
1

Experiences in Developing and Evaluating a

Low-Cost Soft-Error-Tolerant Multicore Processor

John S. Ingalls, Adam N. Jacobvitz, Patrick J. Eibl, Michael R. Ansel, and Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University, Durham, NC

{john.ingalls, eibl, michael.ansel}@alumni.duke.edu, adam.jacobvitz@duke.edu, sorin@ee.duke.edu

Abstract—The purpose of this work is to experimentally

demonstrate that a synthesis and implementation of existing ideas

can achieve the goal of a low-cost, soft-error-tolerant multicore

processor. We show that a multicore processor can be designed

that tolerates the vast majority of soft errors, with area, power,

and performance costs that are within 20% of a baseline processor

without fault tolerance.

Keywords—error detection, error correction, multicore processor,

computer architecture, hardware prototype

I. INTRODUCTION

To tolerate soft errors—which requires both detecting the

errors and recovering from their effects—industry and

academia have developed a wide variety of approaches.

Holistic approaches like N-modulo redundancy (NMR) are too

expensive, in terms of power and area, for all but the most

critical applications. All other schemes are either incomplete

(e.g., redundant multithreading [1][2] protects the cores but not

the memory hierarchy), unimplemented in hardware (e.g.,

simulated in SimpleScalar [3] or Simics [4] which may affect

results and conclusions [5]), or have other significant

limitations (e.g., SWAT [6] detects errors but with no bound on

the detection latency). Moreover, multiple schemes can impose

configuration constraints on each other and thus should be

designed and evaluated in concert.

The goal of this work is to demonstrate that a synthesis and

implementation of existing ideas can achieve the goal of a low-

cost, soft-error-tolerant multicore processor. We start with a

baseline multicore processor (Section II) implemented at the

RTL level in synthesizable Verilog. We implement previously

developed mechanisms for error detection (Section III) and

error recovery (Section IV), including those designs that had

not been built in hardware before. We then discuss how we

integrate the error tolerance mechanisms and what new

challenges arise during integration (Section V). We

experimentally evaluate the complete multicore processor,

using a benchmark developed for this purpose (Section VI), in

terms of its ability to tolerate soft errors (Section VII) and its

area, power, and performance costs (Section VIII). We show

that a multicore processor can be designed that tolerates the vast

majority of injected soft errors (only 5.3% of unmasked injected

errors cause silent failures), with a 16% area cost, 18% power

cost, and 20% performance cost. We discuss the applicability

of our results to other multicore system models (Section IX),

and we discuss related work (Section X).

II. BASELINE MULTICORE SYSTEM MODEL

Our baseline multicore processor consists of multiple

OpenRISC 1200 (OR1200) cores [7]. Each OR1200 core is a

simple, in-order, scalar pipeline that has its own instruction

cache and data cache. The cores do not have floating point

units. The cores are representative of the low-power cores

found in embedded applications and throughput-oriented

multicore chips (e.g., Niagara [8][9]).

The cores communicate across a shared bus, using a MOSI

snooping cache coherence protocol that we designed (because

the OR1200 does not natively support cacheable hardware

coherent shared memory). The shared bus also connects to

main memory, and the memory controller implements the logic

required to participate in the coherence protocol. The memory

infers its own coherence state by maintaining duplicate copies

of the coherence states of the data caches. The system supports

sequential consistency [10]. We illustrate the system in Figure

1, and we provide the full specifications in Table 1.

Figure 1. Baseline System Model

III. ERROR DETECTION

We detect errors using a composition of two previously

developed error detection schemes. For the cores (including the

instruction caches), we use an implementation of the Argus

dynamic verification scheme [11]. For the memory system—

including data caches, coherence controllers, and the

interconnection network—we use dynamic verification of

cache coherence (DVCC) [12].

Appears in the 10th Workshop on Silicon Errors in Logic - System Effects (SELSE), April 2014

2

A. Core Error Detection

Our Argus implementation consists of three invariant

checkers: control flow [13][14][15], dataflow [16][17], and

computation [18]. Our Argus implementation uses signatures

(lossy checksums) to detect errors in control flow and dataflow.

It uses residue codes (modulo arithmetic) to detect errors in

functional units. Prior work showed that hardware

implementations of Argus can detect the vast majority of

injected errors while incurring relatively low performance and

area costs [19][11]. Argus’s power consumption is

quantitatively evaluated for the first time in this paper.

B. Memory System Error Detection

Prior work called Token Coherence Signature Checking

(TCSC) showed how to dynamically verify coherence in a

system that supports sequential consistency [12]. First, each

core locally checks that each of its loads and stores is performed

to a block for which the core has appropriate coherence

permissions, using coherence state tokens kept with each cache

block [20]. Second, TCSC globally dynamically verifies that

every increase in permission at a cache or memory is offset by

a corresponding decrease in permission at another cache or

memory. Each cache and memory keeps a signature of its

recent coherence history. For example, if a cache obtains read-

only access to block B at time T, it updates its signature based

on B and T and the fact that the request obtained read-only

permission. The signatures are aggregated periodically and

easily checked to determine whether an error has occurred.

Prior work has implemented and evaluated TCSC in a high-

level simulator (Simics [4] plus GEMS [21]), but never

implemented it in hardware.

TCSC’s local and global checkers detect errors in coherence

transitions, but they do not detect errors in static state. Thus we

add parity bits to data cache blocks and memory blocks.

C. Watchdog Timers

Our implementations of Argus and TCSC detect violations

of safety. That is, they detect if something incorrect occurs.

However, they do not detect violations of liveness. We added

simple watchdog timers that report an error if no instruction

commits in a long time.

IV. ERROR RECOVERY

Detecting an error is sufficient to avoid silent data

corruptions (SDCs) but not sufficient for seamlessly tolerating

the error. Ideally, the processor detects an error, recovers from

the error by putting the processor back into a pre-error state,

and then resumes execution.

A. Our Implementation

We implement error recovery with a straightforward,

checkpoint/recovery mechanism that is similar to CARER [22]

and ReVive [23]. Each processor core’s state, which consists

mostly of architectural registers—including both general

purpose and special purpose registers (e.g., program counter,

processor status word, etc.)—is checkpointed to a backup

register file. Changes to the memory state are logged rather

than checkpointed. If a core performs a store or if a coherence

event changes the state of a memory block, then the previous

value/state of the block is logged. Each data cache and memory

has its own log.

We coordinate the taking of checkpoints at caches and

memory to create a consistent recovery point to avoid the

possibility of cascading rollbacks (the so-called “domino

effect”) [24]. Checkpoint coordination follows a standard

centrally coordinated handshaking protocol that we illustrate in

Figure 2. The decision to take a checkpoint is initiated by a

cache or memory with a nearly full log.

Figure 2. Process of Taking a Checkpoint

When a recovery is initiated, the cores revert back to their

checkpointed register state, and the caches and memory rewind

their logs to recover their prior memory state. When the caches

recover their prior state, they also convey the recovery

information to the memory controller to recover its coherence

state (i.e., its duplicate tags).

Table 1. System Specifications

System Parameter Value

Processor cores 3 in-order, single-issue, 4-stage

OpenRISC 1200 cores

Instruction cache 4KB, direct-mapped, 16B lines

Data cache 8KB, direct-mapped, 16B lines

Coherence protocol MOSI snooping

Snooping bus 1 coherence transaction per cycle

Data network Fully connected, each link can

transmit 1 word every 2 cycles

Core Error Detection (Argus)

Signature lengths All signatures are 5-bit

Residue checkers 31-bit modulus

Memory System Error Detection (TCSC)

Sigreq 7-bits each (x4 Sigreq registers per

cache and memory)

Sigresp 5-bits each (x4 Sigresp registers

per cache and memory)

Checkpointing Error Recovery

Data cache Address/State log 32 entries, 16 bits/entry

Data cache Data log 64 entries, 32 bits/entry

Memory Address/Data log 32 entries, 143 bits/entry

3

Our checkpoint/recovery mechanism handles the output

commit problem [24] in the standard way. We buffer potential

outputs until the error detection mechanisms have sufficient

time to determine whether the data is error-free and can safely

leave the sphere of recoverability.

B. Error Recovery Capability

 Some errors that are detected will be unrecoverable due to

limitations of our checkpoint/recovery mechanism. In general,

an error that somehow corrupts both checkpoint state and

“normal” (non-checkpoint) state may be unrecoverable.

C. Costs

The logs are the primary cost of the checkpoint/recovery

mechanism, and choosing their size is critical. A (nearly) full

log forces a checkpoint to be taken, and thus too-small logs

would force too-frequent checkpoints. However, too-large logs

would consume more chip area and power. We empirically

determined a log size that balances this trade-off.

V. PUTTING IT ALL TOGETHER

At a high level, the design of an error tolerant multicore

processor appears to be the composition of several independent

mechanisms. However, integrating and optimizing these

mechanisms together into a cohesive whole involved a

significant amount of effort and understanding the subtle

interactions between them, primarily between Argus with

checkpoint/recovery and TCSC with checkpoint/recovery. The

interactions between Argus and TCSC are minimal. There is

also a straightforward interaction between the watchdog

timeout and checkpointing: the error detection latency (timeout

threshold) must be shorter than the checkpoint interval.

A. Argus and Checkpoint/Recovery

Argus’s control flow and dataflow checking operate at the

basic block granularity. Thus, in a single-core system, it would

be simplest to checkpoint Argus only at the ends of basic

blocks. However, in a multicore system with coordinated

checkpoints, the decision of when to take a checkpoint is not

left to the preference of each core. When one cache or memory

has a log that is nearly full, it initiates a checkpoint at all cores

and memory. Thus we support checkpointing at any time

during a basic block, which requires us to also checkpoint the

state of the first two core pipeline stages, including their micro-

architectural Argus state, due to the OpenRISC ISA’s branch

delay slots.

Argus’s control flow and dataflow checkers detect corrupted

instructions and thus obviate the need for TCSC to protect the

instruction caches. However, after recovery, the erroneous

instruction is still in the cache and will be soon fetched again,

leading to an endless cycle of detection/recovery events. To

solve this problem, we conservatively invalidate the instruction

cache if Argus detects a control flow or dataflow error.

B. TCSC and Checkpoint/Recovery

When taking/restoring a checkpoint, we must capture/restore

consistent cache coherence and TCSC state.

What to Checkpoint. TCSC state includes the signature

registers at the caches and memory, as well as the token state at

the caches. Recovering the signature registers involves simply

clearing them, thus they do not need to be checkpointed. The

token state, however, cannot be “cleared” like the signatures

(i.e., we cannot zero tokens for all blocks), because that would

be incompatible with the actual recovered coherence state in the

caches. Thus, as a core rewinds its cache logs, it also restores

the token state for TCSC. Recall from Section IV that the

memory recovers its coherence state (i.e., its duplicated cache

tags) using the cache logs. We also optimize logging by only

logging changes in cache block ownership; shared blocks are

downgraded to invalid as part of a restore. Thus the system is

restored to a slightly different but still correct coherence state.

When to Checkpoint. Checkpointing coherence state while

coherence messages are in flight is complicated and can lead to

cascading rollbacks, because some, but not all, TCSC

signatures reflect the effects of in-flight messages. Notably, a

cache that sends a message that gives away permissions has

updated its signature but the cache receiving that message has

not yet updated its signature to reflect receiving permissions.

We chose the simplest solution to this problem: the Checkpoint

Controller waits to send a TakeCheckpoint message until all

messages have drained from the network.

VI. BENCHMARK

To evaluate error tolerance, performance, and power, we

need a software benchmark to run on the hardware. We

specially designed a benchmark to exercise as much of the

hardware as possible and to have a clearly defined output that

can be checked to determine whether execution was correct.

We developed a custom pthreads library for the OR1200, and

we used it to create a multithreaded benchmark that is a

synthesis of two benchmarks from the ParMiBench suite [25].

Our benchmark computes a series of square roots and then a

series of SHA-1 hashes. The benchmark is computationally

intensive, exercises all registers and all instructions, and

performs enough communication to extensively stress the

coherence protocol. Each thread performs approximately

800,000 instructions.

VII. EVALUATION OF ERROR TOLERANCE

To determine how our system tolerates errors, we injected

8,567,253 errors [26][27] into the synthesized Verilog netlist

and observed its behavior on an FPGA [28]. In particular, we

monitored whether the error was detected and, if so, whether it

was recovered from. Furthermore, we experimented whether

each error was masked (would have had no impact on the

running software output) by running all experiments again with

recovery disabled in the post-synthesis netlist.

Where to inject an error? We injected errors on 30,707 wires

in the entire processor, including those wires in the circuitry we

added for error tolerance. The only exception is that we did not

inject errors inside storage structures (caches, register file), but

did inject errors on outputs of storage structures.

How many errors to inject at once? We injected only one

error at a time. This error may fan-out through the circuitry and

affect multiple downstream gates and flip-flops.

4

When to inject an error? For each wire, we performed 279

experiments in which we injected only a single error per

experiment, but at different times during the benchmark run

uniformly distributed after program initialization.

How do we model a soft error? We model a single event upset

(SEU) transient error by forcing the selected wire to flip for one

clock cycle. On the next cycle, the wire is released to be driven

normally.

A. Error Detection

 The results in Figure 3 show the error detection capability of

our processor. Because the vast majority (95.2%) of injected

transient errors are masked, we must run a vast number of

experiments to obtain statistically significant results, and we

must be careful not to skew the results. (A system can

“tolerate” 100% of masked errors.) In the figure, we consider

all errors except those that are masked+undetected, which we

refer to as unobserved errors and filter out of the results in this

section. All other errors are observed errors (including errors

that are masked+detected) and we include them here.

 From left to right, we plot the results for errors across the

entire processor, errors just in cores, and errors just in the

“uncore” (everything but the cores). The key wedge of each

graph is the undetected+unmasked errors, because these are

silent data corruptions (SDCs). Overall, only 5.3% of the errors

lead to SDCs. If we had considered all errors, including

unobserved errors, then only 0.5% of injected errors lead to

SDCs. Argus and TCSC detect all but a small fraction of

unmasked errors. Furthermore, these results are quite

pessimistic, because we are not injecting errors in storage

structures. All single-bit errors in storage structures would be

detected by parity, and the storage structures comprise a large

fraction of the processor area.

B. Error Recovery

We now examine the fraction of the detected errors that were

recoverable using checkpoint/recovery. We consider all

detected errors, regardless of whether they are masked or not,

because the processor attempts to recover from all detected

errors. If we fail to recover from a masked+detected error, that

is a problem, so we must consider masked errors in this

experiment. We ran an experiment with error recovery disabled

in which we discovered that 57% of detected errors would

ultimately have been masked.

In Figure 4, we present the results for error recovery. On the

left are the full multicore processor, before subdividing the

results by where the errors were injected. Across the entire

processor, 83.3% of detected errors are successfully recovered.

The results for errors detected by Argus and TCSC are fairly

similar. Of the errors that are not recoverable, the majority are

errors that stall forward progress by causing an unending series

of detection/recovery events, which is preferable to SDCs.

VIII. EVALUATION OF COSTS

A. Area

We used Synopsys CAD tools to floorplan and lay out

multicore processors both with and without error tolerance in

the Nangate 45nm CMOS technology library [29]. For storage

structures, such as caches, we used a modified version of Cacti

4.1 [30] to estimate area, energy and power. The results, plotted

in Figure 5, show that the combination of Argus, TCSC, and

checkpoint/recovery incurs an area overhead of only 16%. The

largest area cost is for checkpoint/recovery, because of the size

of the checkpoint logs. An overhead of 16% in an academic

design is quite small, especially considering how small the

baseline itself is.

Whole Multicore Processor Errors in Cores Errors in Uncore

Figure 3. Error Detection

Whole Multicore Processor Errors in Cores Errors in Uncore

Figure 4. Recovery of Detected Errors

5

B. Performance

We did not observe a meaningful difference in clock periods

(not graphed), which were within the “noise” of the CAD tools

(<4% difference). We did expect and observe additional cycles

due to the following factors: First, Argus adds signature

instructions (special NOPs) to the binary. Second, TCSC

requires each cache to issue an extra explicit coherence request

to evict a read-only (Shared) block. Third, when a checkpoint

is taken (which occurs every 500 instructions on average), the

system must go through the process described in Section IV.

To determine the impact on cycle count—and thus runtime,

because the clock periods are approximately equal—we ran our

benchmark in a Verilog simulator with and without the error

tolerance mechanisms. The runtime overhead in Figure 6 for

the completely error tolerant processor is approximately 20%.

C. Power

We evaluated power consumption by running the benchmark

on the floorplanned processors and, after program initialization,

dynamically recording activity in the synthesized logic and

black box RAMs. The CAD tools considered the processor

floorplan and circuit parasitics when computing power. For

SRAM storage arrays, we used Cacti’s static leakage and

dynamic energy per access.

In Figure 7, we show the average power consumption of

processors with and without error tolerance. The processor

with complete error tolerance (Argus, TCSC, and

checkpoint/recovery) has a power overhead of approximately

18%, which is comparable to the area overhead. This similarity

indicates that the activity factor of the error tolerance hardware

is comparable to that of the baseline hardware.

IX. APPLICABILITY TO OTHER SYSTEM MODELS

We cannot quantitatively evaluate every possible baseline,

nor do we (as academics) have access to a suitable current

industry processor, thus we apply the results more broadly.

A. Core Model

The biggest changes due to switching to a large high-

performance core would be the impact on Argus and

checkpointing. Argus is provably able to detect errors, and thus

we anticipate little impact on error detection. Argus’s hardware

is a function of the architectural state of a core, but not its

micro-architectural state. Thus Argus’s hardware overheads

are proportionally less for more complicated

microarchitectures. Argus’s performance impact would also

probably be less for a wider core that is more likely to have

open slots for fetching/decoding signature NOPs.

A large high-performance x86 core has somewhat more

architectural state to checkpoint and has a longer latency to

drain its pipeline. This could be ameliorated with a higher-

performing but more costly checkpointing scheme to match the

larger core with proportionally the same overhead.

B. Coherence Protocol

Our baseline cache coherence protocol is a simple, bus-based

MOSI snooping protocol. The current trend, however, is

towards directory-like protocols, even for small numbers of

cores (e.g., recent chips from Intel [31] and AMD [32]).

TCSC’s implementation and activity are a function of the

coherence permission changes that occur and not a function of

how those coherence permission changes occur. Our TCSC

implementation would behave identically with a directory

protocol, even at greater throughput.

C. Number of Cores

If we continue to assume a single error model, then having

more cores would have negligible impact on error detection

capability, because (a) TCSC’s error detection capability is not

a function of the number of cores and (b) Argus is implemented

independently on a per-core basis.

X. RELATED WORK

There is a vast body of prior work in fault tolerant computer

architecture [33], and we cannot cover it all. Instead, we focus

on the most relevant prior work.

Core error detection. Some promising approaches include

DIVA [34], redundant multithreading [1][2], and software

redundancy [35]. Any of these schemes could be used to

functionally replace Argus in our processor, but at higher cost.

Memory system error detection. One other approach is

dynamic verification of memory consistency (DVMC)

[36][37], which is similar to TCSC. For a system that supports

sequential consistency, DVMC is equivalent to TCSC; for other

consistency models, DVMC is more complete and can detect

errors missed by TCSC. The other approach is to re-design the

cache coherence protocol such that all errors can be detected

using a set of timeouts [38].

Error recovery. We based our checkpoint/recovery scheme

on two prior approaches with straightforward implementations,

CARER [22] and ReVive [23]. More complicated schemes,

such as SafetyNet [39], exist for streamlining certain aspects of

checkpoint/recovery.

Figure 5. Area of Entire Multicore

Processor

Figure 6. Impact on Runtime Figure 7. Processor-Wide Average

Power Consumption

6

XI. CONCLUSIONS

We have developed a proof-of-concept processor in RTL to

show that an academic group can build a multicore processor

that tolerates soft errors across the entire processor at low cost,

with overheads that are less than those of other processor-wide

approaches. Furthermore, we expect that an industrial

engineering team could achieve better results with a more

optimized implementation and a larger baseline processor.

ACKNOWLEDGMENTS

This material is based on work supported by the National

Science Foundation under grant CCF-111-5367. We thank

Jeremy Walch for his build, simulation, and synthesis tool flow.

REFERENCES

[1] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault

Tolerance in Microprocessors,” in Proc. of the 29th Int'l Symp. on

Fault-Tolerant Computing Systems, 1999, pp. 84–91.

[2] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design

and Implementation of Redundant Multithreading Alternatives,” in

Proc. of the 29th Annual Int'l Symp. on Computer Architecture,

2002, pp. 99–110.

[3] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure

for Computer System Modeling,” IEEE Computer, vol. 35, no. 2,

pp. 59–67, Feb. 2002.

[4] P. S. Magnusson, et al., “Simics: A Full System Simulation

Platform,” IEEE Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[5] M.-L. Li, et al., “Accurate Microarchitecture-level Fault Modeling

for Studying Hardware Faults,” in Proc. of the Fourteenth Int'l

Symp. on High-Performance Computer Architecture, 2009.

[6] M.-L. Li, et al., “Understanding the Propagation of Hard Errors to

Software and Implications for Resilient System Design,” in Proc. of

the Thirteenth Int'l Conf. on Architectural Support for Programming

Languages and Operating Systems, 2008.

[7] D. Lampret, OpenRISC 1200 IP Core Specification, Rev. 0.7. 2001.

[8] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way

Multithreaded SPARC Processor,” IEEE Micro, vol. 25, no. 2, pp.

21–29, Apr. 2005.

[9] M. Shah, et al., “UltraSPARC T2: A Highly-Threaded, Power-

Efficient, SPARC SOC,” in Proc. of the IEEE Asian Solid-State

Circuits Conf., 2007, pp. 22–25.

[10] L. Lamport, “How to Make a Multiprocessor Computer that

Correctly Executes Multiprocess Programs,” IEEE Transactions on

Computers, vol. C–28, no. 9, pp. 690–691, Sep. 1979.

[11] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores,” in Proc. of the

40th Annual IEEE/ACM Int'l Symp. on Microarchitecture, 2007.

[12] A. Meixner and D. J. Sorin, “Error Detection via Online Checking

of Cache Coherence with Token Coherence Signatures,” in Proc. of

the Twelfth Int'l Symp. on High-Performance Computer

Architecture, 2007, pp. 145–156.

[13] X. Delord and G. Saucier, “Formalizing Signature Analysis for

Control Flow Checking of Pipelined RISC Microprocessors,” in

Proc. of Int'l Test Conference, 1991, pp. 936–945.

[14] E. Borin, C. Wang, Y. Wu, and G. Araujo, “Software-Based

Transparent and Comprehensive Control-Flow Error Detection,” in

Proc. of the Int'l Symp. on Code Generation and Optimiztion, 2006.

[15] N. J. Warter and W.-M. W. Hwu, “A Software Based Approach to

Achieving Optimal Performance for Signature Control Flow

Checking,” in Proc. of the 20th Int'l Symp. on Fault-Tolerant

Computing Systems, 1990, pp. 442–449.

[16] J. Carretero, et al., “End-to-End Register Data-flow Continuous

Self-test,” in Proc. of the 36th Annual Int'l Symp. on Computer

Architecture, 2009, pp. 105–115.

[17] A. Meixner and D. J. Sorin, “Error Detection Using Dynamic

Dataflow Verification,” in Proc. of the Int'l Conf. on Parallel

Architectures and Compilation Techniques, 2007, pp. 104–115.

[18] F. F. Sellers, M.-Y. Hsiao, and L. W. Bearnson, Error Detecting

Logic for Digital Computers. McGraw Hill Book Company, 1968.

[19] P. J. Eibl, A. Meixner, and D. J. Sorin, “An FPGA-Based

Experimental Evaluation of Microprocessor Core Error Detection

with Argus-2,” in Proc. of ACM SIGMETRICS, 2011.

[20] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token Coherence:

Decoupling Performance and Correctness,” in Proc. of the 30th

Annual Int'l Symp. on Computer Architecture, 2003.

[21] M. M. K. Martin, et al., “Multifacet’s General Execution-driven

Multiprocessor Simulator (GEMS) Toolset,” Computer Architecture

News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[22] D. B. Hunt and P. N. Marinos, “A General Purpose Cache-Aided

Rollback Error Recovery (CARER) Technique,” in Proc. of the 17th

Int'l Symp. on Fault-Tolerant Computing Systems, 1987.

[23] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-Effective

Architectural Support for Rollback Recovery in Shared-Memory

Multiprocessors,” in Proc. of the 29th Annual Int'l Symp. on

Computer Architecture, 2002, pp. 111–122.

[24] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang, “A Survey of

Rollback-Recovery Protocols in Message-Passing Systems,”

Department of Computer Science, Carnegie Mellon University,

CMU-CS-96-181, Sep. 1996.

[25] S. M. Z. Iqbal, Y. Liang, and H. Grahn, “ParMiBench - An Open-

Source Benchmark for Embedded Multiprocessor Systems,” IEEE

Comput Arch. Lett, vol. 9, no. 2, pp. 45–48, Jul. 2010.

[26] C. Constantinescu, “Experimental Evaluation of Error-Detection

Mechanisms,” IEEE Trans. on Reliability, vol. 52, no. 1, Mar. 2003.

[27] C. Constantinescu, “Using Physical and Simulated Fault Injection to

Evaluate Error Detection Mechanisms,” in Proc. of the Pacific Rim

Int'l Symp. on Dependable Computing, 1999, pp. 186 –192.

[28] A. Pellegrini, et al., “CrashTest: A Fast High-Fidelity FPGA-based

Resiliency Analysis Framework,” in Proc. of the IEEE Int'l Conf. on

Computer Design, 2008.

[29] Nangate Development Team, “Nangate 45nm Open Cell Library.”

2012.

[30] S. Thoziyoor, D. Tarjan, and N. P. Jouppi, “Cacti 4.0,” 2006.

[31] R. Singhal, “Inside Intel Next Generation Nehalem

Microarchitecture,” in Hot Chips 20, 2008.

[32] P. Conway, et al., “Cache Hierarchy and Memory Subsystem of the

AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2, Apr. 2010.

[33] D. J. Sorin, Fault Tolerant Computer Architecture. Morgan &

Claypool Publishers, 2009.

[34] T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design,” in Proc. of the 32nd Annual IEEE/ACM

Int'l Symp. on Microarchitecture, 1999, pp. 196–207.

[35] G. A. Reis, et al., “SWIFT: Software Implemented Fault

Tolerance,” in Proc. of the Int'l Symp. on Code Generation and

Optimization, 2005, pp. 243–254.

[36] A. Meixner and D. J. Sorin, “Dynamic Verification of Memory

Consistency in Cache-Coherent Multithreaded Computer

Architectures,” in Proc. of the Int'l Conf. on Dependable Systems

and Networks, 2006, pp. 73–82.

[37] K. Chen, S. Malik, and P. Patra, “Runtime Validation of Memory

Ordering Using Constraint Graph Checking,” in Proc. of the

Thirteenth Int'l Symp. on High-Performance Computer Architecture,

2008.

[38] R. Fernandez-Pascual, et al., “A Fault-Tolerant Directory-Based

Cache Coherence Protocol for Shared-Memory Architectures,” in

Proc. of the Int'l Conf. on Dependable Systems and Networks, 2008.

[39] D. J. Sorin, et al., “SafetyNet: Improving the Availability of Shared

Memory Multiprocessors with Global Checkpoint/Recovery,” in

Proc. of the 29th Annual Int'l Symp. on Computer Architecture,

2002, pp. 123–134.

