at the different processors, and some versioning control is necessgr@ to deter-
mine the correct order of the values and to detect violations of sequential ordering due to misspeculation.
The goal ofSafetyNetiffers in that we superimpose checkpoints on system execution peithllel
semanticsWe use globally consistent checkpoints rather than local checkpoints at different places in a

sequential execution.

Beyond architecture, the concepts of checkpointing and logging have been used in various contexts. Most
notably, databases use (software) checkpoint/recovery to ensure that data is never lost or corrupted [83],

and they can use data versioning to maintain serializability [71].

6.4 Using Logical Time to Coordinate Multiprocessor Systems

The use of logical time to coordinate events in a multiprocessor system originated with Lamport’s seminal
paper [58]. This paper first described how to construct a logical time base to order events in a message
passing system, and the fundamental idea is to use an algorithm that assigns a greater time to Event A than
Event B if Event A is causally after Event B. For example, if processor 1 sends a message to processor 2,

then the reception of the message (Event A) should occur after the sending of the message (Event B).

Systems have been designed that exploit logical time. Isotach networks [88] provide complete control over
the logical ordering of messages in the network. Messages arrive at the (logical) time of the sender plus the
(logical) distance to the receiver. Logical ordering is achieved by conservatively stalling messages (in
physical time) in the network so that they arrive at the correct logical time at the destination. Logical order-
ing of messages enables totally ordered multicasts/broadcasts and the ability to make a group of operations
(called anisochron atomic in logical time. Delta cache coherence protocols [116, 27] exploit the strong

ordering of Isotach networks to provide SC and powerful synchronization primitives.

Other research that we have done has leveraged logical time to devise new coherence protocols. Times-
tamp snooping [65] enables the use of broadcast snooping cache coherence protocols on systems with
interconnection networks that do not support totally-ordered broadcasts. Instead of relying on a total order
in physical time, timestamp snooping creates a total order in logical time. Logical time can be imple-
mented in a variety of ways, including token-passing schemes. Optimizations of timestamp snooping allow
nodes to process incoming requests early (i.e., before they arrive in logical time). We have developed other
snooping cache coherence protocols that are derived from timestamp snooping and do not require a physi-
cal total order of coherence requests, although this feature is not emphasized in the original papers. Multi-
cast snooping [11, 101] is a variant of timestamp snooping (as well as broadcast snooping) that leverages

the logical total ordering of messages to allow processors to independently determine if a multicasted

. _— 97 .
request succeeds (i.e., is sent to all destinations that need to observe the request). Bandwidth adaptive
snooping [66] is a variant of multicast snooping in which requests are either unicast or broadcast based on

estimations of dynamic interconnection network utilization.

Logical time has also been applied to parallel discrete event simulation (PDES), in order to simulate a mul-
tiprocessor target system on a multiprocessor host system [35]. To manage the discrepancy between physi-
cal and logical times, PDES must determine, for each node, whether that node can process the “next” event
on its event queue, because it may not know yet if another node will generate an event for it that should
occur earlier (in logical time) than any event currently in its queue. Conservative schemes, such as the Wis-
consin Wind Tunnel [86], nodes exchange information to determingltiel logical time so that proces-

sors can ensure that they only process the next event in logical time. The WWT breaks up target system
simulation into quanta whose lengi@, is less than the minimum latency of the target’s interconnection
network. Keeping théokaheadi.e., the minimum target time between events and the events that they can
generate in remote nodes) greater teaansures that, at the beginning of each quantum, a host node has
received all remotely generated events that could affect the target node in that quantum. Optimistic
schemes, such as Chandrasekaran and Hill's extension of the WWT [17], let processors speculatively pro-
cess events before determining the global logical time. If it later turns out that events were processed out of
order, the system recovers to a previous state. Optimistic schemes can thus outperform conservative
schemes if the cost of recoveries is less than the cost of waiting for global logical time to advance. This
tradeoff is the same FER versus BER tradeoff that was described in Section 4.2 and illustrated in

Figure 4-1.

98

99

Chapter 7

Summary

While architectural research has generally focused on improving performance, the issues of availability
and designability have suffered. For both technological and architectural reasons, computer systems are
more susceptible to hardware device faults. Meanwhile, systems are becoming increasingly difficult to

design and verify as they become more complex in their efforts to achieve greater performance.

In this thesis, we develop a scheme, calBadetyNetthat unifies the support for improving the availability

and designability of shared memory multiprocess&afetyNeis a system-wide, hardware-only, check-
point/recovery scheme that enables a shared memory multiprocessor to recover to a pre-error checkpoint
when an error is detected. PeriodicaBafetyNetogically checkpoints the state of the system. The recov-

ery point checkpoint, which is the checkpoint that was most recently validated as error-free, is the check-
point to which the system recovers in the case that an error is detected. In between the recovery point and

the active checkpoint, there are some number of old checkpoints that are pending validation.

In developingSafetyNetthis thesis makes three contributions which all®afetyNeto be efficient in the
common case of error-free execution. First, as opposed to previous hardware schemes for backward error
recovery,SafetyNetises logical time to efficiently coordinate creation of consistent checkpoints across the
system. SecondsafetyNetuses a form of optimized logging to minimize the saving of checkpoint state.
Third, SafetyNeenables the system to validate checkpoints in the background of the active execution, thus

hiding the potentially lengthy error detection latency.

We describe an implementation 8afetyNetand we address the implementation issues involved with
SafetyNetThe implementation described in this thesis is based on a MOSI directory-based cache coher-
ence protocol, with nodes connected by a two-dimensional torus interconnection network. We add a check-
point log buffer (CLB) to each cache hierarchy and each memory, for purposes of logging changes to the
memory and coherence state. Other additions are made to protect the systefafetifiNetbut these

changes are minor.

We evaluateSafetyNetvith full-system simulation and commercial workloads. We demonstrateStifat
tyNetincurs negligible performance overhead, relative to an unprotected system, because of the innova-

tions that allow it to be efficient. We show that 512 kbyte CLBs are sufficient, for our workloads and

100
100,000 cycle checkpoint intervals, to avoid a significant amount of stalling due to filling the CLBs. We
also perform several sensitivity analyses to explSedetyNeés behavior for different implementation
parameters. Notably, we evaluate the effects of changing the checkpoint interval length, register check-

pointing latency, and CLB sizing.

We discuss hovsafetyNetmproves availability for a variety of error models. We first explore the interac-

tion of SafetyNetvith traditional error detection mechanisms. We discuss specific error models in the sys-
tem—including the interconnection network, cache coherence protocol, and the processors—and how to
detect these errors. Then we innovate in the area of error detection, by levesafitgNes ability to tol-

erate error detection latencies on the order of hundreds of thousands of cycles. Given this latency tolerance,
error detection can be extended to incorporate global mechanisms. For example, we develop two system-
wide signature analysis schemes that perform global reductions to verify that the system obeys certain
invariants. The message-level scheme detects if a message is lost or re-ordered in a broadcast snooping
system, and the coherence-level scheme detects if a coherence upgrade is not matched by appropriate
coherence downgrades. Both the message-level and coherence-level signature analysis schemes help to

demonstrate the power of end-to-end invariant checking.

We also discuss hoBafetyNetan improve system designability. We first classify the types of errors due

to design faults that we address, dividing them broadly into errors due to unintentional design faults and
errors due to speculatively correct design. For example, we speculatively design an adaptively routing
interconnection network for a system whose cache coherence protocol requires point-to-point ordering.
The adaptive routing can lead to violations of point-to-point ordering, but w&afayNeto recover from

the rare situations in which reordering occurs and this reordering affects correctness. Meanwhile, we have
enabled the use of adaptive routing, which can improve system performance by routing messages around

congestion so as to better balance the traffic load in the interconnection network.

Future work exists in both availability and designability, since this thesis has not exhausted either of these
areas. The availability research presented here does not address certain harder error models, most notably
the permanent loss of a processor/cache chip. Relaxing some assumptions about what state is guaranteed
safe opens up new areas of research. Also, availability research can be pursued in novel error detection
schemes, moving beyond the signature analysis schemes presented in this thesis. Designability is an even
more open research area. Work is still to be done in tolerating unintentional design faults that slip past ver-
ification and testing. In terms of speculatively correct designs, there are also numerous avenues of future

research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

101

References

Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedmabigital Systems Testing and Test-
able DesignlEEE Press, 1990.

Rana E. Ahmed, Robert C. Frazier, and Peter N. Marinos. Cache-Aided Rollback Error Recovery
(CARER) Algorithms for Shared-Memory Multiprocessor System®rticeedings of the 20th
International Symposium on Fault-Tolerant Computing Systpatges 82—-88, June 1990.

Haitham Akkary and Michael A. Driscoll. A Dynamic Multithreading ProcessdProteedings

of the 31st Annual IEEE/ACM International Symposium on Microarchitegtages 226-236,
November 1998.

Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M.K. Martin, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Evaluating Non-deterministic Multi-threaded Commercial
Workloads. InProceedings of the Fifth Workshop on Computer Architecture Evaluation Using
Commercial Workloadgages 30-38, February 2002.

R. Anglada and A. Rubio. An Approach to Crosstalk Effect Analyses and Avoidance Techniques
in Digital CMOS VLSI CircuitsInternational Journal of Electroni¢$(5):9-17, 1988.

Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design. In
Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitgoages
196—-207, November 1999.

M. Banatre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin. An Architecture for Tolerating Proces-
sor Failures in Shared-Memory MultiprocesstiEEE Transactions on Computed5(10):1101—
1115, October 1996.

Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network and
Server Performance Evaluation.Rroceedings of the 1998 ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systgrages 151-160, June 1998.

Robert M. Bentley. Validating the Pentium 4 MicroprocessoProceedings of the International
Conference on Dependable Systems and Netywoakes 493—498, July 2001.

P. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled Multiprocessor for Transaction Process-
ing. IEEE Computer21(2):37—-45, February 1988.

E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin, Mark D. Hill, and

David A. Wood. Multicast Snooping: A New Coherence Method Using a Multicast Address Net-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

work. In Proceedings of the 26th Annual International Symposium on Computer Archi,t%gt%re
pages 294-304, May 1999.

Manuel Blum and Sampath Kannan. Designing Programs that Check Their W €MrSympo-
sium on Theory of Computingages 86-97, May 1989.

Manuel Blum and Hal Wasserman. Reflections on the PentiumlBEE. Transactions on Com-
puters 45(4):385-393, April 1996.

M. Bohr. Interconnect Scaling - The Real Limiter to High Performandérdoeedings of the
International Electron Devices Meetingages 241-244, December 1995.

Philip Buonadonna and David Culler. Queue Pair IP: A Hybrid Architecture for System Area Net-
works. InProceedings of the 29th Annual International Symposium on Computer Architecture
pages 247-256, May 2002.

J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic Verification of Cache Coherence Protocols.
In Workshop on Memory Performance Issulse 2001. In conjunction with ISCA.

Sashikanth Chandrasekaran and Mark D. Hill. Optimistic Simulation of Parallel Architectures
Using Program Executables. Broceedings of Tenth Workshop on Parallel and Distributed Simu-
lation (PADS '96) pages 143-150, May 1996.

Alan Charlesworth. Starfire: Extending the SMP EnveltfpEE Micro, 18(1):39-49, Jan/Feb

1998.

Marcelo Cintra, Jose Martinez, and Josep Torrellas. Architectural Support for Scalable Speculative
Parallelization in Shared-Memory SystemsPhoceedings of the 27th Annual International Sym-
posium on Computer Architectyggages 13—-24, June 2000.

Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and future directions.
ACM Computing Survey88(4):626—-643, December 1996.

B. Colwell. Maintaining a Leading PositiolEEE Computerpages 45-47, January 1998.

Anne E. Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin. Using Lamport Clocks to Rea-
son About Relaxed Memory Models. Poceedings of the Fifth IEEE Symposium on High-Per-
formance Computer Architectyrpages 270-278, January 1999.

F. Cristian and F. Jahanian. A Timestamp-Based Checkpointing Protocol for Long-Lived Distrib-
uted Computations. IRroceedings of IEEE Symposium on Reliable Distributed Syspagess

12-20, 1991.

David E. Culler and J.P. SingRarallel Computer Architecture: A Hardware/Software Approach

Morgan Kaufmann Publishers, Inc., 1999.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

William J. Dally. Virtual Channel Flow ContralEEE Transactions on Parallel and Distrib&'%%
Systems3(2):194—205, March 1992.

William J. Dally, Larry R. Dennison, David Harris, Kinhong Kan, and Thucydides Xanthopoulos.
Architecture and Implementation of the Reliable RoutePiaceedings of 2nd Hot Interconnects
SymposiumAugust 1994.

Bronis R. de SupinskLogical Time Coherence Maintenan&hD thesis, University of Virginia,
May 1998.

Timothy J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory. IBM Microelectronics Division Whitepaper, November 1997.

Jose Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole NetweBEs.
Transactions on Parallel and Distributed Systed#{42):1320-1331, December 1993.

Jose Duato, Sudhakar Yalamanchili, and LioneliNerconnection Network$EEE Computer
Society Press, 1997.

E.N. Elnozahy, D.B. Johnson, and Y.M. Wang. A Survey of Rollback-Recovery Protocols in Mes-
sage-Passing Systems. Technical Report CMU-CS-96-181, Department of Computer Science,
Carnegie Mellon University, September 1996.

E.N. ElInozahy and W. Zwaenepoel. Manetho: Transparent Rollback-Recovery with Low Over-
head, Limited Rollback, and Fast Output ComtiEE Transactions on Computerkl(5):526—

531, May 1992.

M.J. Feeley, J.S. Chase, V.R. Narasayya, and H.M. Levy. Integrating Coherency and Recoverabil-
ity in Distributed Systems. IRroceedings of the First USENIX Symposium on Operating Systems
Design and Implementatippages 215-227, November 1994,

S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-accessHlec&snics
57(1):164-169, January 1984.

Richard M. Fujimoto. Parallel Discrete Event Simulati@ommunications of the AGM
33(10):30-53, October 1990.

Mike Galles. Spider: A High-Speed Network InterconnB&EE Micro, 17(1):34-39, Jan/Feb

1997.

Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Von Doren. Architecture and
Design of AlphaServer GS320. Rroceedings of the Ninth International Conference on Architec-
tural Support for Programming Languages and Operating Systpages 13—24, November 2000.
Phillip B. Gibbons and Ephraim Korach. Testing Shared Memo8&M Journal on Computing
26(4):1208-1244, August 1997.

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Chris Gniady, Babak Falsafi, and T.N. Vijaykumar. Is SC + ILP = RCProceedings of thelzoéh
Annual International Symposium on Computer Architecioages 162—-171, May 1999.

S. W. GolumbShift Register Sequencdsegean Park Press, revised edition, 1982.

Sridhar Gopal, T.N. Vijaykumar, James E. Smith, and Gurindar S. Sohi. Speculative Versioning
Cache. InProceedings of the Fourth IEEE Symposium on High-Performance Computer Architec-
ture, pages 195-205, February 1998.

G. Grohoski. Reining in ComplexitlEEE Computerpages 41-42, January 1998.

Rajiv Gupta. The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Processors. In
Proceedings of the Third International Conference on Architectural Support for Programming
Languages and Operating Systepages 54—63, April 1989.

R.N. Gustafson and F.J. Sparacio. IBM 3081 Processor Unit: Design Considerations and Design
ProcessIBM Journal of Research and Developm&&:12—-21, January 1982.

Erik Hagersten and Michael Koster. WildFire: A Scalable Path for SMPsoltreedings of the

Fifth IEEE Symposium on High-Performance Computer Architegharges 172—-181, January

1999.

Robert H. Havemann and James A. Hutchby. High-Performance Interconnects: An Integration
Overview.Proceedings of the IEEB9(5):586-601, May 2001.

John L. Hennessy and David A. PattersGomputer Architecture: A Quantitative Approaditor-

gan Kaufmann, second edition, 1996.

D.B. Hunt and P.N. Marinos. A General Purpose Cache-Aided Rollback Error Recovery (CARER)
Technique. IfProceedings of the 17th International Symposium on Fault-Tolerant Computing Sys-
tems pages 170-175, 1987.

IEEE Computer SocietyEEE Standard for Scalable Coherent Interface (S&t)gust 1993.

Intel CorporationPentium Pro Family Developer's Manual, Volume 3: Operating System Writer's
Manual, January 1996.

Intel Corporationintel IA-64 Architecture Software Developer's Manual, Volume 2: IA-64 System
Architecture, Revision 1, July 2000.

iROC Technologies. White Paper on VDSM IC Logic and Memory Signal Integrity and Soft
Errors, January 2002.

D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform. Rroceedings of the 21st International
Symposium on Fault-Tolerant Computing Systgrages 512-519, June 1991.

D. Johnson. The Intel 432: A VLSI Architecture for Fault-Tolerant CompulifigE Computer

pages 40-48, August 1984.

[55] J.-H. Kim and N.H. Vaidya. Recoverable Distributed Shared Memory Using the Comp%t(i)tiS\/e
Update Protocol. IPacific Rim International Symposium on Fault-Tolerant SystBesember
1995.

[56] R. Koo and S. Toueg. Checkpointing and Rollback-Recovery for Distributed Sy$ihs.
Transactions on Software Engineerji8E-13(1):23-31, January 1987.

[57] H.T.Kungand J. T. Robinson. On Optimistic Methods for Concurrency CoACM. Transac-
tions on Database Systenpages 213-226, June 1981.

[58] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed SyStammunica-
tions of the ACM21(7):558-565, July 1978.

[59] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
ProgramslEEE Transactions on Computerfs-28(9):690-691, September 1979.

[60] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Sero-In
ceedings of the 24th Annual International Symposium on Computer Archijgetges 241-251,
June 1997.

[61] David D. Lee and Randy H. Katz. Using Cache Mechanisms to Exploit Nonrefreshing DRAM’s
for On-Chip MemorieslEEE Journal of Solid-State Circujt&6(4):657-66, April 1991.

[62] Charles E. Leiserson et al. The Network Architecture of the Connection Machine CN#46- In
ceedings of the Fourth ACM Symposium on Parallel Algorithms and Architechages 272—-285,
June 1992.

[63] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint and Migration of
UNIX Processes in the Condor Distributed Processing System. Technical Report 1346, Computer
Sciences Department, University of Wisconsin—Madison, April 1997.

[64] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hallberg,
Johan Hogberg, Fredik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A Full System
Simulation PlatformlEEE Computer35(2):50-58, February 2002.

[65] Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa Alameldeen, Ross M. Dickson,
Carl J. Mauer, Kevin E. Moore, Manoj Plakal, Mark D. Hill, and David A. Wood. Timestamp
Snooping: An Approach for Extending SMPsHroceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and Operating Sygages 25-36,
November 2000.

[66] Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood. Bandwidth Adaptive
Snooping. InProceedings of the Eighth IEEE Symposium on High-Performance Computer Archi-
tecture pages 251-262, January 2002.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

C. Morin, A. Gefflaut, M. Banatre, and A.-M. Kermarrec. COMA: An Opportunity for Bu%l%(isng
Fault-Tolerant Scalable Shared Memory MultiprocessorBrirteedings of the 23th Annual Inter-
national Symposium on Computer Architectyrages 56—65, May 1996.

Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink, and David Webb. The Alpha
21364 Network Architecture. IRroceedings of 9th Hot Interconnects Sympositingust 2001.
Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed Design and Imple-
mentation of Redundant Multhreading AlternativesPtaceedings of the 29th Annual Interna-

tional Symposium on Computer Architectysages 99-110, May 2002.

Jeffrey Oplinger, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica S. Lam, and Kunle
Olukotun. Software and Hardware for Exploiting Speculative Parallelism with a Multiprocessor.
Technical Report CSL-TR-97-715, Stanford University, May 1997.

Christos Papadimitriourhe Theory of Database Concurrency Cont@bdmputer Science Press,
Rockville, Maryland, 1986.

David A. Patterson. Recovery Oriented Computing: A New Research Agenda for a New Century.
HPCA-8 Keynote Address, January 2002.

David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). InProceedings of 1988 ACM SIGMOD Conferemzges 109-116, June

1988.

Fernando Pedone. Boosting System Performance with Optimistic Distributed PrdeEg&ls.
Computey pages 80—86, December 2001.

Larry L. Peterson and Bruce S. Dav@mputer Networks: A Systems Approddbrgan Kauf-

mann, 1996.

W. W. Peterson and E. J. Weldon,Biror-Correcting CodesMIT Press, 1972.

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and Mark D. Hill. Lamport Clocks: Verifying a
Directory Cache-Coherence Protocol Pimceedings of the Tenth ACM Symposium on Parallel
Algorithms and Architecturepages 67-76, June 1998.

James S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed Systems, Focus-
ing on Implementation and Performance. Technical Report UT-CS-97-372, Department of Com-
puter Science, University of Tennessee, July 1997.

James S. Plank, Kai Li, and Michael A. Puening. Diskless CheckpoitlR& Transactions on
Parallel and Distributed System8(10):972-986, October 1998.

Dhiraj K. PradhanFault-Tolerant Computer System Desigmentice-Hall, Inc., 1996.

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Milos Prvulovic, Maria Jesus Garzaran, Lawrence Rauchwerger, and Josep Torrellas.lRoe7moving
Architectural Bottlenecks to the Scalability of Speculative Parallelizatidhrdoeedings of the

28th Annual International Symposium on Computer Architechages 204—-215, July 2001.

Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: Cost-Effective Architectural Support
for Rollback Recovery in Shared-Memory Multiprocessor®ryceedings of the 29th Annual
International Symposium on Computer Architectpages 111-122, May 2002.

Raghu Ramakrishnan and Johannes Gelr&atabase Management Systems, 2nd edition
McGraw-Hill, 1999.

P. Ramanathan and K.G. Shin. Checkpointing and Rollback Recovery in a Distributed System
Using Common Time Base. roceedings of the 7th Symposium on Reliable Distributed Systems
pages 13—-21, October 1988.

Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap between Memory Consistency Mod-
els. InProceedings of the Ninth ACM Symposium on Parallel Algorithms and Architecpagss
199-210, June 1997.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and
David A. Wood. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel ComputePro
ceedings of the 1993 ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systemgspages 48—-60, May 1993.

Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault Detection via Simultaneous
Multithreading. InProceedings of the 27th Annual International Symposium on Computer Archi-
tecture pages 25-36, June 2000.

Paul F. Reynolds, Jr., Craig Williams, and Raymond R. Wagner, Jr. Isotach NetWeEES Trans-
actions on Parallel and Distributed Syster@ét):337-348, April 1997.

Jack Robertson. Alpha Particles Worry IC Makers as Device Features Keep Shiéakimigon-
ductor Business New®ctober 21, 1998.

Jack Robertson. Sun Confirms Glitch in UltraSparclll ProceSdaon StrategiesApril 4, 2001.

Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors.
In Proceedings of the 29th International Symposium on Fault-Tolerant Computing Systeres
84-91, June 1999.

O. Serlin. Fault-Tolerant Systems in Commercial ApplicatitBEE Computerpages 19-30,

August 1984.

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

108
K. Seshan, T. Maloney, and K. Wu. The Quality and Reliability of Intel's Quarter Micron Process.

Intel Technology JournaSeptember 1998.

Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and Lorenzo Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logrro
ceedings of the International Conference on Dependable Systems and Nelwoekz002.

Richard L. Sites, editoAlpha Architecture Reference ManuBligital Press, 1992.

Timothy J. Slegel et al. IBM’s S/390 G5 Microprocessor DedigBE Micro, pages 12—23,
March/April 1999.

James E. Smith and Andrew R. Pleszkun. Implementing Precise Interrupts in Pipelined Proces-
sors.|EEE Transactions on Computers-37(5):562-573, May 1988.

Gurindar S. Sohi, Manoj Franklin, and Kewal K. Saluja. A Study of Time-Redundant Fault Toler-
ance Technigues for High-Performance Pipelined Computesotieedings of the 19th Interna-
tional Symposium on Fault-Tolerant Computing Syst@ages 436—443, June 1989.

Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. Fast Checkpoint/Recovery
to Support Kilo-Instruction Speculation and Hardware Fault Tolerance. Technical Report 1420,
Computer Sciences Department, University of Wisconsin—Madison, October 2000.

Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. SafetyNet: Improving the
Availability of Shared Memory Multiprocessors with Global Checkpoint/RecoveBrdoeed-

ings of the 29th Annual International Symposium on Computer Architegages 123-134, May
2002.

Daniel J. Sorin, Manoj Plakal, Mark D. Hill, Anne E. Condon, Milo M.K. Martin, and David A.
Wood. Specifying and Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol.
IEEE Transactions on Parallel and Distributed Systeh®$6):556—578, June 2002.

L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tolerance: A His-
torical PerspectivdBM Journal of Research and Developmet8(5/6), September/November

1999.

J. Gregory Steffan and Todd C. Mowry. The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. Proceedings of the Fourth IEEE Symposium on High-Per-
formance Computer Architectyrpages 2—-13, February 1998.

Florin Sultan, Thu Nguyen, and Liviu Iftode. Scalable Fault-Tolerant Distributed Shared Memory.
In Proceedings of SC200Blovember 2000.

Sun MicrosystemdJltraSPARC User's ManuaSun Microsystems, Inc., July 1997.

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors: Improving b%?t?Perfor—
mance and Fault Tolerance.Pmoceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systeages 257—268, November 2000.

Y. Tamir and M. Tremblay. High-Performance Fault-Tolerant VLS| Systems Using Micro Roll-
back.I[EEE Transactions on Computef39(4):548-554, April 1990.

Scott Taylor et al. Functional Verification of a Multiple-Issue, Out-of-Order, Superscalar Alpha
Processor—The DEC Alpha 21264 MicroprocessaRdrign Automation Conferehgeages 638—
643, June 1998.

M. Tremblay. Increasing Work, Pushing the CId&8&E Computerpages 40-41, January 1998.

T. N. Vijaykumar, Irith Pomeranz, and Karl K. Chung. Transient Fault Recovery Using Simulta-
neous Multithreading. IRroceedings of the 29th Annual International Symposium on Computer
Architecture pages 87-98, May 2002.

Y. M. Wang, E. Chung, Y. Huang, and E.N. EInozahy. Integrating Checkpointing with Transaction
Processing. IProceedings of the 27th International Symposium on Fault-Tolerant Computing
Systemgpages 304-308, June 1997.

Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and Its Applications.
In Proceedings of the 25th International Symposium on Fault-Tolerant Computing Systeres
22-31, June 1995.

David L. Weaver and Tom Germond, edit@®ARC Architecture Manual (Version ®)TR Pren-

tice Hall, 1994.

N. Weste and K. EshragiaRrinciples of CMOS VLSI Design: A Systems Perspedidgison-
Wesley Publishing Co., 1982.

George White and Pete Vogt. Profusion: A Buffered, Cache Coherent Crossbar SviAtoh. In
ceedings of 5th Hot Interconnects Symposipages 87-96, August 1997.

Craig Williams.Concurrency Control in Asynchronous Computatid?isD thesis, University of
Virginia, Computer Sciences Department, January 1993.

D. Wilson. The Stratus Computer SystemRBsilient Computer Systenpages 208-231, 1985.
Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The
SPLASH-2 Programs: Characterization and Methodological Consideratiorsdeedings of the
22nd Annual International Symposium on Computer Architechages 24—-37, June 1995.

David A. Wood, Garth A. Gibson, and Randy H. Katz. Verifying a Multiprocessor Cache Control-
ler Using Random Test GeneratidBEE Design and Test of Computgpages 13-25, August

1990.

110
[120] K.Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in Shared Memory Multiprocessors Using

Private CachesEEE Transactions on Parallel and Distributed Systeh(2):231-240, April
1990.

[121] K.-L. Wu and W. K. Fuchs. Recoverable Distributed Shared Virtual MerteEg Transactions
on Computers39(4):460-469, April 1990.

[122] Kenneth C. Yeager. The MIPS R10000 Superscalar MicroprocH#sE&r.Micro, 16(2):28—40,
April 1996.

[123] J. Ziegler et al. IBM Experiments in Soft Fails in Computer Electrori®®l Journal of Research
and Developmené0(1):3-18, January 1996.

111

Appendix A

Tabular Specification dbafetyNeDirectory Protocol

In this appendix, we fully specify thBN-Directorycache coherence protocol. The specification is in a tab-
ular format that was developed by Sorin et al. [101], and an online version of this specification is available
at http://www.cs.wisc.edu/multifacet/public/sorin_thesis/ . For each controller—cache
controller, directory/memory controller, and network interface controller—we specify four tables that

describe the controller’'s behavior with respect to any given block:

« States* States are specified as one or more letters. For example, the transient state Ol denotes that a

cache controller was in state Owned and then issued a Put-Exclusive (PUTX).

» Actions: Actions are specified as individual letters. For example, the ketieuld denote that the cache
controller allocates a transaction buffer entry (TBE).

» Events: Events are triggered by incoming messages. Messages arrive on queues, as shown for all con-
trollers in Figure A-1. At the cache, incoming queues are the Mandatory queue (for requests from the
processor), the Service processor queue (for handling requests to the service processor, which is emu-
lated by processor 0), the Recovery queue (for undoing log entries from the CLB and from the TBE),
and queues from the network interface. At the directory, incoming queues are the Recovery queue and
queues from the network interface. At the network interface, incoming queues are from the interconnec-
tion network and from the cache and directory controllers.

» Transitions: A transition—an intersection of a state on a row and an event on a column—is specified as
a sequence of actions and a next state (if the state changes) separated by a slash. For example, the tran-
sition ab/Sdenotes that actiorssandb are performed and that the next stat& isransitions that are
shaded are impossible. If any action in a sequence cannot be performed, due to a resource constraint
such as being unable to allocate a transaction buffer entry (TBE), then the transition is not performed

and none of the actions are performed.

There are two issues in the cache specification that should be noted. First, there is a single cache controller

that manages both L1 caches and the L2 cache. Other implementations could have separate controllers for

1. The network interface controller has only one “state,” so we omit this table.

112

mandatory queue
— ||| ™
service processor qugue
— | | |||
recovery queue cache
— | [| | | = -controller
forwarded request net
from — ||| ||
network -
interface response net
— |||
recovery queue
— || |||
request net
— | | | || —™ directory
from forwarded request net controller
network —_—
interface — || |||
final ack net
— ||| ™
’ request net
— || |||
forwarded request net
from — | | | | | " network
interconnectio interface
network respm controller
— || |||
final ack net
\ — |||

FIGURE A-1. Protocol state machines and their incoming queues

113

Table A-1. SN-Directory- cache controller states

State Description

NP Not present

I Idle

S Shared

@) Owned

M Modified

Mi Modified, issued PUTX, have not seen response yet

ol Owned, issued PUTX, have not seen response yet

IS Idle, issued GETS, have not seen response yet

ISI Idle, issued GETS, saw INV, have not seen data for GETS yet
IM Idle, issued GETX, have not seen response yet

MmN Idle, issued GETX, saw nack, still waiting for acks

IMI Idle, issued GETX, saw forwarded GETX

IMO Idle, issued GETX, saw forwarded GETS

IMOI Idle, issued GETX, saw forwarded GETS, saw forwarded GETX
oM Owned, issued GETX, have not seen response yet

oMm" OM, saw nack, still waiting for acks

each, but we opted for the simplicity of this design. Second, there are three transitions in the cache control-
ler transition table that are shaded despite being specified. These transitions are, in general, impossible, but
they can occur when we enable adaptive routing in the interconnection network (discussed in

Section 5.1.2). As such, the actions for these transactions involve triggering a system recovery.

114

Table A-2. SN-Directory- cache controller actions

Action Description Action Description

a Issue GETS (0} Record FwWdGETX and ack count for forwarding

b Issue GETX K Restart system after recovery

c Send FinalAck to dir if this is response to 3-hop xfef A Copy block from head of Recovery queue to L2 caclfe

d Issue PUTX i Log upgrade of block in CLB

e Send data from cache to requestor V] Record in TBE if Final-Ack will be needed

f Issue GET_INSTR 0 Delayed precommit of a version

h If not prefetch, notify sequencer the load completed} 71T Broadcast Pre-Restart message

i Allocate TBE (isPrefetch=0, number of invalidates=§) 0 Broadcast Restart message

j Set prefetch bit p Log entry in CLB (from cache)

k Pop mandatory queue. o Log entry in CLB (from TBE)

| Pop incoming forwarded request queue T Update logical clock

m Pop optional queue v (profiling)

n Send Final-Ack to directory if 3-hop transaction w Broadcast Recovery message

0 Pop Incoming Response queue w Pop incoming service processor queue

p Add number of pending acks to TBE S Log entry in CLB (from TBE)

o} Decrement number of pending invalidations by one 0] Pop incoming Recovery queue

r Recycle head of recovery queue (from CLB) to tail | Broadcast Timeout message

S Deallocate TBE A,B,C,D | (profiling)

t Send ack to invalidator E Send Nack to requestor

u Write data to cache G Reset the TBE

\Y; Check to see if space in CLB H Trigger system recovery

X Copy data from cache to TBE L Copy data block from L2 to L1 (I or D)

y Send data from TBE to requestor M Log CLB entry to record upgrade of block (from TBH

z Stall Q Send Final-Nack to directory if 3-hop transaction

a Recover TBE that was used for PUTX transaction | R Bookkeeping for multipass recovery from CLB

ﬁ Commit a version S Set L1 D-cache tag equal to tag of block B.

X Recover system T Set L1 I-cache tag equal to tag of block B.

o Record forwarded GETS for future forwarding U Set L2 cache tag equal to tag of block B.

€ Send data from cache to GetS ForwardIDs \Y Send Final-Nack to directory if 3-hop transaction

(0} Record forwarded GETX and ack count for future faf-\\/ Send Final_nack if Nack was from myself

warding

V% Send data from cache to GetX ForwardID X Deallocate L1 cache block. Sets the cache to not
present, allowing a replacement in parallel with a fetgh.

n If not prefetch, notify sequencer that store completefl.Y Deallocate L2 cache block. Sets the cache to not
present, allowing a replacement in parallel with a fetgh.

1 Count a PreCommit for a checkpoint number Z Copy data block from L1 (I or D) to L2

Table A-3. SN-Directory- cache controller events

Event Description
Load Load request from the processor
Load_prefetch Load prefetch request from the processor
Ifetch I-fetch request from the processor
Store Store request from the processor
Store_prefetch Store prefetch request from the processor
L1 to L2 L1 to L2 transfer
L2 to L1D L2 to L1-Data transfer
L2 to L1l L2 to L1-Instruction transfer

L2_Replacement

L2 Replacement

Forwarded GET_INSTR

Directory forwards GET_INSTR to us

Forwarded GETS

Directory forwards GETS to us

Forwarded GETX

Directory forwards GETX to us

INV Invalidation

CLBstall Cannot process Forwarded-GETX due to filling CLB
Proc ack Ack from processor

Proc last ack Last ack from a processor

Data ack O Data with ack count = 0

Data ack not 0

Data with ack count != 0 (but haven't seen all acks first)

Data ack not 0 last

Data with ack count != 0 after having received all acks

WB ack

Writeback ack from directory

Dir nack O

Nack with ack count =0

Dir nack not 0

Nack with ack count != 0 (but haven't seen all acks first)

Dir nack not 0 last

Nack with ack count != 0 after having received all acks

DelayedPreCommit

Cache just now became ready to PreCommit

Commit Commit a version

Recovery Recover system to recovery point checkpoint
PreRestart Pre-Restart system after a recovery

Restart Restart system after a recovery

Timeout Timeout

RecoverStalel_cacheAvall

Recover Stalel data into cache

RecoverStaleO_cacheAvalil

Recover StaleO data into cache

RecoverStaleM_cacheAvail

Recover StaleM data into cache

RecoverStalel_cacheNotAvail

Cache not available for Stalel data

RecoverStaleO_cacheNotAvail

Cache not available for StaleO data

RecoverStaleM_cacheNotAvail

Cache not available for StaleM data

UpdateRecyclingCount

After pass through CLB, increment counter

RecoverSpecTBE Recover TBE that has uncommitted state
RecoverNonSpecTBE Recover TBE that has committed state

ExtPreCommit A PreCommit for a checkpoint number arrives at service proce
RegTimeout Service processor requests Timeout

ReqRecovery Service processor requests Recovery

ReqgPreRestart Service processor requests Pre-Restart

ReqRestart Service processor requests Restart

IgnoreCPU Ignore request from mandatory queue during Recovery
IgnoreFwdReq Ignore forwarded request msg during Recovery
IgnoreResponse Ignore response msg during Recovery

Sor

115

Table A-8. SN-Directory- directory controller states

State Description

NP Not present

I Idle

S Shared

0] Owned

M Modified
OO | Owned, saw GETS
OM | Owned, saw GETX
MO | Modified, saw GETS
MM | Modified, saw GETX

116

Table A-4. SN-Directory- cache controller transitions (part 1 of 4)

117

%
= < S zZ |(£
o 2 £ I w
ke 2 N = = S - o
k! o 5 S o = - - S % 2=
State | & = 2 S S S o 2 a 3
- e = n o o N o 3 k5 &)
g B I I -
| E L
o
i
NP 1Siavk/ | tSijam/ | tTifuk/ | TvSi- | TVvSijbm] UZX SLY TLY 184
IS IS IS buk/IM /IM
I 1Siavk/ | tSijam/ | tTifuk/ | TvSi- | TVvSijbm] UZX SLY TLY 184
IS IS IS buk/IM /IM
S thk ™m thk tvibuk/ | tvijom/ | UzZX SLY TLY 1891l
IM IM
0 thk ™m thk Tvix- | tvixjpm | UZX SLY TLY | uvixdY/] TtAel TAel
buk/OM | /OM ol
M thk ™m thk tvnk ™m uzx SLY TLY | tvixdY/ | TAel/O | TAel/lO
Ml
M 1z 1z 1z 1z 1z 1z TAyl TAyl
ol 1z 1z 1z 1z 1z 1z TAyl TAyl
IS 1z 1z 1z 1z 1z 1z
IS 1z 1z 1z 1z 1z 1z
IM 1z 1z 1z 1z 1z 1z TAdl/ TAdl/
IMO IMO
M 1z 1z 1z 1z 1z 1z
IMI 1z 1z 1z 1z 1z 1z
IMO 1z 1z 1z 1z 1z 1z TAd TAdl
IMOI 1z 1z 1z 1z 1z 1z
oM 1z 1z 1z 1z 1z 1z TAel TAel
oM" 1z 1z 1z 1z 1z 1z TAel TAel
W ‘* — —dl Qo
forwarded

requests from processor

L1/L2 exchanges

requests

118

Table A-5. SN-Directory- cache controller transitions (part 2 of 4)
a X © < o ©
(LB = S S S 2 2 X < S 2
< > s | s | B S ~ 2 S S > S
State| 3 Z 2 |g| & o & % o g S ~
a -) a 8 o « @ = = c S
2 S) © © a = c
o)] © a =
LL) (@)
NP | TAEHI | TAtl
I TAEHI | TAtl
S TAtl/I
O | tBpell TEI
M Bpel/l TEI
MI TCeyl TEl tosl/l | 1dGo
ol TCEyl TEI tosl/l | 1dGo
IS | TAEHI | TAtl/ tuhsco/
ISI S
ISI TAt tuhscol/l
IM Dyl | TAt TEl] 1q0 [TMnNns] Tuun— | Tupvo | TUun- TQbGo| tpvo/ | TQbGO
IMI o/M | sco/lM sco/M MmN
M" TAtl tqo [TVbGo
/IM
IMI Tqo | TMnN— | TUUNY- | TUPVO | THUNY-
ynso/l| scoll sco/l
IMO | 1Dg/ g0 | tMnen| Tpu- | Tupvo | THU-
IMOI so/O | nesco/O nesco/O
IMOI Tqo | TMnEy J THUNEY—| TUPVO | THUNEY—
nso/l | scol/l scoll
OM | 1Bpel/ TEl | 190 TWhbG | tpvo/ | TWbG
IM o] oM" o]
oM" tqo | tVbGo
/OM
forwarded responses responses from directory
requests from cache

(cont'd)

119

Table A-6. SN-Directory- cache controller transitions (part 3 of 4)

Juno)bulpAoayarepdn r| ||| vle |
[IPAYIONBYDRD |\B[eISIan00ay w. w.
I4AVIONBYDRD O8[e1SIaN029Y W W
EAYIONBUOED |9[e1SIaN009Y W W
- 2|2
leAyaUoed |\9[e1SIan03ay m. W 2121212
[y [
_ Q|2
lenyoyoed OafeISIon0oay | 3 | 3 12|22
[y [
lleAyayoed [9[eISionoday |3 |2 (3|3 | 3
= [= = =
mnoawiL sl lrlElEl=|l=l=|Fl=|=|F|=|F]|F|*
Helsay ElE|E|E|E|E|E|E|E|E| 2B E|E|E|E
Heisayald elE|E|E|ElE |l |ElE|E|E R
Kianoday ol ol ol lol ol Hol ol Holl el Hol ol ol ol ol Holl e
jwwoo FIEIEIEICIEICIEICIE|IE |E|IE|EIE|"
[—_ c
& zZ “»|lol=l=|o0|2|2|2|=z|2|2|2|0| 3

recovering from CLB

checkpoint management

120

Table A-7. SN-Directory- cache controller transitions (part 4 of 4)

111

Lu m
[- @
m (&) = > — (o (2]
= @ 5 < 8 £ o §
s | s | E| 2| ¢ | s | E|lR|¢E|¢2
= c Q o 8 @ @ O] = 4
0 O S 3) o) Q
State 5 § > =) bt o = LL o
S — — o x o o o e e
o) o Q 9] o g & 5 2 Q
& 3 i o o i = 1<) 5
nd) -

14
NP syl s/l TI0 W TWOW W 0w k I o]
I &Sl &Sl TI0 (W TWW W 10w k I o]
S syl s/l TI0 (W TWW W 10w k I o]
(0] sl &Sl TI0 W TWOW W 0w k I o]
M &Sl &Sl TI0 (W TWW W 10w k I o]
Mi syl Tay TI0 (W TWW W 10w k I o]
Ol syl Tay TI0 W TWOW W 0w k I o]
IS syl s/l TI0 (W TWW W 10w k I o]
ISI syl s/l TI0 (W TWW W 10w k I o]
IM syl s/l TI0 W TWOW W 0w k I o]
Mn syl W/l TI0 (W TWW Tw 0w k I 0
IMI syl s/l TI0 (W TWW W 10w k I o]
IMO syl s/l TIO W W W 0w k I o]
IMOI syl s/l TI0 (W TWW W 10w k I o]
oM syl sY/O TI0 (W TWW T 10w k I o]
oM" s/l | /O IO T{w TWW T 0w k I 0

—_— ey ——r e el

recovering service processor draining network

from TBE requests

Table A-9. SN-Directory- directory controller actions

Action

Description

a

Add requestor to list of sharers

Send data to requestor

Forward request to owner

Deallocate TBE

Set owner equal to requestor

Clear list of sharers

S|Q| | |l T

Send Invalidations to all sharers

Allocate TBE

Pop incoming request queue

Pop incoming forwarded request queue

Write incoming data to memory

Nack incoming request

Send PUTX-Ack to requestor

Clear owner

Add owner to list of sharers

Remove owner from list of sharers

Remove requestor from list of sharers

Add CLB entry, if necessary

Add CLB entry, if necessary

Recycle request from head of incoming queue to tai

Stall

Recover directory to checkpointed state

Restart system

Commit a version

Pre-Restart the System

Pop incoming final-ack queue

Pop incoming recovery queue

Deallocate TBE

Recover state from TBE

Delayed precommit of a version

Final-Nack undoes 3-hop transaction

Update logical clock

(profiling)

(profiling)

Olm > ~lg|o| x|e|-|[S|m|ox|m N|XxX|S|<|c|~|=|T|>]|3

Trigger system recovery

121

Table A-10. SN-Directory- directory controller events

Event Description
GETS A GETS arrives
GET_INSTR A GET_INSTR arrives
GETX_Owner A GETX arrives, requestor is owner

GETX_NotOwner

A GETX arrives, requestor is not owner

PUTX (requestor is owner)

A PUTX arrives, requestor is owner

PUTX (requestor not owner)

A PUTX arrives, requestor is not owner

CLBstall Stall due to full CLB
FinalAck Final-Ack
FinalNack Final-Nack

Commit Commit a version

DelayedPreCommit

Delayed PreCommit

Recovery System recovery

PreRestart Pre-Restart system (phase 1 of recovery)

Restart Restart system after a recovery (phase 2 of recoverly)
Timeout Timeout to advance logical time

RecoverTBE Recover state from TBE

IgnoreRequestMsg Ignore message during recovery
IgnoreFwdRequestMsg Ignore message during recovery
IgnoreFinalAckMsg Ignore message during recovery

122

123

Table A-11. §N-Directory- directory controller transitions
T
&[S |2 £ o |2 |8
« |8 |5 |28 <l 15 1.1¢ AR
AR R B R A A AR
Stad = | € Sl g lgl<s|ZlE|& 2|8 |8 |2]lclo|f =
alg w | = Mz |0 |alS|TIEIS |8 |x|8|81z2l8 |3 |=<
ol |Id|Zl2l2lsl&8ls I8 lele|&|E|B|E |2 |t
wilgl|Xle|lT|lO|lZ|g||© |8 |x|& Flo |2 | |9o
1] [= O L > o =
Clo XS 3 “15 |5 |2
|z -
NP [tAab|tAab BVl TAN | Tm) TOK | TO |TPK | Tek |txK | Ttk Ltot |] | K | N
irs | jls bj/M
| JtAabltAab Bvf TANj | TMj k| 10 | Bk | tek | txk | TK | tdt |] k n
irs | jls bj/M
S |tAab|tAab 1Bvu TANj [TM;j ™k | to | Bk | Tek | Xk | Tk j k n
j j bfhgj
M
O | TAi- | TAi- | TBiu | TBiu [TBvu| TANj | Tmj ok [To | BK | tek | Txk | TK JTtdt]] k n
adj/ | adj/ | tdf- | tdf- | Inpj/
OO | OO | hgj/ | hgj/ | S
OM | OM
M |tAia|TAia| TBZ | tBid | TBV- | TANj | TM] ok [To | BK | Tek | Txk | Tk j k n
rdj/ | rdi/ | Zj | il |Inpj/
MO | MO MM | |
OOl | ™ |1 [| ©¢ | ©¢ | tmj ften/|tren] ok | to | 1Pk | tek | txk | Tk Jtcdt] | k n
O | /O /0
OM ™ | ™ | ™ | ©¢ | ™) | TXj | tmj | Twe |[treen| 1ok | to | TRk | tek | TXK | TK Jtkd1] | k n
n/M| /O /0
MO L T™X [X | ™ | ¢ | T | X [tmj Jten/|trmen] 1ok | to | TRk | tek | TXk | TK JtKd1] | k n
o | /M /0
MM L™ | ™ | ™ | ™ | T | T | Tmj | twe |tren] 1ok | to | TBK | tek | txk | Ttk Jtkdg] | k n
nM| M /M
requests final checkpoint draining

ack/nack management network

Table A-12. SN-Directory- network interface actions

Action Description
a Send response message from cache to network
b Send request message from cache to network
c Send response message from dir to network
d Send forwarded request message from dir to network
e Send response message from network to cache or dir
f Send request message from network to dir
g Send forwarded request message from network to cache and dir
h Pop Incoming Response Network
[Pop Incoming Request Network
j Pop Incoming Forwarded Request Network
k Pop response queue from cache
| Pop request queue from cache
m Pop response queue from dir
n Pop forwarded request queue from dir
0 Send forwarded request message from cache to network
p Pop forwarded request queue from cache
q Send Final-Ack from cache to network

Pop Final-Ack from cache queue

Send Final-Ack from network to directory

Pop incoming Final-Ack from network queue

124

125

Table A-13. SN-Directory- network interface events

Event Description
OutgoingRequestFromCache Outgoing cache request
OutgoingForwardedRequestFromCache Outgoing cache forwarded request
OutgoingResponseFromCache Outgoing cache response
OutgoingFinalAckFromCache Outgoing cache final-ack
OutgoingForwardedRequestFromDir Outgoing dir forwarded request
OutgoingResponseFromDir Outgoing dir response
IncomingRequest Incoming request
IncomingForwardedRequest Incoming forwarded request
IncomingResponse Incoming response
IncomingFinalAck Incoming final-ack

Table A-14. SN-Directory- network interface transitions
=

g | o g

S1 518|585 g
Q
I = LL S
@) LL LE) S 7 S =3 ®
= a 5 c o 2 7 &)) X
o S T) o L Q 5 g
— LL — (] > ° o <
L =3 © L o %} o T} o8 ©
2 | & A 5 e | B 8 =
g 5 S & @ o1 x o 4 i
State o) o = °) = s) o

[a) T g c G o = o £ =
x < x iy 3 5> 5 L £ £
2 s o) =2 e} c o c S 8
£ o [c L = c = (@] o
=) L S 'S <) S = £ = =
2 2 | 2| 2| < 5 8

= =] S @] () c
°lg|s|o|¢

>

3 O

| bl op ak qr dn cm fi gj eh st
from cache from directory from network

to network to network to node

126

	Abstract
	Acknowledgments
	Table of Contents

	Chapter 1 Introduction 1
	Chapter 2 SafetyNet: Abstraction and Implementation 15
	Chapter 3 SafetyNet Evaluation 41
	Chapter 4 Availability 59
	Chapter 5 Designability 77
	Chapter 6 Related Work 91
	Chapter 7 Summary 99
	Appendix A: Tabular Specification of SafetyNet Directory Protocol 111
	List of Figures
	List of Tables

	Chapter 1
	Introduction
	1.1 A Case for Supporting Availability
	1.2 A Case for Supporting Designability
	1.3 Background Material
	1.3.1 Availability
	1.3.2 Designability
	1.4 SafetyNet: Unifying the Support for Availability and Designability
	FIGURE 1-1.� SafetyNet abstraction
	FIGURE 1-2.� Example SafetyNet system implementation

	1.5 Classification of Errors Due to Device and Design Faults

	1.5.1 Four Aspects of Error Characterization
	Fault
	Detection
	SafetyNet Recoverability
	Resumability Mechanisms
	TABLE 1-1. Classification of illustrative errors

	1.5.2 Classifying Errors in the Taxonomy
	Errors due to device faults
	Errors due to speculatively correct design faults
	Errors due to unintentional design faults

	1.5.3 Hardware Faults Not Tolerated
	Resultant error is undetected
	Fault corrupts recovery point state
	Cannot resume execution after recovery
	1.6 Thesis Contributions

	Chapter 2
	SafetyNet: Abstraction and Implementation
	2.1 SafetyNet Abstraction
	FIGURE 2-1. SafetyNet abstraction

	2.1.1 Incremental Checkpointing Via Logging
	2.1.2 Creating Consistent Checkpoints in Logical Time
	FIGURE 2-2. Example of checkpoint coordination

	2.1.3 Validating Checkpoints and Deallocating Checkpoint State
	2.1.4 Recovering the System to a Consistent Global State
	2.1.5 Input/Output Commit Problems
	2.1.6 Other Classes of Coherence Protocols and Memory Models
	Cache Coherence Protocols
	Memory Consistency Models

	2.1.7 Integrating SafetyNet with Other Levels of Checkpoint/Recovery
	2.2 Implementing SafetyNet
	2.2.1 System Model
	FIGURE 2-3. Checkpoint log buffer (CLB) structure
	SN-Snooping Specifics
	SN-Directory Specifics
	FIGURE 2-4. SN-Snooping system model
	FIGURE 2-5. SN-Directory system model

	2.2.2 Logical Time Base
	SN-Snooping
	SN-Directory
	FIGURE 2-6. Ensuring that logical time respects causality

	2.2.3 Logging
	FIGURE 2-7. Logging at the cache

	2.2.4 Checkpoint Creation
	FIGURE 2-8. Two-phase validation of checkpoint CPi

	2.2.5 Checkpoint Validation and Deallocation of Checkpoint State
	2.2.6 System Recovery and Restart
	FIGURE 2-9. Two-phase recovery/restart

	2.2.7 Implementation Details
	Checkpoint Numbers at Cache
	TABLE 2-1. Modifications to SafetyNet cache behavior

	Register Checkpointing

	2.2.8 Summary of Implementation
	2.3 SafetyNet Conclusions

	Chapter 3
	SafetyNet Evaluation
	3.1 High-Level Performance Model
	3.1.1 Error-Free Performance
	(EQ 1)
	(EQ 2)
	(EQ 3)
	(EQ 4)

	3.1.2 Performance in Presence of Errors
	(EQ 5)
	(EQ 6)

	3.2 Methodology
	3.2.1 Simulation Infrastructure and Target System
	Simics
	TABLE 3-1. Target system parameters

	Processor Model
	Memory Model
	I/O Model
	Recovery
	Methodology

	3.2.2 Workloads
	Online Transaction Processing (OLTP)
	Java Server
	Static Web Server
	Dynamic Web Server
	Scientific Application
	TABLE 3-2. Workload execution behavior

	3.3 Experiments
	3.3.1 Experiment 1: Error-Free Performance
	FIGURE 3-1. Performance comparison of SafetyNet with an unprotected system

	3.3.2 Experiment 2: Dropped Messages
	3.3.3 Experiment 3: Lost Switch
	3.4 Sensitivity Analyses
	3.4.1 Checkpoint Log Buffer Storage Cost
	FIGURE 3-2. Workload intensity (Apache workload)
	FIGURE 3-3. Performance vs. CLB size

	3.4.2 Checkpoint Interval Length
	FIGURE 3-4. Performance as a function of checkpoint interval (512 kbyte CLBs)
	FIGURE 3-5. Performance vs. CLB size for 500,000 cycle intervals
	FIGURE 3-6. Performance vs. CLB size for 1 million cycle intervals

	3.4.3 Register Checkpointing Latency
	FIGURE 3-7. Performance as a function of register checkpointing latency

	3.4.4 Sensitivity to the Rate of Soft Errors
	FIGURE 3-8. SafetyNet performance vs. soft error rate

	3.4.5 Cache Bandwidth
	FIGURE 3-9. Bandwidth vs. checkpoint interval (static web workload)

	3.5 Summary

	Chapter 4
	Availability
	TABLE 4-1. Classification of illustrative errors due to device faults
	4.1 Traditional Hardware Error Detection Mechanisms
	4.1.1 Interconnection Network Errors
	4.1.2 Coherence Protocol Errors
	4.1.3 Cache Hierarchy and Memory Errors
	4.1.4 Processor Core Errors
	4.1.5 SafetyNet Hardware Errors
	4.1.6 Device Faults Not Tolerated with SafetyNet
	4.2 Global Recovery versus Local Recovery
	4.2.1 General Discussion of FER vs. Global BER
	FIGURE 4-1.� Rough comparison of BER vs. FER

	4.2.2 Interconnect Link Errors
	Local Recovery with Error Correcting Codes
	Local Recovery with Link-Level Retry

	4.2.3 Processor Errors
	4.3 Innovations in Hardware Error Detection
	4.3.1 Detecting Errors with Signature Analysis
	(EQ 7)
	(EQ 8)

	4.3.2 Developing a Simplified Signature Analysis Example
	(EQ 9)
	(EQ 10)

	4.3.3 Checking Message-Level Invariants with Signature Analysis
	(EQ 11)
	(EQ 12)
	(EQ 13)
	(EQ 14)
	(EQ 15)

	4.3.4 Checking Coherence-Level Invariants with Signature Analysis
	(EQ 16)
	SN-Snooping
	TABLE 4-2. Coherence-level signature update function (SN-Snooping)
	SN-Directory
	Summary of Coherence-Level Signature Analysis

	4.4 Summary of Availability

	Chapter 5
	Designability
	5.1 Errors due to Speculatively Correct Design
	TABLE 5-1. Classification of illustrative errors due to speculatively correct design

	5.1.1 Simplifying Deadlock Avoidance in Interconnection Network Design
	FIGURE 5-1.� Example of deadlock in interconnection network

	5.1.2 Enabling Adaptive Routing in the Interconnection Network
	FIGURE 5-2.� Violating point-to-point order with adaptive routing
	FIGURE 5-3.� Performance of a system with adaptive routing

	5.1.3 Avoiding Pathological Mis-speculation
	5.2 Errors Due to Unintentional Design Faults
	TABLE 5-2. Classification of illustrative errors due to unintentional design faults

	5.2.1 An Example in the Cache Coherence Protocol
	5.2.2 General Properties
	1. Detection: The system can detect the error caused by the design fault.
	2. Recoverability: SafetyNet can recover from this error model.
	3. Resumability: SafetyNet can resume execution (without livelock) after recovering.
	Detection
	Resumability

	5.3 Summary of Designability

	Chapter 6
	Related Work
	6.1 Availability
	6.1.1 Hardware Backward Error Recovery
	6.1.2 Software Backward Error Recovery
	6.1.3 Message Passing Backward Error Recovery
	6.1.4 (Hardware) Forward Error Recovery
	6.2 Designability
	6.3 Checkpoint/Recovery and Versioning of Data for Other Purposes
	6.4 Using Logical Time to Coordinate Multiprocessor Systems

	Chapter 7
	Summary
	References

	Appendix A
	Tabular Specification of SafetyNet Directory Protocol
	FIGURE A-1. Protocol state machines and their incoming queues
	Table A-1.� SN-Directory - cache controller states
	Table A-2.� SN-Directory - cache controller actions
	Table A-3.� SN-Directory - cache controller events
	Table A-4.� SN-Directory - cache controller transitions (part 1 of 4)
	Table A-5.� SN-Directory - cache controller transitions (part 2 of 4)
	Table A-6.� SN-Directory - cache controller transitions (part 3 of 4)
	Table A-7.� SN-Directory - cache controller transitions (part 4 of 4)
	Table A-8.� SN-Directory - directory controller states
	Table A-9.� SN-Directory - directory controller actions
	Table A-10.� SN-Directory - directory controller events
	Table A-11.� SN-Directory - directory controller transitions
	Table A-12.� SN-Directory - network interface actions
	Table A-13.� SN-Directory - network interface events
	Table A-14.� SN-Directory - network interface transitions

