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Abstract—The purpose of this work is to experimentally 

demonstrate that a synthesis and implementation of existing ideas 

can achieve the goal of a low-cost, soft-error-tolerant multicore 

processor.  We show that a multicore processor can be designed 

that tolerates the vast majority of soft errors, with area, power, 

and performance costs that are within 20% of a baseline processor 

without fault tolerance. 
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I. INTRODUCTION 

To tolerate soft errors—which requires both detecting the 

errors and recovering from their effects—industry and 

academia have developed a wide variety of approaches.  

Holistic approaches like N-modulo redundancy (NMR) are too 

expensive, in terms of power and area, for all but the most 

critical applications.  All other schemes are either incomplete 

(e.g., redundant multithreading [1][2] protects the cores but not 

the memory hierarchy), unimplemented in hardware (e.g., 

simulated in SimpleScalar [3] or Simics [4] which may affect 

results and conclusions [5]), or have other significant 

limitations (e.g., SWAT [6] detects errors but with no bound on 

the detection latency).  Moreover, multiple schemes can impose 

configuration constraints on each other and thus should be 

designed and evaluated in concert. 

The goal of this work is to demonstrate that a synthesis and 

implementation of existing ideas can achieve the goal of a low-

cost, soft-error-tolerant multicore processor.  We start with a 

baseline multicore processor (Section II) implemented at the 

RTL level in synthesizable Verilog.  We implement previously 

developed mechanisms for error detection (Section III) and 

error recovery (Section IV), including those designs that had 

not been built in hardware before.  We then discuss how we 

integrate the error tolerance mechanisms and what new 

challenges arise during integration (Section V).  We 

experimentally evaluate the complete multicore processor, 

using a benchmark developed for this purpose (Section VI), in 

terms of its ability to tolerate soft errors (Section VII) and its 

area, power, and performance costs (Section VIII).  We show 

that a multicore processor can be designed that tolerates the vast 

majority of injected soft errors (only 5.3% of unmasked injected 

errors cause silent failures), with a 16% area cost, 18% power 

cost, and 20% performance cost.  We discuss the applicability 

of our results to other multicore system models (Section IX), 

and we discuss related work (Section X). 

II. BASELINE MULTICORE SYSTEM MODEL 

Our baseline multicore processor consists of multiple 

OpenRISC 1200 (OR1200) cores [7].  Each OR1200 core is a 

simple, in-order, scalar pipeline that has its own instruction 

cache and data cache.  The cores do not have floating point 

units.  The cores are representative of the low-power cores 

found in embedded applications and throughput-oriented 

multicore chips (e.g., Niagara [8][9]). 

The cores communicate across a shared bus, using a MOSI 

snooping cache coherence protocol that we designed (because 

the OR1200 does not natively support cacheable hardware 

coherent shared memory).  The shared bus also connects to 

main memory, and the memory controller implements the logic 

required to participate in the coherence protocol.  The memory 

infers its own coherence state by maintaining duplicate copies 

of the coherence states of the data caches.  The system supports 

sequential consistency [10].  We illustrate the system in Figure 

1, and we provide the full specifications in Table 1. 

Figure 1.  Baseline System Model 

III.  ERROR DETECTION 

We detect errors using a composition of two previously 

developed error detection schemes.  For the cores (including the 

instruction caches), we use an implementation of the Argus 

dynamic verification scheme [11].  For the memory system—

including data caches, coherence controllers, and the 

interconnection network—we use dynamic verification of 

cache coherence (DVCC) [12]. 
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A. Core Error Detection 

Our Argus implementation consists of three invariant 

checkers: control flow [13][14][15], dataflow [16][17], and 

computation [18].  Our Argus implementation uses signatures 

(lossy checksums) to detect errors in control flow and dataflow.  

It uses residue codes (modulo arithmetic) to detect errors in 

functional units.  Prior work showed that hardware 

implementations of Argus can detect the vast majority of 

injected errors while incurring relatively low performance and 

area costs [19][11].  Argus’s power consumption is 

quantitatively evaluated for the first time in this paper. 

B. Memory System Error Detection 

Prior work called Token Coherence Signature Checking 

(TCSC) showed how to dynamically verify coherence in a 

system that supports sequential consistency [12].  First, each 

core locally checks that each of its loads and stores is performed 

to a block for which the core has appropriate coherence 

permissions, using coherence state tokens kept with each cache 

block [20].  Second, TCSC globally dynamically verifies that 

every increase in permission at a cache or memory is offset by 

a corresponding decrease in permission at another cache or 

memory.  Each cache and memory keeps a signature of its 

recent coherence history.  For example, if a cache obtains read-

only access to block B at time T, it updates its signature based 

on B and T and the fact that the request obtained read-only 

permission.  The signatures are aggregated periodically and 

easily checked to determine whether an error has occurred. 

Prior work has implemented and evaluated TCSC in a high-

level simulator (Simics [4] plus GEMS [21]), but never 

implemented it in hardware. 

TCSC’s local and global checkers detect errors in coherence 

transitions, but they do not detect errors in static state.  Thus we 

add parity bits to data cache blocks and memory blocks. 

C. Watchdog Timers 

Our implementations of Argus and TCSC detect violations 

of safety.  That is, they detect if something incorrect occurs.  

However, they do not detect violations of liveness.  We added 

simple watchdog timers that report an error if no instruction 

commits in a long time. 

IV. ERROR RECOVERY 

Detecting an error is sufficient to avoid silent data 

corruptions (SDCs) but not sufficient for seamlessly tolerating 

the error.  Ideally, the processor detects an error, recovers from 

the error by putting the processor back into a pre-error state, 

and then resumes execution. 

A. Our Implementation 

We implement error recovery with a straightforward, 

checkpoint/recovery mechanism that is similar to CARER [22] 

and ReVive [23].  Each processor core’s state, which consists 

mostly of architectural registers—including both general 

purpose and special purpose registers (e.g., program counter, 

processor status word, etc.)—is checkpointed to a backup 

register file.  Changes to the memory state are logged rather 

than checkpointed.  If a core performs a store or if a coherence 

event changes the state of a memory block, then the previous 

value/state of the block is logged.  Each data cache and memory 

has its own log. 

We coordinate the taking of checkpoints at caches and 

memory to create a consistent recovery point to avoid the 

possibility of cascading rollbacks (the so-called “domino 

effect”) [24].  Checkpoint coordination follows a standard 

centrally coordinated handshaking protocol that we illustrate in 

Figure 2.  The decision to take a checkpoint is initiated by a 

cache or memory with a nearly full log. 

Figure 2.  Process of Taking a Checkpoint 

When a recovery is initiated, the cores revert back to their 

checkpointed register state, and the caches and memory rewind 

their logs to recover their prior memory state.  When the caches 

recover their prior state, they also convey the recovery 

information to the memory controller to recover its coherence 

state (i.e., its duplicate tags). 

Table 1.  System Specifications 

System Parameter Value 

Processor cores 3 in-order, single-issue, 4-stage 

OpenRISC 1200 cores 

Instruction cache 4KB, direct-mapped, 16B lines 

Data cache 8KB, direct-mapped, 16B lines 

Coherence protocol MOSI snooping 

Snooping bus 1 coherence transaction per cycle 

Data network Fully connected, each link can 

transmit 1 word every 2 cycles  

Core Error Detection (Argus) 

Signature lengths All signatures are 5-bit 

Residue checkers 31-bit modulus 

Memory System Error Detection (TCSC) 

Sigreq  7-bits each (x4 Sigreq registers per 

cache and memory) 

Sigresp  5-bits each (x4 Sigresp registers 

per cache and memory) 

Checkpointing Error Recovery 

Data cache Address/State log 32 entries, 16 bits/entry 

Data cache Data log 64 entries, 32 bits/entry 

Memory Address/Data log 32 entries, 143 bits/entry 



3 
 

Our checkpoint/recovery mechanism handles the output 

commit problem [24] in the standard way.  We buffer potential 

outputs until the error detection mechanisms have sufficient 

time to determine whether the data is error-free and can safely 

leave the sphere of recoverability. 

B. Error Recovery Capability 

 Some errors that are detected will be unrecoverable due to 

limitations of our checkpoint/recovery mechanism.  In general, 

an error that somehow corrupts both checkpoint state and 

“normal” (non-checkpoint) state may be unrecoverable. 

C. Costs 

The logs are the primary cost of the checkpoint/recovery 

mechanism, and choosing their size is critical.  A (nearly) full 

log forces a checkpoint to be taken, and thus too-small logs 

would force too-frequent checkpoints.  However, too-large logs 

would consume more chip area and power.  We empirically 

determined a log size that balances this trade-off. 

V. PUTTING IT ALL TOGETHER 

At a high level, the design of an error tolerant multicore 

processor appears to be the composition of several independent 

mechanisms.  However, integrating and optimizing these 

mechanisms together into a cohesive whole involved a 

significant amount of effort and understanding the subtle 

interactions between them, primarily between Argus with 

checkpoint/recovery and TCSC with checkpoint/recovery.  The 

interactions between Argus and TCSC are minimal.  There is 

also a straightforward interaction between the watchdog 

timeout and checkpointing: the error detection latency (timeout 

threshold) must be shorter than the checkpoint interval. 

A. Argus and Checkpoint/Recovery 

Argus’s control flow and dataflow checking operate at the 

basic block granularity.  Thus, in a single-core system, it would 

be simplest to checkpoint Argus only at the ends of basic 

blocks.  However, in a multicore system with coordinated 

checkpoints, the decision of when to take a checkpoint is not 

left to the preference of each core.  When one cache or memory 

has a log that is nearly full, it initiates a checkpoint at all cores 

and memory.  Thus we support checkpointing at any time 

during a basic block, which requires us to also checkpoint the 

state of the first two core pipeline stages, including their micro-

architectural Argus state, due to the OpenRISC ISA’s branch 

delay slots. 

Argus’s control flow and dataflow checkers detect corrupted 

instructions and thus obviate the need for TCSC to protect the 

instruction caches.  However, after recovery, the erroneous 

instruction is still in the cache and will be soon fetched again, 

leading to an endless cycle of detection/recovery events.  To 

solve this problem, we conservatively invalidate the instruction 

cache if Argus detects a control flow or dataflow error. 

B. TCSC and Checkpoint/Recovery 

When taking/restoring a checkpoint, we must capture/restore 

consistent cache coherence and TCSC state. 

What to Checkpoint.  TCSC state includes the signature 

registers at the caches and memory, as well as the token state at 

the caches.  Recovering the signature registers involves simply 

clearing them, thus they do not need to be checkpointed.  The 

token state, however, cannot be “cleared” like the signatures 

(i.e., we cannot zero tokens for all blocks), because that would 

be incompatible with the actual recovered coherence state in the 

caches.  Thus, as a core rewinds its cache logs, it also restores 

the token state for TCSC.  Recall from Section IV that the 

memory recovers its coherence state (i.e., its duplicated cache 

tags) using the cache logs.  We also optimize logging by only 

logging changes in cache block ownership; shared blocks are 

downgraded to invalid as part of a restore.  Thus the system is 

restored to a slightly different but still correct coherence state. 

When to Checkpoint.  Checkpointing coherence state while 

coherence messages are in flight is complicated and can lead to 

cascading rollbacks, because some, but not all, TCSC 

signatures reflect the effects of in-flight messages.  Notably, a 

cache that sends a message that gives away permissions has 

updated its signature but the cache receiving that message has 

not yet updated its signature to reflect receiving permissions.  

We chose the simplest solution to this problem: the Checkpoint 

Controller waits to send a TakeCheckpoint message until all 

messages have drained from the network. 

VI. BENCHMARK 

To evaluate error tolerance, performance, and power, we 

need a software benchmark to run on the hardware.  We 

specially designed a benchmark to exercise as much of the 

hardware as possible and to have a clearly defined output that 

can be checked to determine whether execution was correct. 

We developed a custom pthreads library for the OR1200, and 

we used it to create a multithreaded benchmark that is a 

synthesis of two benchmarks from the ParMiBench suite [25].  

Our benchmark computes a series of square roots and then a 

series of SHA-1 hashes.  The benchmark is computationally 

intensive, exercises all registers and all instructions, and 

performs enough communication to extensively stress the 

coherence protocol.  Each thread performs approximately 

800,000 instructions. 

VII. EVALUATION OF ERROR TOLERANCE  

To determine how our system tolerates errors, we injected 

8,567,253 errors [26][27] into the synthesized Verilog netlist 

and observed its behavior on an FPGA [28].  In particular, we 

monitored whether the error was detected and, if so, whether it 

was recovered from.  Furthermore, we experimented whether 

each error was masked (would have had no impact on the 

running software output) by running all experiments again with 

recovery disabled in the post-synthesis netlist. 

Where to inject an error?  We injected errors on 30,707 wires 

in the entire processor, including those wires in the circuitry we 

added for error tolerance.  The only exception is that we did not 

inject errors inside storage structures (caches, register file), but 

did inject errors on outputs of storage structures. 

How many errors to inject at once?  We injected only one 

error at a time.  This error may fan-out through the circuitry and 

affect multiple downstream gates and flip-flops. 
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When to inject an error?  For each wire, we performed 279 

experiments in which we injected only a single error per 

experiment, but at different times during the benchmark run 

uniformly distributed after program initialization. 

How do we model a soft error?  We model a single event upset 

(SEU) transient error by forcing the selected wire to flip for one 

clock cycle.  On the next cycle, the wire is released to be driven 

normally. 

A. Error Detection 

 The results in Figure 3 show the error detection capability of 

our processor.  Because the vast majority (95.2%) of injected 

transient errors are masked, we must run a vast number of 

experiments to obtain statistically significant results, and we 

must be careful not to skew the results.  (A system can 

“tolerate” 100% of masked errors.)  In the figure, we consider 

all errors except those that are masked+undetected, which we 

refer to as unobserved errors and filter out of the results in this 

section.  All other errors are observed errors (including errors 

that are masked+detected) and we include them here. 

 From left to right, we plot the results for errors across the 

entire processor, errors just in cores, and errors just in the 

“uncore” (everything but the cores).  The key wedge of each 

graph is the undetected+unmasked errors, because these are 

silent data corruptions (SDCs).  Overall, only 5.3% of the errors 

lead to SDCs.  If we had considered all errors, including 

unobserved errors, then only 0.5% of injected errors lead to 

SDCs.  Argus and TCSC detect all but a small fraction of 

unmasked errors.  Furthermore, these results are quite 

pessimistic, because we are not injecting errors in storage 

structures.  All single-bit errors in storage structures would be 

detected by parity, and the storage structures comprise a large 

fraction of the processor area. 

B. Error Recovery 

We now examine the fraction of the detected errors that were 

recoverable using checkpoint/recovery.  We consider all 

detected errors, regardless of whether they are masked or not, 

because the processor attempts to recover from all detected 

errors.  If we fail to recover from a masked+detected error, that 

is a problem, so we must consider masked errors in this 

experiment.  We ran an experiment with error recovery disabled 

in which we discovered that 57% of detected errors would 

ultimately have been masked. 

In Figure 4, we present the results for error recovery.  On the 

left are the full multicore processor, before subdividing the 

results by where the errors were injected.  Across the entire 

processor, 83.3% of detected errors are successfully recovered.  

The results for errors detected by Argus and TCSC are fairly 

similar.  Of the errors that are not recoverable, the majority are 

errors that stall forward progress by causing an unending series 

of detection/recovery events, which is preferable to SDCs. 

VIII. EVALUATION OF COSTS 

A. Area 

We used Synopsys CAD tools to floorplan and lay out 

multicore processors both with and without error tolerance in 

the Nangate 45nm CMOS technology library [29].  For storage 

structures, such as caches, we used a modified version of Cacti 

4.1 [30] to estimate area, energy and power.  The results, plotted 

in Figure 5, show that the combination of Argus, TCSC, and 

checkpoint/recovery incurs an area overhead of only 16%.  The 

largest area cost is for checkpoint/recovery, because of the size 

of the checkpoint logs.  An overhead of 16% in an academic 

design is quite small, especially considering how small the 

baseline itself is. 

 
  

Whole Multicore Processor Errors in Cores Errors in Uncore 

Figure 3.  Error Detection 

 
  

Whole Multicore Processor Errors in Cores Errors in Uncore 

Figure 4.  Recovery of Detected Errors 
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B. Performance 

We did not observe a meaningful difference in clock periods 

(not graphed), which were within the “noise” of the CAD tools 

(<4% difference).  We did expect and observe additional cycles 

due to the following factors:  First, Argus adds signature 

instructions (special NOPs) to the binary.  Second, TCSC 

requires each cache to issue an extra explicit coherence request 

to evict a read-only (Shared) block.  Third, when a checkpoint 

is taken (which occurs every 500 instructions on average), the 

system must go through the process described in Section IV. 

To determine the impact on cycle count—and thus runtime, 

because the clock periods are approximately equal—we ran our 

benchmark in a Verilog simulator with and without the error 

tolerance mechanisms.  The runtime overhead in Figure 6 for 

the completely error tolerant processor is approximately 20%. 

C. Power 

We evaluated power consumption by running the benchmark 

on the floorplanned processors and, after program initialization, 

dynamically recording activity in the synthesized logic and 

black box RAMs.  The CAD tools considered the processor 

floorplan and circuit parasitics when computing power.  For 

SRAM storage arrays, we used Cacti’s static leakage and 

dynamic energy per access. 

In Figure 7, we show the average power consumption of 

processors with and without error tolerance.  The processor 

with complete error tolerance (Argus, TCSC, and 

checkpoint/recovery) has a power overhead of approximately 

18%, which is comparable to the area overhead.  This similarity 

indicates that the activity factor of the error tolerance hardware 

is comparable to that of the baseline hardware. 

IX. APPLICABILITY TO OTHER SYSTEM MODELS 

We cannot quantitatively evaluate every possible baseline, 

nor do we (as academics) have access to a suitable current 

industry processor, thus we apply the results more broadly. 

A. Core Model 

The biggest changes due to switching to a large high-

performance core would be the impact on Argus and 

checkpointing.  Argus is provably able to detect errors, and thus 

we anticipate little impact on error detection.  Argus’s hardware 

is a function of the architectural state of a core, but not its 

micro-architectural state.  Thus Argus’s hardware overheads 

are proportionally less for more complicated 

microarchitectures.  Argus’s performance impact would also 

probably be less for a wider core that is more likely to have 

open slots for fetching/decoding signature NOPs. 

A large high-performance x86 core has somewhat more 

architectural state to checkpoint and has a longer latency to 

drain its pipeline.  This could be ameliorated with a higher-

performing but more costly checkpointing scheme to match the 

larger core with proportionally the same overhead. 

B. Coherence Protocol 

Our baseline cache coherence protocol is a simple, bus-based 

MOSI snooping protocol.  The current trend, however, is 

towards directory-like protocols, even for small numbers of 

cores (e.g., recent chips from Intel [31] and AMD [32]). 

TCSC’s implementation and activity are a function of the 

coherence permission changes that occur and not a function of 

how those coherence permission changes occur.  Our TCSC 

implementation would behave identically with a directory 

protocol, even at greater throughput. 

C. Number of Cores 

If we continue to assume a single error model, then having 

more cores would have negligible impact on error detection 

capability, because (a) TCSC’s error detection capability is not 

a function of the number of cores and (b) Argus is implemented 

independently on a per-core basis. 

X. RELATED WORK 

There is a vast body of prior work in fault tolerant computer 

architecture [33], and we cannot cover it all.  Instead, we focus 

on the most relevant prior work. 

Core error detection.  Some promising approaches include 

DIVA [34], redundant multithreading [1][2], and software 

redundancy [35].  Any of these schemes could be used to 

functionally replace Argus in our processor, but at higher cost. 

Memory system error detection.  One other approach is 

dynamic verification of memory consistency (DVMC) 

[36][37], which is similar to TCSC.  For a system that supports 

sequential consistency, DVMC is equivalent to TCSC; for other 

consistency models, DVMC is more complete and can detect 

errors missed by TCSC.  The other approach is to re-design the 

cache coherence protocol such that all errors can be detected 

using a set of timeouts [38]. 

Error recovery.  We based our checkpoint/recovery scheme 

on two prior approaches with straightforward implementations, 

CARER [22] and ReVive [23].  More complicated schemes, 

such as SafetyNet [39], exist for streamlining certain aspects of 

checkpoint/recovery. 

   
Figure 5.  Area of Entire Multicore 

Processor 

Figure 6.  Impact on Runtime Figure 7.  Processor-Wide Average 

Power Consumption 
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XI. CONCLUSIONS 

We have developed a proof-of-concept processor in RTL to 

show that an academic group can build a multicore processor 

that tolerates soft errors across the entire processor at low cost, 

with overheads that are less than those of other processor-wide 

approaches.  Furthermore, we expect that an industrial 

engineering team could achieve better results with a more 

optimized implementation and a larger baseline processor. 
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