
Online Diagnosis of Hard Faults
in Microprocessors

FRED A. BOWER

Duke University and IBM Systems and Technology Group

and

DANIEL J. SORIN and SULE OZEV

Duke University

We develop a microprocessor design that tolerates hard faults, including fabrication defects and
in-field faults, by leveraging existing microprocessor redundancy. To do this, we must: detect and
correct errors, diagnose hard faults at the field deconfigurable unit (FDU) granularity, and deconfig-
ure FDUs with hard faults. In our reliable microprocessor design, we use DIVA dynamic verification
to detect and correct errors. Our new scheme for diagnosing hard faults tracks instructions’ core
structure occupancy from decode until commit. If a DIVA checker detects an error in an instruction,
it increments a small saturating error counter for every FDU used by that instruction, including
that DIVA checker. A hard fault in an FDU quickly leads to an above-threshold error counter for
that FDU and thus diagnoses the fault. For deconfiguration, we use previously developed schemes
for functional units and buffers and present a scheme for deconfiguring DIVA checkers. Experi-
mental results show that our reliable microprocessor quickly and accurately diagnoses each hard
fault that is injected and continues to function, albeit with somewhat degraded performance.

Categories and Subject Descriptors: B.2 [Arithmetic and Logic Structures]: Reliability, Testing,
and Fault-Tolerance—Diagnostics, error checking, redundant design; B.3 [Memory Structures]:
Reliability, Testing, and Fault-Tolerance—Diagnostics, error checking, redundant design; B.7 [Inte-
grated Circuits]: Reliability and Testing—Error checking, redundant design; B.8 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance; C.1 [Processor Architectures]: Gen-
eral

General Terms: Design, Performance, Reliability

Extension of Conference Paper: Fred A. Bower, Daniel J. Sorin, and Sule Ozev. “A Mechanism for
Online Diagnosis of Hard Faults in Microprocessors,” In 38th Annual International Symposium on
Microarchitecture (MICRO), November 2005.
This research was supported by the National Science Foundation under grants CCR-0309164 and
CCF-0444516, the National Aeronautics and Space Administration under Grant NNG04GQ06G, a
Duke Warren Faculty Scholarship (Sorin), and donations from Intel Corporation.
Authors’ addresses: Fred A. Bower, Department of Computer Science, Duke University, PO Box
90129 Durham, NC 27708-0129; email: bowerf@us.ibm.com; Daniel J. Sorin and Sule Ozev, De-
partment of Electrical and Computer Engineering, Duke University, PO Box 90291, Durham, NC
27708; email: {sorin, sule}@ee.duke.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1544-3566/2007/06-ART8 $5.00 DOI 10.1145/1250727.1250728 http://doi.acm.org/
10.1145/1250727.1250728

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

2 • F. A. Bower et al.

Additional Key Words and Phrases: Hard fault tolerance, processor microarchitecture, fine-grained
diagnosis

ACM Reference Format:
Bower, F. A., Sorin, D. J., and Ozev, S. 2007. Online diagnosis of hard faults in microprocessors.
Architec. Code Optim. 4, 2, Article 8 (June 2007), 32 pages. DOI = 10.1145/1250727.1250728
http://doi.acm.org/10.1145/1250727.1250728

1. INTRODUCTION

As technological trends continue to lead toward smaller device and wire di-
mensions in integrated circuits, the probability of hard (permanent) faults in
microprocessors increases. These faults may be introduced during fabrication,
as defects, or they may occur during the operational lifetime of the micropro-
cessor. Well-known physical phenomena that lead to operational hard faults
are gate oxide breakdown, electromigration, and thermal cycling. Microproces-
sors become more susceptible to all of these phenomena as device dimensions
shrink [Srinivasan et al. 2004b], and the semiconductor industry’s roadmap
has identified both operational hard faults and fabrication defects (which we
will collectively refer to as “hard faults”) as critical challenges [International
Technology Roadmap for Semiconductors 2003]. In the near future, it may no
longer be a cost-effective strategy to discard a microprocessor with one or more
hard faults, which is what, for the most part, we do today.

Traditional approaches to tolerating hard faults have masked them using
macroscale redundancy, such as triple modular redundancy (TMR). TMR is an
effective approach, but it incurs a 200% overhead in terms of hardware and
power consumption. There are some other, lightweight approaches that use
marginal amounts of redundancy to protect specific portions of the micropro-
cessor, such as the cache [Youngs and Paramandam 1997; Nicolaidis et al. 2003]
or buffers [Bower et al. 2004], but none of these are comprehensive.

Our goal in this work is to create a microprocessor design that can tolerate
hard faults without adding significant redundancy. The key observation, made
also by previous research [Shivakumar et al. 2003; Srinivasan et al. 2004a,
2005, is that modern superscalar microprocessors, particularly simultaneously
multithreaded (SMT) microprocessors [Tullsen et al. 1996], already contain sig-
nificant amounts of redundancy for purposes of exploiting ILP and enhancing
performance. We want to use this redundancy to mask hard faults, at the cost of
a graceful degradation in performance for microprocessors with hard faults. In
this paper, we do not consider adding extra redundancy strictly for fault toler-
ance, because cost is such an important factor for commodity microprocessors.
The viability of our approach depends only on whether, given a faulty micro-
processor, being able to use it with somewhat degraded performance provides
any utility over having to discard it.

To achieve our goal, the microprocessor must be able to do three things while
it is running.
� It must detect and correct errors caused by faults (both hard and transient).
� It must diagnose where a hard fault is, at the granularity of the field decon-

figurable unit (FDU).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 3

� It must deconfigure a faulty FDU in order to prevent its fault from being
exercised.

While previous work in this area has explored aspects of this problem, none
has developed an integrated solution. Some work has used deconfiguration to
tolerate strictly fabrication defects and thus assumed preshipment testing in-
stead of online error detection and diagnosis [Shivakumar et al. 2003]. Other
work has explored deconfiguration and has left detection and diagnosis as open
problems [Srinivasan et al. 2005].

In this paper, we discuss integrated design options for microprocessors that
achieve all three of these goals; we also present one particular microproces-
sor in this design space. First, our microprocessor detects and corrects errors,
because of both transient and hard faults, using previously developed DIVA-
style [Austin 1999] dynamic verification. Second, it uses a newly developed
mechanism to diagnose hard faults as the system is running. Third, after di-
agnosing a hard fault, the microprocessor deconfigures the faulty FDU in an
FDU-specific fashion. In this paper, we present and evaluate previously de-
veloped deconfiguration schemes for functional units and portions of array
structures (e.g., reorder buffer, load/store queue), and we show that our in-
tegrated approach also enables the microprocessor to deconfigure faulty DIVA
checkers.

Our experimental results show that our new diagnosis mechanism quickly
and accurately diagnoses hard faults. Moreover, our reliable microprocessor can
function quite capably in the presence of hard faults, despite not using redun-
dancy beyond that which is already available in a modern microprocessor. This
technique can turn otherwise useless microprocessors into ones that can func-
tion at a gracefully degraded level of performance. This capability can improve
reliability by tolerating operational hard faults. We can improve yield by ship-
ping microprocessors with defects that we have tolerated—it is as if they are
regular microprocessors that will get “binned” into a lower performance bin. Al-
though binning is typically by clock frequency, recent proposals have suggested
more general-performance binning [Shivakumar et al. 2003]. As long as these
bins are not so low performing as to be useless, then our improvement in yield
is a benefit. Our scheme also vastly outperforms a system with only DIVA or a
comparable recovery-based scheme, since the performance cost of recoveries is
quite high for hard faults that get exercised frequently; moreover, our scheme
can tolerate a hard fault in a DIVA checker.

The contributions of this work are:

� A dynamic, comprehensive hardware mechanism for diagnosing hard faults
in microprocessors, including faults in DIVA checkers.

� A microprocessor design that integrates our new hard fault diagnosis mech-
anism with DIVA error detection and a mix of preexisting and new deconfig-
uration schemes.

� An experimental evaluation that demonstrates that microprocessors with
our enhancements can tolerate hard faults with a graceful degradation in
performance.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

4 • F. A. Bower et al.

In Section 2, we discuss hard faults and why they concern microarchitects.
In Sections 3, 4, and 5, we describe error detection and correction, hard fault
diagnosis, and deconfiguration of faulty components, respectively. Section 6
discusses the costs and limitations of our particular implementation. Section 7
presents our experimental evaluation. We discuss related work in Section 8 and
conclude in Section 9.

2. HARD FAULTS IN MICROPROCESSORS

In this section, we discuss the hard faults that motivate this work. In par-
ticular, we focus on the technological trends that are leading toward greater
incidences of these faults. With increasingly smaller device and wire dimen-
sions and higher temperatures, these trends lead us to conclude that hard fault
rates will increase.

There have been several recent studies of operational hard faults [Srini-
vasan et al. 2004b; Jedec Solid State Technology Association 2003], that is,
hard faults that occur over the lifetime of the microprocessor. Srinivasan et al.
[2004b] determine that electromigration [Tao et al. 1996; Blaauw et al. 2003]
and gate oxide breakdown [Dumin 2002] are likely to be the two dominant
phenomena that cause operational hard faults. Electromigration results in
highly resistive interconnects or contacts and eventually leads to open circuits.
Electromigration increases as wire dimensions shrink and as temperatures
increase. Gate oxide breakdown (OBD) results in the malfunction of a single
transistor resulting from the creation of a highly conductive path between
its gate and its bulk. A newly manufactured oxide contains inherent electron
traps because of imperfections in the fabrication process. Over the lifetime
of the device, the number of such traps increases as a result of electric field
stress and electron tunneling. At some point, the electron traps may line up
and constitute a conductive path between the gate and the bulk of the device,
eventually leading to OBD. OBD rates increase as oxide thicknesses shrink
and temperatures increase. Since OBD increases switching delay, it can lead
to delay faults that manifest themselves as bit flips [Carter et al. 2005].

Defects introduced during chip fabrication are another source of hard faults.
Their causes differ from those of operational hard faults, but they often man-
ifest themselves in a similar fashion. For example, a fabrication defect could
result in a discontinuity in a wire, which is equivalent to the situation in which
electromigration leads to an open circuit. A fabrication defect could also lead
to the growth of an insufficiently thick gate oxide, which is functionally equiv-
alent to OBD. The impact of technology trends on fabrication defects is less
clear than it is for operational faults. In general, though, smaller wire and
device dimensions are more prone to defects, since the margin for error is
smaller.

3. ERROR DETECTION AND CORRECTION

There are numerous ways to detect and correct errors in microprocessors. For
our target design space, the best error detection candidates are the recently de-
veloped techniques that are both comprehensive (i.e., not tailored to one specific

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 5

error model) and less costly than macroscale redundancy (e.g., TMR). We do not
claim to innovate in this area; we simply seek to use a preexisting solution that
is well suited to our diagnosis and deconfiguration mechanisms.

We choose DIVA to comprehensively detect and correct errors using dynamic
verification with checker processors [Austin 1999]. In a system with DIVA dy-
namic verification, a total of n checkers are added at the commit stage of the
typical n-way superscalar processor pipeline. These checkers are small, simple,
in-order cores. According to Weaver and Austin [2001], a checker’s size is less
than 6% of an Alpha 21264 core, which is far less than the 200% overhead of
TMR. These checkers reexecute each instruction and compare their results with
those of the superscalar core. The original DIVA paper [Austin 1999] assumes
that the checkers, because of their small size, can be made resilient to physical
faults; thus, a mismatch in the result of an instruction signifies an error in the
superscalar core and leads the checker to correct the error by committing its
results and squashing the superscalar pipeline.

In the original DIVA design, a hard fault in a checker is undetectable and
uncorrectable—this is a limitation that we overcome later in this paper by
detecting and diagnosing hard faults in checkers, so that a system can stop
producing erroneous results and, if backward error recovery (BER) is avail-
able, recover from erroneous data that was committed before the checker was
diagnosed as faulty.

Other attractive options besides DIVA exist for error detection and cor-
rection, such as redundant multithreading. With redundant threading, each
thread is replicated and executed in parallel with the original. The results of
each are compared periodically—at every instruction or more infrequently—
and, if they do not match, an error has been detected. The processor can then
recover to the most recent instruction whose results were identical for the
two threads by flushing pipeline state and reexecuting the instruction that
encountered the miscomparison. Because the redundant instructions either
execute on different resources (e.g., different adders) or on the same resource,
but at different times, this scheme is well-suited to detecting transient errors.
It can also detect some errors because of hard faults, but it will not detect a
hard fault when both redundant instructions use the same faulty resource
at different times. Several redundant threading proposals have appeared in
the literature (AR-SMT [Rotenberg 1999], Slipstream [Sundaramoorthy et al.
2000], SRT [Mukherjee et al. 2002; Reinhardt and Mukherjee 2000], and SRTR
[Vijaykumar et al. 2002]). We believe that all of these schemes can either
provide error detection and correction in our diagnosis framework or can easily
be adapted to do so.

We chose DIVA over the alternatives, including redundant threading, be-
cause the opportunity cost and power consumption of using the alternatives
exceeded the small amount of overhead introduced by DIVA. We also believe
that DIVA checkers offer better hard fault correction capability. Detailed stud-
ies of the implementation of DIVA dynamic verification have shown it to pro-
vide performance nearly on par with an unprotected processor in the error-free
case, with minor performance degradation until error rates reach the error-per-
thousand-instruction range [Austin 1999].

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

6 • F. A. Bower et al.

4. FAULT DIAGNOSIS

DIVA checkers do not provide fault diagnosis. They are only capable of de-
tecting and correcting errors, not determining their underlying causes. For
transient faults, this is appropriate, since the desired remedy never involves
altering the configuration of the core. For hard faults, however, we show in
Section 7 that it is often desirable to deconfigure part of the superscalar core
in order to prevent frequent errors and the performance penalty that frequent
pipeline flushes from DIVA corrections (or redundant thread corrections) would
require.

We define substructures within the processor core that we wish to be able to
deconfigure as field deconfigurable units (FDUs). To diagnose hard faults in the
processor core, we first have to select the FDU granularity at which we wish to
be able to diagnose. Many structures are replicated within a typical superscalar
core, and the granularity of replication represents a natural FDU granularity.
The choice of FDU is a design decision for a given implementation. Because
deconfiguration is more easily achieved with this FDU selection, we favor it
over an FDU selection that seeks to have equal amounts of logic in each FDU.
For the processors that we model in our evaluation, the identified FDUs for
which we track diagnosis information are: individual entries in the instruction
fetch queue (IFQ), individual reservation stations (RS), individual entries in the
load-store queue (LSQ), individual entries in the reorder buffer (ROB), individ-
ual arithmetic logic units (ALU), and the individual DIVA checkers. While our
chosen processor designs have only one of some of the more complex ALUs (for
example, the integer multiplier), we include them in our diagnosis evaluation
to show that the diagnosis is capable of identifying hard faults in these units.
We have chosen a fairly fine FDU granularity, but one could choose coarser or
even finer granularities if so desired; we discuss this engineering tradeoff later.
The hardware bounds of our diagnosis mechanism are the components in which
the selected error checker (in our design, DIVA) can detect a fault. Therefore,
we do not consider the register file, because DIVA cannot recover from errors
in it.

4.1 A New Online Diagnosis Mechanism

We propose in this paper to dynamically attribute errors to FDUs as the system
is running. Given an error detection mechanism, if an instruction (or micro-op,
in the case of IA-32) is determined to be in error, the system records which
FDUs that instruction used during its lifetime. If, over a period of time, more
than a prespecified threshold of errors has been attributed to a given FDU, it
is very likely that this resource has a hard fault.

To track each instruction’s FDU usage, bits are carried with each instruction
from the point of FDU usage to commit. For those structures that the instruc-
tion owns at commit, this information is already implicitly available and no
extra wires are needed to carry this resource usage info through the pipeline.
In our modeled processor, the ROB entries and DIVA checkers use implicit
tracking. For the remaining FDUs, the number of bits required is a function of
the size of the structure and the granularity into which we are allowing it to be

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 7

subdivided for later deconfiguration. This represents an engineering tradeoff
in our design that will allow implementations to select the appropriate FDU
granularity/overhead tradeoff. For typical superscalar microprocessor designs,
including those that we evaluate in Section 7, roughly 20 bits are required to
track this fine-grained FDU utilization information. Carrying these extra bits
through the pipeline incurs two costs: pipeline latches will be marginally wider
and there will be more wires to route through the pipeline. However, compared
to the 64-bit operands that are carried through the pipeline, these extra bits
are a small addition, especially since not all of the bits need to traverse the
whole pipeline.

For each FDU we track, the processor maintains a small, saturating error
counter. The purpose of the error counter is to differentiate hard from soft faults.
At the scope of the error detection and correction mechanisms considered (that
is, at the instruction granularity), hard faults are not distinguishable from soft
faults at the time an error is detected and corrected. For hard faults affecting
frequently used structures, we observe an error detection and correction rate
that is orders of magnitude higher than that observed for transient faults.
Occasional corrections because of soft faults do not trigger diagnosis because
they do not saturate the error counter for any given FDU in the system. Periodic
clearing of the error counters prevents soft-fault corrections from accumulating
to a point where diagnosis is triggered.

4.1.1 Design Issues. Using saturating error counters for diagnosis of hard
faults presents four challenges. First, after the FDUs have been selected and
configured for diagnosis in an implementation of our mechanism, all remain-
ing logic for which the error detection and correction mechanism detects and
corrects errors must also be tracked by our diagnosis scheme. For our design,
this critical logic includes all logic that is not within an FDU, but that is in the
portion of the superscalar core for which DIVA is capable of detecting errors.
This includes instruction issue and any common datapaths that all instructions
must traverse.

The second issue with using saturating error counters is that transient errors
must not lead to above-threshold error rates. Thus, we must have error counter
thresholds that are not too small and the microprocessor must periodically clear
the error counters to prevent transient errors from accumulating past the hard
fault threshold. The frequency of counter clearing is an adjustable parameter
that depends on expected transient error rates. Counter clearing is a low-cost
operation, so we recommend clearing once every 10 s, even though current
terrestrial transient fault rates do not approach this frequency. This rate is
based upon our experimental results for latency to diagnose hard faults. Our
experimental results show that the latency to diagnose a hard fault in the FDUs
we evaluate is less than 1/10th of a second at multigigahertz frequencies, even
in infrequently used FDUs. By clearing at an interval well above the diagnosis
latency of FDUs we care to diagnose, we ensure that we will diagnose hard
faults that greatly affect system performance if they are allowed to continue
to cause error detection and correction to occur. If diagnosis spans a clearing
interval, we are merely temporarily postponing the deconfiguration. Also, if

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

8 • F. A. Bower et al.

a hard fault is detected and deconfiguration is activated, the deconfiguration
process clears the error counters.

Third, the error rate threshold for a resource must be related to its usage. For
example, a very high threshold for a resource that is rarely used will preclude
the system from ever diagnosing a hard fault in it. To illustrate this, consider
the case where we have a single adder and two ROB entries. Assuming we use
the adder and one of the ROB entries each cycle, we can observe that a fault in
the ALU will cause both ROB entries’ error counters to accumulate errors at
a rate of one-half that of the adder. To avoid misdiagnosis, we would need the
adder’s saturation value to be greater than that of an ROB entry, but not more
than twice the ROB entry value. Thus, for frequently utilized FDUs, a larger
counter value is required to prevent the misdiagnosis of a fault in an up- or
downstream structure.

The final challenge is that the chosen FDUs must be used reasonably inde-
pendently. Otherwise, for example, if every time an instruction uses FDU A it
also uses FDU B, then the diagnosis mechanism will not be able to distinguish
between a hard fault in A and a hard fault in B. To guarantee that instructions
take many different and independent paths through the pipeline, we slightly
change the scheduling of resources that are normally scheduled nonuniformly
(e.g., higher priority for ALU0) to add a round-robin aspect to it. For example,
instead of always allocating the lowest-numbered ALU that is available, the
microprocessor allocates available ALUs in a round-robin fashion. Otherwise,
the usage of ALU0 could be significantly greater than that of other ALUs and
thus preclude hard faults in them from being diagnosed (since the thresholds
assume uniform utilization). This scheduling modification is not necessary for
resources that are naturally scheduled uniformly, like ROB entries. We found
though, that round-robin scheduling alone does not avoid all lockstep alloca-
tion of resources. For example, with three ALUs and three DIVA checkers, we
found that a long string of instructions that all used ALUs led to undiagnosable
errors. In one particular scenario, an instruction that used ALU0 always used
Checker1, ALU1 was perfectly correlated with Checker2, and ALU2 was per-
fectly correlated with Checker0. To avoid this lockstep allocation, we introduced
a small amount of pseudorandomness into the scheduling of checkers. Every
cycle, the first checker to be considered for allocation is determined based on
pseudorandom data (e.g., low-order bits of the tick counter) and then subse-
quent checkers are allocated sequentially (mod width) after the first one. This
pseudorandomness, combined with round-robin scheduling, prevents lockstep
allocation and achieves reasonably uniform utilization of each set of identical
FDUs.

4.1.2 Heuristics for Choosing Error Counter Values. Given these four chal-
lenges, we developed a heuristic for choosing appropriate threshold values for
the saturating error counters. As it is always possible to craft an instruction
sequence that leads to saturation of the wrong counter, the best that we can do
is to choose saturating values and then verify correct diagnosis operation via
simulation. Using this heuristic for the designs we evaluate in Section 7, we
will see that it does provide effective threshold values that lead to low-latency

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 9

Table I. Error Counter Thresholds

FDU Threshold Storage Requirements for Diagnosis
Instruction fetch queue entry 32 5 bits/entry
Reservation station 32 5 bits/entry
Reorder buffer entry 16 4 bits/entry
Load/store queue entry 16 4 bits/entry
Integer ALU 64 6 bits/unit
Floating-point ALU 64 6 bits/unit
Integer multiplier 32 5 bits/unit
Floating-point multiplier 32 5 bits/unit
DIVA checker 64 6 bits/checker
Critical logic (issue, etc.) 128 7 bits

diagnoses of a wide range of FDUs. The heuristic is as follows:

1. Select a minimum power-of-two threshold value well above what transient
or intermittent faults would cause in a counter-clearing interval.

2. Segregate FDU types by the population of units for each type. For FDUs
that have a population that is not a power of two, round the population
to either the next larger power of two, if it is a heavily-utilized resource,
or the next smaller if it is a less-heavily utilized resource. At this point,
resource utilization information may need to be gathered via simulation of
representative workloads. Group like-population FDUs together. Assuming
that there is some logic for which error detection and correction can contain
a fault, but for which there is no associated FDU, create a singleton group
for “critical logic.”

3. Assign the minimum threshold chosen in step 1 to the highest-populated
FDU group.

4. Assign the next power-of-two as the error counter threshold for the next-
most-populated FDU group.

5. Repeat step 4 for all remaining FDU groups, assigning the highest threshold
to the “critical logic” group.

6. Simulate the processor with a representative set of workloads and FDU
faults to verify that the thresholds chosen cause the diagnosis mechanism
to converge on the faulty FDU.

7. Using the simulation results from step 6, reduce the threshold by a factor of
two (one bit) for those items whose diagnosis latency is large. If this thresh-
old reduction results in no FDUs with an error counter threshold in the
middle of the threshold range, reduce all higher error counter thresholds by
a factor of two. This will result in a set of error counters whose bit width is
monotonically increasing, without any gaps from lowest to highest. Repeat
the simulation to verify correct operation.

In Table I, we list the counter thresholds for the FDUs we consider in this
paper, including the per-unit storage cost for each FDU’s counter. These values
were derived for our three evaluated processor design points using the above
heuristic with a minimum threshold value of 16. For resources that are less
utilized, such as the floating-point units, our mechanism may take additional

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

10 • F. A. Bower et al.

time to diagnose, even with the lower threshold than their more heavily utilized
integer counterparts. Any hard fault that gets exercised so rarely as to not
exceed our error-counter threshold between periodic counter zeroing is also so
rare that it incurs little performance penalty for its infrequent error recoveries.
In this situation, simply using DIVA to correct errors because of a hard fault in
a lightly utilized FDU is sufficient. The key observation is that our scheme can
diagnose hard faults in the highly utilized resources, so that the microprocessor
avoids frequent recoveries.

4.1.3 Discussion. We include the DIVA checkers in the error diagnosis de-
sign, so that we can enable the microprocessor to tolerate hard faults in the
checkers. Since a k-way superscalar microprocessor requires approximately k
checkers to avoid having the checkers become a bottleneck, we would like to be
able to tolerate a hard fault in one of them by leveraging their redundancy.

Using DIVA for error detection and correction provides three unique issues
related to diagnosis and deconfiguration of a hard-faulted unit. First, uncached
loads and stores commit without any redundant check of the operation, making
them undiagnosable. A fault affecting the logic unique to these operations will
not be covered by our mechanism. The system will perform exactly as it would
if it only had DIVA checkers active. Second, the microprocessor is vulnerable
to transient errors in DIVA checkers, but DIVA assumes that small checkers
can be designed to be more resilient to transient faults by using more robust
feature sizes. Third, because the microprocessor trusts a DIVA checker until its
error counter exceeds its threshold, the microprocessor is vulnerable to incorrect
execution in the window between when a hard fault occurs in a checker and
when it diagnoses that the checker is the culprit. We further discuss this window
of vulnerability in Section 6.2.

There are certain scenarios in which the diagnosis mechanism can tem-
porarily deconfigure a fault-free FDU. A transient or hard fault in our added
hardware—error counters, wires for tracking resource usage, and deconfigu-
ration logic—could lead to deconfiguring a fault-free component. The use of
saturating counters for the FDUs within the processor also introduces the pos-
sibility that the wrong unit’s counter will saturate first for a particular instruc-
tion sequence. To address this issue, we use an iterative diagnosis process.
Diagnosis is not considered complete until fault rates fall below a hard-wired
threshold set by the designer. We set this threshold sufficiently high to allow
for all hard faults that we wish to diagnose to be accounted for. The final unit
deconfigured before this error rate change is considered faulty, while all other
units deconfigured in the affiliated diagnosis cycles are returned to operation.
In general, if deconfiguration does not help (i.e., as unit(s) are deconfigured, er-
ror counters continue to saturate in close temporal proximity), then the system
can reconfigure the previously mapped out unit(s) back into the system (under
the common assumption of one hard fault at a time) once the correct unit has
been identified and deconfigured. Our evaluation in Section 7 will show that
one diagnosis iteration is sufficient a vast majority of the time.

The microprocessor also tolerates faults in the error counters by testing them.
After clearing the counters, it checks that they are, indeed, all zero. It also uses

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 11

a small amount of hardware to periodically test that the counters can be in-
cremented correctly. If a counter is faulty, the corresponding FDU is then per-
manently either configured or deconfigured, based upon whether it is mapped
back in or left deconfigured. Mapping it back in leaves the system vulnerable
to a hard fault in this FDU, but leaving it deconfigured is potentially a loss of
useful hardware.

4.2 Alternative Design Options

There exist other ways to perform fault diagnosis. The most obvious approach is
to use TMR—if two modules produce one result and the third module produces a
different result, then the system diagnoses the third module as faulty (assuming
a single-fault model). TMR, however, has a 200% hardware and power overhead.

Another well-known diagnosis approach is built-in self-test (BIST). After
detecting an error and determining that it results from a hard fault (e.g., by
detecting it repeatedly), systems with dedicated BIST hardware can test them-
selves in order to diagnose the location of the hard fault. To its advantage,
unlike our new diagnosis mechanism, BIST does not have to worry about the
statistical nature of online error counting. BIST can be applied to a micro-
processor like the ones we study, and one concurrent BIST mechanism can be
used for all components in the path, although the number of BIST test vectors
to generate—either deterministically or pseudorandomly—would be extremely
large. BIST requires the processor to be offline for testing to occur. Our online
error counting differs from BIST by diagnosing faults via the observation of
the execution of actual software with the software’s instructions acting as test
vectors and the error detection and correction acting as output verifier. This en-
sures that we always have a test vector that exposes a detected fault. Finally,
BIST adds performance overhead because of the extra multiplexers that choose
between normal inputs and BIST inputs. Unlike our diagnosis overhead, this
overhead is on the critical path of instruction flow through the processor. Since
many processors have some form of BIST support already in their design, use
of our mechanism presents an opportunity to remove this hardware from the
critical path, replacing BIST with our mechanism.

Within our diagnosis mechanism, there are also design options. If, instead of
using DIVA, we used redundant threading for error detection and correction,
this would also affect our diagnosis mechanism. DIVA assumes that the checker
core is always fault-free and thus it can diagnose with only two copies of a
given unit (e.g., the multiplier in the out-of-order core and the multiplier in the
checker). If a redundant threading scheme is used for detection and correction
of hard faults, it must use independent resources for each of the primary and
redundant threads in order to guarantee that results are not derived from the
same faulty hardware. Since with redundant threading, there is no known-good
unit, we need at least three copies of a given unit to ensure forward progress is
achieved in the presence of a hard fault. Otherwise, for example, a hard fault in
one of two multipliers would cause repeated mismatched results with no way
to determine which result is correct. In this case, the instruction would replay
continually until a higher-level deadlock detection mechanism activated. With
at least three copies of a unit, the two fault-free copies will calculate the correct

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

12 • F. A. Bower et al.

result, allowing us to isolate the faulty functional unit and then increment its
associated error counter.

Finally, an alternative, related diagnosis mechanism bears mentioning. As
an alternative to keeping saturating error counters for each FDU and all logic
covered by the chosen error detection and correction mechanism, a microarchi-
tect could opt to have a single, saturating error counter that triggers diagnosis.
This counter, when saturated, would lead the system to replay the faulted in-
struction, deconfiguring and replacing each FDU involved in the last erroneous
result until a correct result is obtained. At that point, the currently deconfigured
FDU would be deemed faulty and would remain deconfigured from the system,
with normal operation resuming. This method presents three drawbacks. First,
to use this alternative, the microarchitecture would have to support directed
steering of instructions through specific FDUs to allow for multiple replays with
only a single suspect removed from the processing of each replay. This would add
additional complexity to every stage of the pipeline. Second, if a transient fault
happens to cause the diagnosis in this alternative scheme, diagnosis will take
the maximum amount of time and will result in no unit deconfigured, requir-
ing a subsequent diagnosis attempt on the next encountered error. Finally, if a
transient occurs during diagnostic replay, it will result in either the diagnosis
missing the suspect unit, requiring another round of diagnosis, or a double-fault
case, which greatly complicates error detection. Given these issues, we chose
the use of error counters for each FDU, which leads to a single deconfiguration
action upon saturation without requiring any directed replay of instructions.

5. DECONFIGURING FAULTY COMPONENTS

After an FDU has been diagnosed as having a hard fault present, deconfiguring
the faulty FDU is desired to avoid the frequent pipeline flushes that DIVA
would trigger due to continued manifestation of the fault. In this section, we
describe several preexisting methods for deconfiguring typical microprocessor
structures, plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the instruction fetch queue
(IFQ), reorder buffer (ROB), and load/store queue (LSQ)—previous work has
shown how to add a level of indirection to allow for deconfiguration of a single
entry with little additional latency added to access time for the structure [Bower
et al. 2004; Shivakumar et al. 2003]. In the method by Bower et al. [2004], each
structure maintains a fault map. This fault map information feeds into the head
and tail pointer advancement logic, causing the advancement logic to skip an
entry that is marked as faulty. If cold spares are available, as assumed by Bower
et al. and shown in Figure 1, the structure size can be maintained at the original
processor design point. If no spares are provisioned, which is what we assume
in this paper, then the structure size must be updated when the fault map is
updated.

For some tabular (i.e., directly addressed) structures—such as reservation
stations, register files, etc.—a simple solution is to permanently mark the re-
source as in-use, thus removing it from further operation [Shivakumar et al.
2003]. Once again, Bower et al. [2004] assume that cold spares may be available,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 13

Fig. 1. Deconfiguration of entries in a circular buffer (e.g., reorder buffer). Shading indicates
hardware added for entry deconfiguration purposes.

Fig. 2. Deconfiguration of entries in a tabular structure (e.g., reservation station). Shading indi-
cates hardware added for entry deconfiguration purposes.

and we illustrate this previously developed design in Figure 2, even though we
assume no provisioning of cold spares in this paper.

For a functional unit (ALU, etc.), similar to a reservation station, we can mark
the resource as permanently busy, preventing further instructions from issuing
to it [Shivakumar et al. 2003]. Cold sparing of functional units is possible, but
it may require too much hardware area, as functional units are relatively large

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

14 • F. A. Bower et al.

compared to individual ROB entries or reservation stations. We focus on using
existing redundancy, since the cost of adding extra redundancy may be too great
for commodity microprocessors.

For one of the multiple DIVA checkers, we can map it out if we diagnose it
as being permanently faulty. Depending on how DIVA checkers are scheduled,
deconfiguration is just as simple as for ALUs; just marking a faulty checker as
permanently busy will deconfigure it. Prior work has not looked into deconfig-
uring DIVA checkers, because no fault diagnosis schemes prior to this paper
could diagnose hard faults in a checker.

6. COSTS AND LIMITATIONS

The design that we have presented in Sections 3–5 is not free, nor is it without
limitations. In this section, we present its hardware costs and limitations.

6.1 Hardware Costs

We add hardware to an unprotected microprocessor to achieve hard fault toler-
ance. The largest, single addition to the processor is the DIVA checkers, each
of which has been estimated at 6% of the size of an Alpha 21264 core [Weaver
and Austin 2001]. In addition to DIVA, which provides benefits even without
our additions, we also add: error counters, wires for tracking each instruction’s
resource usage, and logic for deconfiguring FDUs. None of these additional
hardware costs are large; moreover, they can all be reduced at the expense of
a coarser granularity of diagnosis and deconfiguration. For example, we can
share one error counter and one wire among k entries in the instruction win-
dow, at the cost of having to deconfigure all k entries if any of them incurs a
hard fault.

6.2 Limitations

We now discuss three limitations of our current implementation and approaches
for addressing them in the future. First, there are certain structures that we
either cannot protect or that are very difficult to protect. Our current implemen-
tation cannot protect the register file, because it is part of the recovery point
for DIVA recovery. We cannot diagnose faults in singleton resources that are
used with a majority of instructions, because of ambiguity reasons stated at the
end of Section 4.1. Examples of these resources include issue logic and common
datapath lines. These singletons are always in lock-step scheduling with each
other. Future work will involve designing modular implementations of these
currently monolithic structures, so that incremental redundancy is feasible.

Related to this issue is the impact of hard faults in the datapaths and unique
logic for each FDU. For some FDUs selected, there is a unique set of logic and
data paths that will affect correct execution for a subset of instruction paths
through the processor if hard faults are present, but for which diagnosis will
lead to deconfiguration of a downstream unit. In these instances, the deconfigu-
ration action results in discontinued use of the faulted portion of the circuit via
deconfiguration of the downstream FDU, so the correct thing happens with our
diagnosis mechanism despite the problem actually residing in a different FDU.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 15

For example, consider bypass paths between ALUs. A fault in a bypass path
will be flagged as a fault in the destination ALU by our mechanism, even though
that ALU is able to correctly process instructions when the bypass path is not
active. By discontinuing use of the ALU, however, we observe that the bypass
path is no longer used, thus eliminating the fault from further activation. To
prevent this effect, we could treat bypass paths as separate FDUs, but their
deconfiguration would not be straightforward, so we choose to lump them with
the ALU FDUs for simplicity of the overall design. The tradeoff here is that a
fully functional ALU is deconfigured to prevent the effects of a hard fault in a
bypass path.

Second, there is a window of vulnerability in which a faulty microprocessor
can unwittingly produce erroneous results. Being able to deconfigure a faulty
DIVA checker enables the microprocessor to improve reliability by preventing
the fault from continuing to silently corrupt system state; in a DIVA-only sys-
tem, it would go unnoticed until visible data corruption was recognized by a
downstream entity. However, there is still a window of vulnerability between
when the hard fault occurs in the checker and when it is diagnosed and decon-
figured. In that window, a number of instructions equal to the error counter
threshold for the checker times the number of DIVA checkers could have been
committed in error, since DIVA checkers assume they are correct in the case of a
miscomparison. Without a higher-level recovery scheme, such as checkpointing,
this erroneously committed state represents an unrecoverable error. It should
be noted that DIVA also can cause silent data corruption when a transient
fault affects a checker. Since this is not detectable by DIVA or our diagnosis
mechanism, it remains an exposure of any DIVA-based system.

Finally, because we elected to use DIVA in our designs, we are unable to
detect and correct problems in uncached loads and stores. This is a limitation
of DIVA that we inherit. This adds complexity to recovery, particularly in the
case where the checker is at fault. Discussion of techniques to work around
this limitation is beyond the scope of this paper. This problem is not new to
checkpointing research. If a designer requires containment of this escape in
the scheme, an appropriate checkpointing scheme will be required. The use of
an alternative error detection and correction mechanism, capable of detecting
and correcting these errors, would also correct this issue.

7. EVALUATION

Our evaluation consists of experiments to explore the effectiveness of our diag-
nosis scheme in a representative sample of processor designs. Our evaluation
has the following goals:

� First, we want to show that commodity design points using our reliable ar-
chitectural extensions can quickly and correctly detect and diagnose hard
faults, even in the presence of transient faults.

� Second, we want to demonstrate that, after our scheme deconfigures a per-
manently faulty FDU, the microprocessor’s performance is still good enough
to be useful.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

16 • F. A. Bower et al.

� Third, we want to compare our scheme against a microprocessor that simply
relies on DIVA checkers to tolerate hard faults; while DIVA was designed
primarily for soft faults, it can also tolerate hard faults, and we want to
determine if our scheme outperforms this simpler solution.

� Fourth, we want to perform a sensitivity analysis for singleton complex, com-
binational logic units, such as the integer and floating-point multipliers, in
order to determine if protection of these units warrants further investigation.

� Finally, taking all three of our chosen design points together, we show the
general applicability of the technique to a broad set of designs from the com-
modity microprocessor design space.

7.1 Methodology

To evaluate our design for proper operation under the fault models considered,
we modified sim-mase, as made available by SimpleScalar [Austin et al. 2002].
We model three separate microprocessor designs, each patterned after an exist-
ing commodity microprocessor design. The first design, Narrow, is a superscalar
processor that is patterned roughly after the original, pre-SMT-enabled Intel
Pentium 4 [Boggs et al. 2004; Hinton et al. 2001]. The second design, Deep–
Narrow, is a more deeply pipelined implementation of Narrow, patterned on
current Intel Pentium 4 designs [Boggs et al. 2004]. Deep–Narrow differs from
Narrow in the depth of its pipeline, carrying an additional 11 stages to allow
for faster clocking. The final processor configuration, Short-Wide, is inspired by
the AMD Athlon/Opteron processor family [AMD 2005; Huynh 2003]. This de-
sign point favors a wider, shorter pipeline that, in practice, is clocked at a lower
rate than competing designs from Intel. Since the register renaming scheme
does not affect our experiments, all of the processor configurations use implicit
renaming via the reservation stations (i.e., without an explicit register map
table). Table II shows the details of all three configurations, including the over-
heads for our diagnosis scheme. We utilize the DIVA-style checker capability
provided by sim-mase and, in addition, modified SimpleScalar to allow for hard
fault injection.

For benchmarks, we use the complete SPEC2000 benchmark suite with the
reference input set. To reduce simulation time, we used SimPoint analysis
[Sherwood et al. 2002] to sample from execution of each benchmark. The 100-
million instruction SimPoints were used, with 100-million instructions of de-
tailed simulation warm-up used prior to simulating the SimPoint for all bench-
marks requiring fast forwarding. Since we present results in the rest of this
section in terms of normalized performances, we provide baseline error-free
IPC results for each of the three processor design points in Figure 3.

The goal of all of our evaluation is to show how the processor behaves in
the presence of a hard fault. The likelihood of a hard fault affecting processor
operation is highly dependent upon the process used to manufacture the part,
the complexity of the design, and the operating environment that the part is
deployed in. The discussion of these issues is an active body of research and is
beyond the scope of this evaluation.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 17

Table II. Parameters of Target Systemsa

Feature Narrow Deep–Narrow Short–Wide
Pipeline stages 20 31 12
Width: Fetch/issue/
commit/check

3/6/3/3 3/6/3/3 9/9/9/9

Branch predictor 2-level GShare, 4K
Entries

2-level GShare, 4K
Entries

2-level GShare, 4K
Entries

Instruction fetch queue 64 Entries 64 Entries 72 Entries
Reservation stations 32 32 54
Reorder buffer 128 Entries 128 Entries 216 Entries
Load/store queue 48 Entries 48 Entries 44 Entries
Integer ALUs 2 Units, 1 cycle 2 Units, 1 cycle 3 Units, 5 cycle
Integer multiply/divide 1 Unit, 14 cycle

multiply, 60-cycle
divide

1 Unit, 14 cycle
multiply 1, 60-cycle
divide

1 Unit, 8 cycle
multiply, 74-cycle
divide

Floating point ALUs 2 Units, 1-cycle 2 Units, 1 cycle 3 Units, 5-cycles
Floating point
multiply/divide/square
root

1 Unit, 1-cycle
multiply, 16-cycle
divide/square root

1 Unit, 1-cycle
multiply, 16-cycle
divide/square root

1 Unit, 24-cycle
multiply, 26-cycle
divide, 35-cycle square
root

L1 I-Cache 16 KB, 8-way, 64-byte
blocks, 2-cycles

16 KB, 8-way, 64-byte
blocks, 2-cycles

64 KB, 2-way, 64-byte
blocks, 3-cycles

L1 D-Cache 16 KB, 8-way, 64-byte
blocks, 2-cycles

16 KB, 8-way, 64-byte
blocks, 2-cycles

64 KB, 2-way, 64-byte
blocks, 3-cycles

L2 cache (unified) 1 MB, 8-way,
128-byte blocks,
7-cycles

1 MB, 8-way,
128-byte blocks,
7-cycles

1 MB, 16-way,
128-byte blocks,
20-cycles

Diagnosis: error
counters

1249 Bits 1249 Bits 1219 Bits

Diagnosis: FDU
tracking

19 Lines 19 Lines 22 Lines

aShaded entries for Deep–Narrow are identical to those of Narrow.

7.2 Detection and Diagnosis of Hard Faults

Our first set of experiments explores how accurately and quickly our scheme
detects and diagnoses hard faults. In each experiment, we injected one hard
fault in a single structure. All injected hard faults manifest as a single-bit
stuck-at-1. To accurately account for masking effects, we inject the hard fault
at a specific site in the FDU, with the exception of complex FDUs for which we
lack a detailed implementation. Our hard fault selection attempts to provide
greater masking of fault effects, which leads to a smaller performance penalty
and longer diagnosis latency because of fewer error detections and corrections.
We do this because it is a pessimistic case for the operation of our mechanism.

Because transient faults are relatively rare for the intervals we are simulat-
ing, we expect no more than one transient to occur during a diagnosis interval.
To model the effects of this scenario, we ran each simulation with the effect of a
single, observed transient added at the beginning of the simulation (that is, one
random set1 of FDUs’ counters started with an error count of one, rather than

1A set is defined as one of each required FDU type for a particular instruction’s processing. Recall
that DIVA cannot determine whether an error came from a transient or hard fault and also cannot

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

18 • F. A. Bower et al.

Fig. 3. Error-free performance (SPECfp and SPECint) for each of the three evaluated processor
configurations.

zero at the beginning of diagnosis). We observed no difference in the behavior
of the diagnosis algorithm for these experiments, leading us to believe that the
mechanism is robust in the presence of typical transient faults.

In order to accurately account for masking effects in our simulation envi-
ronment, we extended SimpleScalar to include detailed simulation of the fault
sites we inject errors at. To avoid excessive simulation times, we extended
SimpleScalar only in the areas required to sufficiently evaluate the effects of
masking for the injected fault. Fault sites were chosen for each of the FDUs
in the system with the goal of providing a representative fault for the given
structure, with nominal or slightly pessimistic behavior sought to ensure that
our study would apply for the broader set of possible faults that could occur in
the system.

For storage structures, we selected a representative bit to corrupt for a
faulted unit. For the ROB, we inject the fault into the least-significant bit (LSB)
of the data result. This causes the common value of 1 to provide data masking for
the injected fault. For the RS and IFQ, we corrupt the LSB of the register iden-
tifier for the second argument of the instruction. This causes single-argument
instructions to functionally mask this error and gives an even probability that
two-argument instructions will experience data masking for the injected fault.
For the LSQ, we inject the fault in bit 16 of the address. This prevents data
misalignment exceptions and provides an average-case data-masking scenario.

For combinational logic units, such as the ALUs, corrupting a single bit of
output is not an accurate fault model. This is because of the fact that com-
binational logic differs from storage in that faults may propagate to different
outputs or may be functionally masked for different inputs and operations. This

diagnose a fault’s source, requiring the diagnosis mechanism to treat all errors detected by DIVA
in the same fashion, with the counters for all FDUs involved in the calculation of the erroneous
result getting incremented upon DIVA correction. For example, for an integer add instruction, a
set would include critical logic, one integer ALU, one reservation station, one ROB entry, one IFQ
entry, and one checker.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 19

Fig. 4. Hard fault diagnosis latency, averaged over all benchmarks, for Narrow configuration.

requires us to either simulate a gate-level design of the faulted unit or to utilize
a statistical fault model.

For the integer ALUs, we model faults as manifesting in the adder. We used
a gate-level design for a 32-bit adder and selected a representative gate whose
output is stuck-at-1 when the fault is injected. We performed a thorough gate-
level fault simulation of the adder. We then simulated all possible inputs and all
possible fault locations for the adder to gain intuition on how masking affects
observation of fault effects. The gate we selected for fault injection in our simu-
lations represents the nominal masking case with a shading toward more mask-
ing, as this is a pessimistic assumption in our experiments. Masking was then
evaluated for every instruction that accessed the ALU with the faulty adder.

For the integer multiplier, floating-point multiplier, and floating-point ALUs,
we used a statistical model for fault injection. In this model, we assume that
there is a 50% chance that data masking will mask the injected fault. We use
a random number generator to select which instructions observe this data-
masking effect.

In all of our experiments, the microprocessor detected and diagnosed the
injected hard fault and did not misdiagnose a soft fault as being hard. We
measured how many cycles elapsed before an injected hard fault was correctly
diagnosed, and we plot the results of this experiment for the worst of the three
configurations (Narrow) in Figure 4. The other two configurations exhibited
qualitatively similar performance, so are not shown here. Since the results were
relatively insensitive to the benchmarks, we present the mean results for the
entire SPEC2000 benchmark suite; the error bars in the figure represent one
standard deviation above the mean. The results show that most hard faults
are diagnosed within fewer than 15,000 cycles, but that there are irregular
diagnoses that take significantly more time, leading to a high variance in the
data. These irregular diagnoses come from two sources.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

20 • F. A. Bower et al.

Table III. Number of Diagnoses Needed to Identify Correct Failing Unit

Faulted
Unit 1 Diagnosis 2 Diagnoses 3 Diagnoses 4 Diagnoses 5 Diagnoses 6+ Diagnoses
Instruction

fetch
queue
entry

>99.99% <0.01% 0%a 0%a <0.01%a <0.01%

Reservation
station

>99% <1% <0.01% <0.01% <0.01% <0.1%

Integer
ALU

>99% <0.1% <0.1% 0%a 0% <0.1%

Floating-
point
ALU

>99% <0.1% <0.1% <0.01% <0.1% <0.1%

Integer
multiplier

>99.999% 0% 0%a 0%a 0% 0%a

Floating-
point
multiplier

>99.99999% 0% 0% 0% 0%a 0%

Load/store
queue
entry

100% 0% 0% 0% 0% 0%

Rob entry >99.99% 0%a 0%a 0%a 0%a 0%a

DIVA
checker

>99% <1% <0.01% 0% 0% 0%

Critical
logic

>94% <4% <1% <1% <1% <1%

aValue less than 0.001%, but nonzero value.

The first source is initial misdiagnosis of nonfaulty hardware. To gain in-
tuition on how often this will be a factor in diagnosis latency, we gathered
statistics on how many diagnoses are required before converging on the correct
diagnosis. In these simulations, the fault was always left active, allowing for
continual diagnosis of the same faulty unit. Table III shows the results of these
experiments. Because the results for all processor configurations are similar,
we combine them in the data presented. While only the load/store queue en-
try has perfect diagnosis across all configurations, all units except critical logic
are diagnosed initially with at least 99% accuracy. With critical logic, the fact
that multiple units get deconfigured before the correct problem is identified is
unimportant because a fault in the critical logic will require that the processor
be shut down. As the latency data in Figure 4 shows, this still happens in a
very short period of time. In effect, the counter threshold selection for critical
logic allows the greatest opportunity for correct diagnosis of an FDU prior to
drawing a conclusion that critical logic has been affected by a hard fault. Since
the reaction to such a hard fault is more drastic than deconfiguring a single
FDU, we feel that this is a wise design decision.

The second source of variance in diagnosis latency is programmatic phase be-
havior. The mix of instructions varies throughout the various phases of program
operation. During certain phases, FDU utilization patterns will shift, causing
diagnosis behavior to vary. In rare circumstances, a string of instructions that

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 21

causes the wrong error counter to saturate first will occur (for example, a loop
that repeats many times). This can lead to a large number of misdiagnoses be-
fore the faulted unit gets properly deconfigured. As mentioned previously, the
diagnosis mechanism tolerates these misdiagnoses without significant impact
to the performance of the processor. The largest observed latencies were on
the order of millions of cycles, which is a small amount of time for a modern
microprocessor running at multiple gigahertz clock frequencies.

Our diagnosis latency study shows that the window of vulnerability for a
faulty DIVA checker is, on average, around 2000 instructions, which is easily
within the recovery capabilities of typical hardware and software backward er-
ror recovery (BER) mechanisms. The different diagnosis latencies for different
FDUs are a function of the relative usages of these structures, as well as their
error counter thresholds. Nevertheless, for all structures other than the DIVA
checkers, the diagnosis latency is relatively unimportant, since between when
the fault occurs and when it is diagnosed and the FDU deconfigured, the check-
ers mask its effect with only a performance penalty caused by the number of
pipeline flushes equal to the error counter threshold for the faulty FDU. Over
the course of even thousands of cycles, this performance penalty is still negligi-
ble. The key is not incurring that performance penalty over the entire lifetime
of the processor, as results in Section 7.4 show.

For the microarchitectures in our experiments, there are no spare units for
the integer multiplier or floating-point multiplier. Thus, we are unable to eval-
uate the effects of deconfiguring these units in Section 7.3, because they are
essential to correct operation of the processor. The latency and accuracy data
do suggest that considering these units as FDUs is possible. In Section 7.4, we
show that protecting these units from hard faults with a diagnosis and decon-
figuration strategy is worth considering in future designs.

7.3 Performance after Deconfiguring FDU

The second set of experiments evaluates the performance impact of deconfigur-
ing an FDU after having diagnosed it as being permanently faulty. In each of
these experiments, we remove one of each type of FDU that we study. Figure 5
plots the runtime for each of these experiments, normalized to the error-free
(fully configured) case. Since there is little variation in the results across bench-
marks, we plot the average results (geometric means of normalized runtimes)
across the SPECint and SPECfp benchmarks for each processor configuration.
The data show that the performance impact of deconfiguring an FDU is of-
ten small. This result, which corroborates prior work [Shivakumar et al. 2003;
Srinivasan et al. 2005], is in part because of the fact that the processor con-
figurations we are modeling are overprovisioned for single SPEC benchmarks;
both of the Pentium 4-styled configurations (Narrow and Deep–Narrow) are
designed to simultaneously run multiple threads and the extreme width of
the Athlon-styled configuration (Short–Wide) has it provisioned with multi-
ple units. Thus, resources are often idle in a typical single-threaded work-
load. There is a non-negligible performance degradation because of deconfig-
uring an ALU or DIVA checker in the Narrow configuration. This penalty all

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

22 • F. A. Bower et al.

Fig. 5. Performance impact of losing one component to a hard fault for each of the three evaluated
processor configurations.

but disappears in the other two configurations. In Deep–Narrow, the longer
pipeline suffers more from pipeline flushes, which degrade performance to a
point where the performance loss of the execute and commit bandwidth is ef-
fectively masked. In Short–Wide, the extra units provisioned to support the
width of the processor effectively mask the penalty for removing a single unit.
Stated another way, removing a single unit in Short–Wide is removing a smaller

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 23

percentage of available computing bandwidth than in the Narrow configura-
tions. All of these faulty systems continue to function correctly and with rea-
sonable performance.

7.4 Performance with Just DIVA Recovery (but No Diagnosis)

In this last set of experiments, we evaluate the performance of a microprocessor
that relies strictly on the DIVA checkers to tolerate hard faults. While DIVA
was designed primarily for soft faults and, thus, this is not a basis for a per-
fectly fair comparison, DIVA can tolerate hard faults and it is instructive to
compare against this option. A DIVA-only system is also similar to a system
that uses redundant threads for error detection and flushes the pipeline to re-
cover from errors (assuming forward progress can be ensured). Figures 6 and
7 show the effects of allowing complex, combinational logic substructures with
hard faults to remain in use with the DIVA checkers correcting the errors that
they activate for the SPECint and SPECfp benchmarks, respectively. Figure 8
(for SPECint) and Figure 9 (for SPECfp) show the effects of allowing regular
array structures with hard faults to remain in use with only DIVA correction.
In all four figures, we plot runtimes that are normalized to the error-free case
for each configuration, but we do not aggregate results across benchmarks, be-
cause there is significant variability. In these figures, the bar order (from left to
right) matches the order of items in the legend (from top to bottom) with a full
set of bars provided for each of the SPEC2000 benchmarks. We do not inject
hard faults into the DIVA checkers because they cannot tolerate them without
our diagnosis/reconfiguration.

In the case of the complex combinational logic units, the structures into which
we are injecting faults are used frequently and are critical to the correctness
of the processor. The results show that hard faults have a drastic impact on
system performance when DIVA is forced to correct the errors they create. The
performance of the DIVA-only system is far worse than the performance we
demonstrated for our system in Section 7.3. Technology trends toward deeper
pipeline implementations will only serve to make the performance penalty for
each error’s recovery (i.e., pipeline flush) more severe. The data for the singleton
units in our study (the integer and floating point multipliers) shows that, for
certain workloads, there is motivation to provide a less costly alternative to
pipeline flushing error correction mechanisms.

For the array structures, there are many more units present in typical
architectures than there are combinational logic units. Because of their greater
population in modern designs, these units are naturally used less often than
the combinational logic units. This functional masking effect results in the
lessened effects we observe. These units are still used often enough to cause
frequent pipeline flushes from DIVA corrections to noticeably, negatively
impact performance.

The relative difference in magnitude of the structure-to-structure penalty is
directly related to how frequently a given substructure is used by the workload.
Benchmark-to-benchmark variation for a given type of FDU is a result of the
distribution and frequency of preexisting stall events in a given benchmark. The
causes of these events, such as cache misses or branch mispredictions, result in a

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

24 • F. A. Bower et al.

Fig. 6. Performance of DIVA-only correction for combinational logic units (SPECint).

percentage of corrected errors falling in the shadow of another pipeline-clearing
event, thus diminishing the penalty associated with the error correction. For
example, a benchmark with many branch mispredictions is less sensitive to
pipeline flushes resulting from errors, if the errors tend to occur soon after
branch mispredictions, since there is less state that gets flushed by the error.

7.5 Summary and Discussion of Results

The experimental results in this section confirm that existing microprocessors
have redundancy that can be exploited to tolerate hard faults. We have also

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 25

Fig. 7. Performance of DIVA-only correction for combinational logic (SPECfp).

shown that, for a variety of processor configurations, we can accurately and
quickly diagnose hard faults and reconfigure around faulty FDUs to provide a
microprocessor that performs only slightly worse than a fault-free microproces-
sor. Moreover, it vastly outperforms the alternative of just relying on DIVA.

Technological and architectural trends drive this work and encourage fur-
ther work in this area. The incidences of hard faults and fabrication defects will
continue to increase. This will lead to decreased yield, higher FIT rates, and
lower MTTF for future generation parts. We have shown that use of a diagnosis

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

26 • F. A. Bower et al.

Fig. 8. Performance of DIVA-only correction for array logic units (SPECint).

and deconfiguration mechanism will allow for parts to operate in the presence
of hard faults until they begin to experience larger numbers of hard faults near
their end of life. This will lead to higher MTTF and lower FIT rates for parts that
use this sort of scheme over their unprotected peers. Also, as microarchitects try
to exploit ever more ILP and thread level parallelism, there will be even more
redundancy that can be leveraged for improving reliability and yield. In partic-
ular, emerging SMT processors will have more redundant hardware and fewer
singleton resources. Thus the advantages of our approach will increase because

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 27

Fig. 9. Performance of DIVA-only correction for array logic units (SPECfp).

of these trends. The caveat is that, as workloads evolve to take advantage of
this extra hardware, the performance impact of having to deconfigure an FDU
will increase. If that is the case, cold sparing of performance-essential FDUs
may be employed to effectively increase the MTTF and decrease the FIT rate
of a part employing our scheme. As mentioned previously, quantitative anal-
ysis of how much MTTF/FIT rate improvement will be gained is dependent
upon fault rates, which are dependent upon process and design details that we
do not consider in this work. Nevertheless, even without cold spares, a heavily

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

28 • F. A. Bower et al.

loaded microprocessor will continue to function correctly and with better perfor-
mance than just DIVA in the presence of operational hard faults and fabrication
defects.

8. RELATED WORK

In this section, we present prior research in tolerating hard faults and fabrica-
tion defects. A canonical design for tolerating hard faults is the IBM mainframe
[Spainhower and Gregg 1999]. Mainframes not only have redundant proces-
sors, but they also incorporate redundancy within the processor in order to
seamlessly tolerate hard faults. The IBM G5 microprocessor, for example, has
redundant units for fetch/decode and for instruction execution. Some other tra-
ditional fault-tolerant computers, such as the Stratus [Wilson 1985] and the
Tandem S2 [Jewett 1991], simply replicate entire processors. An even more ex-
treme case of using redundancy to tolerate fabrication defects and, to a lesser
extent, operational hard faults, is the Teramac [Culbertson et al. 1996]. The
Teramac is designed to make use of components that are likely to be faulty and
it is motivated by expected defect rates in nanotechnology. While these systems
all provide excellent resilience to hard faults, such heavyweight redundancy
incurs significant costs in terms of hardware and power consumption.

DIVA [Austin 1999] and redundant thread schemes provide low cost and low
power alternatives to heavyweight redundancy. All of the redundant threading
schemes (AR-SMT [Rotenberg 1999], Slipstream [Sundaramoorthy et al. 2000],
SRT [Mukherjee et al. 2002; Reinhardt and Mukherjee 2000], and SRTR [Vi-
jaykumar et al. 2002]) provide error detection and either use pipeline squashing
for error correction or could easily provide error correction via pipeline squash-
ing. All of these schemes were designed for transient faults and thus share the
same drawback as DIVA, with respect to hard faults, since they incur a pipeline
squash (and its corresponding performance and energy penalty) every time a
fault manifests itself. For hard faults in frequently used microprocessor struc-
tures, fault manifestation is too frequent and the performance of these schemes
suffers.

There are lightweight approaches by Shivakumar et al. [2003] and Srini-
vasan et al. [2005] that, similar to our work, leverage existing redundancy in
microprocessors. Shivakumar et al.’s work differs in that it is strictly for toler-
ating fabrication defects and does not extend to hard faults that occur during
execution. They combine offline (preshipment) testing and diagnosis of micro-
processors with deconfiguration capabilities to improve effective yield. Our ap-
proach combines deconfiguration with online error detection and fault diagnosis
to improve both yield and reliability. Srinivasan et al.’s work does not address
error detection or fault diagnosis.

A recent approach to improving microprocessor reliability in the presence
of operational hard faults (but not fabrication defects) is to use dynamic reli-
ability management [Srinivasan et al. 2004a]. In this approach, the processor
dynamically adapts, based on a model of its estimated lifetime, in order to
achieve a desired lifetime. In particular, if the processor is running too hot, be-
cause of a particular workload, it may use dynamic voltage scaling to cool down

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 29

and improve its reliability. This approach is orthogonal and complementary
to ours.

A recent scheme for tolerating only fabrication defects, called Rescue
[Schuchman and Vijaykumar 2005], utilizes circuit transformations to improve
testability and enable coarse-grain diagnosis of defective components (ways of
a superscalar processor). The finer grain diagnosis in our research enables us
to discard less fault-free hardware and it may enable us to tolerate more hard
faults before failure.

There are other noncomprehensive approaches to tolerating hard faults
in specific parts of a computer system. One option for storage structures is
to protect them with error correcting codes (ECC), as in IBM mainframes
[Spainhower and Gregg 1999]. Combining ECC for arrays with DIVA avoids
costly DIVA recoveries. However, ECC protection of arrays is on the critical
path for array access (both read and write) and it will thus add to the micropro-
cessor’s critical path and degrade its performance in the fault-free case. Storage
structures can also be protected by using a level of indirection to map out faulty
portions of the structure. Whole disk failures were addressed by RAID [Patter-
son et al. 1988]. For disk faults that did not incapacitate the entire disk, the
solution was to map out faulty portions at the sector granularity. Similar ap-
proaches have been developed for DRAM main memory. Whole chip failures are
tolerated by chipkill memory and RAID-M [Dell 2002; IBM 1999], and partial
failures are tolerated with schemes that map out faulty locations [Chen and
Sunada 1992; Mazumder and Yih 1990; Sawada et al. 1989]. For SRAM caches,
techniques have been developed to map out defective locations during fabri-
cation [Youngs and Paramandam 1997] and, more recently, during execution
[Nicolaidis et al. 2003]. SRAS [Bower et al. 2004] uses a similar technique to
map out defective rows in microprocessor array structures, such as the reorder
buffer and branch history table.

9. CONCLUSIONS

To address the emerging problem of operational hard faults and fabrication de-
fects in microprocessors, we have developed a microprocessor design that lever-
ages the existing redundancy in current microprocessors. This redundancy,
which exists to improve performance by exploiting ILP and thread-level par-
allelism, can be used to mask hard faults. Our microprocessor design inte-
grates DIVA-style error detection with a new mechanism for diagnosing hard
faults. After diagnosis, it deconfigures the faulty FDU and continues opera-
tion. Experimental results demonstrate that our scheme can accurately and
quickly diagnose hard faults and reconfigure around faulty FDUs to pro-
vide a microprocessor that performs only somewhat worse than a fault-free
system.

As technology trends continue to drive higher-complexity designs, imple-
mented with smaller transistor geometries, we believe that the incidence of
hard faults will increase, both from manufacturing defects and lifetime wearout
effects. In response to this increase in hard faults, commodity microprocessor
designs will require that hard fault tolerance be considered in their designs.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

30 • F. A. Bower et al.

Traditional approaches in the fault-tolerant computing space have not been
limited by the same cost constraints as the commodity space, making direct ap-
plication of existing techniques inappropriate. We believe that the commodity
microprocessor design space will drive the following constraints into a fault-
tolerant design:

� Low-cost implementation in terms of hardware and power consumption char-
acteristics.

� Graceful degradation in performance in the presence of hard faults.
� Effective containment of lifetime-reliability induced defects.

To meet these constraints, fine-grained diagnosis schemes will be required,
since coarse-grained solutions tend to incur too much performance penalty per
fault tolerated. The present online techniques will have to be adapted to work
in concert with existing features in the commodity design space, including low-
cost error detection and correction mechanisms.

ACKNOWLEDGMENTS

We thank Alvy Lebeck and the rest of the Duke Architecture Reading Group
for helpful feedback on this paper.

REFERENCES

AMD. 2005. Software Optimization Guide for AMD64 Processors. Publication 25112, Rev. 3.06
(Sept.).

AUSTIN, T. M., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer
system modeling. IEEE Computer 35,2, 59–67.

AUSTIN, T. M. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design.
In Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture.
(Nov.). 196–207.

BLAAUW, D. T. ET AL. 2003. Static electromigration analysis for on-chip signal interconnects. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems 22, 1, 39–48.

BOGGS, D. ET AL. 2004. The microarchitecture of the Intel Pentium 4 processor on 90nm technology.
Intel Technology Journal 8, 1.

BOWER, F. A., SHEALY, P. G., OZEV, S., AND SORIN, D. J. 2004. Tolerating hard faults in microprocessor
array structures. In Proceedings of the International Conference on Dependable Systems and
Networks (June). 51–60.

CARTER, J. R., OZEV, S., AND SORIN, D. J. 2005. Circuit-level modeling for concurrent testing of
operational defects due to gate oxide breakdown. In Proc. of Design, Automation, and Test in
Europe. (Mar.). 300–305.

CHEN, T. AND SUNADA, G. 1992. An ultra-large capacity single-chip memory architecture with self-
testing and self-repairing. In Proc. of the International Conference on Computer Design (ICCD).
576–581, (Oct.).

CULBERTSON, W. B., AMERSON, R., CARTER, R. J., KUEKES, P., AND SNIDER, G. 1996. The teramac custom
computer: Extending the limits with defect tolerance. In Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (Nov.).

DELL, T. J. 2002. A white paper on the benefits of chipkill-correct ECC for PC server main memory.
IBM Microelectronics Division Whitepaper (Nov.).

DUMIN, D. J. 2002. Oxide Reliability: A Summary of Silicon Oxide Wearout, Breakdown and
Reliability. World Scientific Publications. Hacksensack, NJ.

HINTON, G., SAGER, D., UPTON, M., BOGGS, D., CARMEAN, D., KYKER, A., AND ROUSSEL, P. 2001. The
microarchitecture of the Pentium 4 processor. Intel Technology Journal (Feb.).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

Online Diagnosis of Hard Faults in Microprocessors • 31

HUYNH, J. 2003. The AMD Athlon XP processor with 512KB L2 cache. AMD White Paper (Feb.).
IBM. 1999. Enhancing IBM netfinity server reliability: IBM Chipkill Memory. IBM Whitepaper

(Feb.).
INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS. 2003.
JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. 2003. Failure Mechanisms and Models for Semi-

conductor Devices. JEDEC Publication JEP122-B (Aug.).
JEWETT, D. 1991. Integrity S2: A fault-tolerant UNIX platform. In Proceedings of the 21st Inter-

national Symposium on Fault-Tolerant Computing Systems. 512–519 (June).
MAZUMDER, P. AND YIH, J. S. 1990. A novel built-in self-repair approach to VLSI memory yield

enhancement. In Proceedings of the International Test Conference. 833–841.
MUKHERJEE, S. S., KONTZ, M., AND REINHARDT, S. K. 2002. Detailed Design and implementation of

redundant multhreading alternatives. In Proceedings of the 29th Annual International Sympo-
sium on Computer Architecture (May). 99–110.

NICOLAIDIS, M., ACHOURI, N., AND BOUTOBZA, S. 2003. Dynamic data-bit memory built-in self-
repair. In Proceedings of the International Conference on Computer Aided Design (Nov.). 588–
594.

PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. 1988. A case for redundant arrays of inexpensive
disks (RAID). In Proceedings of 1988 ACM SIGMOD Conference (June). 109–116.

REINHARDT, S. K. AND MUKHERJEE, S. S. 2000. Transient fault detection via simultaneous multi-
threading. In Proceedings of the 27th Annual International Symposium on Computer Architecture
(June). 25–36.

ROTENBERG, E. 1999. AR-SMT: A Microarchitectural approach to fault tolerance in microproces-
sors. In Proceedings of the 29th International Symposium on Fault-Tolerant Computing Systems
(June). 84–91.

SAWADA, K., SAKURAI, T., UCHINO, Y., AND YAMADA, K. 1989. Built-in self repair circuit for high
density ASMIC. In Proceedings of the IEEE Custom Integrated Circuits Conference.

SCHUCHMAN, E. AND VIJAYKUMAR, T. N. 2005. Rescue: A microarchitecture for testability and defect
tolerance. In Proceedings of the 32nd Annual International Symposium on Computer Architecture
(June). 160–171

SHERWOOD, T., PERELMAN, E., HAMMERLY, G., AND CALDER, B. 2002. Automatically characterizing
large scale program behavior. In Proceedings of the Tenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Oct.).

SHIVAKUMAR, P., KECKLER, S. W., MOORE, C. R., AND BURGER, D. 2003. Exploiting microarchitectural
redundancy for defect tolerance. In Proceedings of the 21st International Conference on Computer
Design (Oct.).

SPAINHOWER, L., AND GREGG, T. A. 1999. IBM S/390 parallel enterprise server G5 fault tolerance:
A historical perspective. IBM Journal of Research and Development 43, 5/6.

SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2004a. The case for lifetime reliability-
aware microprocessors. In Proceedings of the 31st Annual International Symposium on Computer
Architecture (June).

SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2004b. The impact of technology scaling on
lifetime reliability. In Proceedings of the International Conference on Dependable Systems and
Networks (June).

SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2005. Exploiting structural duplication
for lifetime reliability enhancement. In Proc. of the 32nd Annual International Symposium on
Computer Architecture (June).

SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. 2000. Slipstream processors: Improving
both performance and fault tolerance. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems (Nov.). 257–
268.

TAO, J., CHEN, J. F., CHEUNG, N. W., AND HU, C. 1996. Modeling and characterization of electromi-
gration failures under bidirectional current stress. IEEE Transactions on Electron Devices 43, 5,
800–808.

TULLSEN, D. M., ET AL. 1996. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In Proc. of the 23rd Annual Int’l Symp. on Computer
Architecture (May). 191–202.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

32 • F. A. Bower et al.

VIJAYKUMAR, T. N., POMERANZ, I., AND CHUNG, K. K. 2002. Transient fault recovery using simulta-
neous multithreading. In Proceedings of the 29th Annual International Symposium on Computer
Architecture (May). 87–98.

WEAVER, C. AND AUSTIN, T. 2001. A fault tolerant approach to microprocessor design. In Proceed-
ings of the International Conference on Dependable Systems and Networks (July). 411–420.

WILSON, D. 1985. The stratus computer system. In Resilient Computer Systems. 208–231.
YOUNGS, L. AND PARAMANDAM, S. 1997. Mapping and repairing embedded-memory defects. IEEE

Design & Test of Computers (Jan.–Mar.) 18–24.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 2, Article 8, Publication date: June 2007.

