
 Core Cannibalization Architecture: Improving Lifetime Chip
Performance for Multicore Processors in the Presence of Hard Faults

Bogdan F. Romanescu and Daniel J. Sorin
Department of Electrical and Computer Engineering

Duke University
Durham, NC

{bfr2, sorin}@ece.duke.edu

Appears in the International Conference on Parallel Architectures and Compilation Techniques (PACT)
Toronto, Canada, October, 2008
ABSTRACT

To improve the lifetime performance of a multicore chip with
simple cores, we propose the Core Cannibalization Architec-
ture (CCA). A chip with CCA provisions a fraction of the
cores as cannibalizable cores (CCs). In the absence of hard
faults, the CCs function just like normal cores. In the pres-
ence of hard faults, the CCs can be cannibalized for spare
parts at the granularity of pipeline stages. We have designed
and laid out CCA chips composed of multiple OpenRISC
1200 cores. Our results show that CCA improves the chips’
lifetime performances, compared to chips without CCA.

Categories and Subject Descriptors
B.8.1 Reliability, Testing, and Fault-Tolerance, C.1.0 Proces-
sor Architectures, C.4 Performance of Systems

General Terms
reliability, performance

Keywords
multicore, lifetime performance, fault tolerance, reliability

1. INTRODUCTION

Technology trends are leading to an increasing likelihood of
hard (permanent) faults in processors [21]. Smaller transis-
tors and wires are more susceptible to hard faults. Further-
more, as we continue to add more transistors and wires to
chips, there are more opportunities for hard faults. These
hard faults may be introduced either during fabrication or in
the field.

One traditional approach to this problem is to provision spare
components. Unfortunately, spare components (either cold or
hot) consume hardware resources that provide no perfor-
mance benefit during fault-free operation. If we provision
spares for all components, then we achieve approximately
half the fault-free performance of an equal-area chip without
spares.
The goal of our work is to tolerate hard faults in multicore
processors without sacrificing hardware for dedicated spare
components. There are two aspects to multicore processors
that distinguish the issue of self-repair from the case for sin-
gle-core processors. First, power and thermal constraints
motivate the use of simple, in-order cores, perhaps in con-
junction with one or two superscalar cores. Examples of mul-
ticore chips with simple, narrow cores include the
UltraSPARC T1 [11] and T2 [16], Cray MTA [4], empower-
Tel MXP processor [7], Renesas SH-2A-Dual [23], and
Cisco Silicon Packet Processor [5]. Unfortunately, simple
cores have little intra-core redundancy of the kind that has
been leveraged by superscalar cores to provide self-repair [3,
17, 22]. Just one hard fault in the lone ALU or instruction
decoder renders a simple core useless, even if the entire rest
of the core is fault-free. The second aspect of self-repair that
is distinct to multicore processors is the opportunity to use
resources from fault-free cores. One existing self-repair
scheme is to shut down any core with one or more hard faults
and just use the remaining cores. This core shutdown (CS)
solution, however, wastes much fault-free circuitry.
In this paper, we propose the Core Cannibalization Architec-
ture (CCA), which is the first design of a low-cost and effi-
cient self-repair mechanism for multicore processors with
simple cores. The key idea is that one or more cores can be
cannibalized for spare parts, where parts are considered to be
pipeline stages. The ability to use stages from other cores
introduces some slight performance overhead, but this over-
head is outweighed by the improvement in lifetime chip per-
formance in the presence of multiple hard faults.
Furthermore, CCA provides an even larger benefit for multi-
core chips that use cores in a triple modular redundancy
(TMR) or dual modular redundancy (DMR) configuration,
such as Aggarwal et al.’s approach [1]. CCA enables more
cores to be operational, which is crucial for providing enough
cores for TMR or DMR.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PACT’08, October 25-29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10...$5.00.
1

We have developed several concrete implementations of
CCA in the context of processors that consist of simple
OpenRISC 1200 cores [12]. Our results show that, over the
chip’s lifetime, CCA achieves better performance than CS.
After only 2 years, CCA chips outperform CS chips. Over a
lifetime of 12 years, CCA achieves a 63% improvement in
cumulative performance for 3-core chips and a 64% improve-
ment for 4-core chips. Furthermore, if cores are used redun-
dantly (e.g., TMR or DMR), then CCA’s improvement is
70% for 3-core chips and 63% for 4-core chips.
In the rest of this paper, we describe CCA in general
(Section 2) and present implementations of CCA (Section 3).
We then evaluate CCA (Section 4) and compare it to prior
research (Section 5).

2. OVERVIEW OF CORE
CANNIBALIZATION

In this section, we first present our system model. Next, we
discuss core shutdown (CS), since it is the natural design
point against which to compare. We then provide a high-level
description of CCA and explore the design space for CCA.

2.1. Core Model
In this work, we focus on simple, in-order cores with little
redundancy. We present CCA in the context of 1-wide (sca-
lar) cores, but CCA also applies to many cores that are wider
but still have numerous single points of failure. There are
many k-wide cores that cannot tolerate a fault by treating the
core as being k-1-wide. For example, the Renesas SH-2A
[23] is dual-issue, but it has only one shifter and one
load/store unit. Any fault in either of those units renders the
entire core unusable. Other simple cores are susceptible to
numerous single faults (e.g., in the PC update logic) that
affect all lanes of the processor. Many commercial cores fit
our core model [11, 16, 4, 23, 5].
Our core model assumes that the core has mechanisms for
detecting errors and diagnosing hard faults (i.e., identifying
the locations of hard faults). Detection and diagnosis are
orthogonal issues to self-repair, and acceptable schemes
already exist, such as the built-in self-test (BIST) used by the
BulletProof pipeline [18]. CCA may need a few more BIST
test vectors than CS to distinguish faults that are in different
pipeline stages and that would otherwise be exercised by the
same test vector (which would be sufficient for CS).

2.2. Background: Core Shutdown
A multicore processor with C simple cores can tolerate hard
faults in F (F<C) distinct cores by simply not using the faulty
cores. A single fault in a core renders that core useless; addi-
tional faults in that core do not matter, since the core has
already been shut off. We illustrate a 3-core processor with
core shutdown in Figure 1. In the presence of three hard
faults, one in each core, the processor achieves zero perfor-
mance because none of its cores is operable. The perfor-
mance of a chip with CS is proportional to C-F.

2.3. High-Level View of CCA
At a high level, a CCA processor resembles the system in
Figure 2. There are some number of normal cores (NCs) that
cannot be cannibalized as well as some number of cannibal-
izable cores (CCs). In this figure, there are three cores, one of
which (Core2) is a CC. CCA enables Core1 to overcome a
faulty Execute stage and Core3 to overcome a faulty Decode
stage, by cannibalizing these stages from Core2. Despite the
presence of three hard faults (including the fault in Core2’s
Writeback stage), Core1 and Core3 continue to function cor-
rectly. The performance of both cores is somewhat degraded,
though, because of the delay in routing to and from the canni-
balized stages. Comparing the chips in Figures 1 and 2,
which both have three faults, we see that CS offers zero per-
formance, yet CCA provides the performance of two slightly
degraded cores.
In general, as the number of faults increases, CCA outper-
forms CS. For chips with zero or very few faults, a processor
with CS will outperform CCA, because CCA’s configurabil-
ity logic introduces some performance overhead into the
cores. This performance overhead is similar to that incurred
by schemes that provide spare components. However, as the
number of faults increases, CCA can tolerate more of them
and provide a graceful performance degradation.

2.4. CCA Design Space
There are three important issues involved in the design of
CCA or a scheme like it. After studying the first two issues,
spare granularity and sharing policy, we have made fixed
decisions for both of them. For the third issue, chip layout,
we explore several options.
Spare Granularity. We decided to cannibalize spare compo-
nents at the granularity of pipeline stages. The coarsest possi-
ble granularity is spare cores (i.e., CS), but coarse granularity
implies that a single fault in a core renders the entire core
useless. Finer granularity avoids wasting as much fault-free
hardware, but it complicates the design, especially the rout-

F

D

E

M

W

Core 1

F

D

E

M

W

Core 2

F

D

E

M

W

Core 3
Figure 1. 3-core Chip
with Core Shutdown.
Core 1 has a faulty
Execute stage, Core 2 has
faulty Writeback stage,
and Core 3 has faulty
Decode stage.

F

D

E

M

W

Core 1

F

D

E

M

W

C
C

A
 I

nt
er

co
nn

ec
tio

n

C
C

A
 I

nt
er

co
nn

ec
tio

n

F

D

E

M

W

Core 3Core 2
Figure 2. 3-core Chip
with CCA. Core 1 and
Core3 are NCs, and Core2
is a CC. Core1 has faulty
Execute stage, Core3 has
faulty Decode stage, and
Core2 has faulty
Writeback stage.
2

ing to and from spare components. For example, one recent
scheme for fine-grain redundancy [14] has an area overhead
that is greater than 2x. We chose a granularity of pipeline
stages because it offers a good balance between complexity
and performance. We leave the search for an optimal granu-
larity to future work.
Sharing Policy. Another issue to resolve is whether to allow
multiple cores to simultaneously share a given component
(pipeline stage). There are three options. First, at one
extreme, a core with a faulty component of type Z “borrows”
(time multiplexes) a component of type Z from a neighboring
core that continues to function (is not cannibalized). A sec-
ond option is to allow multiple cores to time multiplex a sin-
gle cannibalized component. Both of these first two options
introduce resource contention, require arbitration logic, and
complicate pipeline control logic. For these reasons, we
chose a third option, in which any given component can only
be used by a single core.
Chip Layout. We must decide how to arrange the cores on
the chip. We want to carefully arrange NCs and CCs to mini-
mize the distance between NC stages and potential CC spare
stages. We must also decide what fraction of the cores should
be CCs.

3. CCA IMPLEMENTATIONS

In this section, we describe two concrete implementations of
CCA. We first describe the baseline multicore processor
(Section 3.1). We then present 3-core and 4-core CCA pro-
cessors (Section 3.2 and Section 3.3). Lastly, we discuss how
to extend CCA to chips with greater numbers of cores
(Section 3.4).
Because CCA is concerned with low-level issues of chip lay-
out and wire delay, evaluating it properly requires us to
implement it at a low level of detail. We used our CAD tools,
Synopsys Design Compiler and Cadence Silicon Ensemble,
to floorplan and layout the chips described in this section,
both with and without CCA. Our CAD tools use a proprietary
90nm standard cell library.

3.1. Baseline Multicore Processor
Our baseline processor consists of multiple OpenRISC 1200
(OR1200) cores [12]. Each OR1200 core is a scalar (1-wide),
in-order, 32-bit core with 4 pipeline stages: Fetch, Decode,
Execute, and Writeback. Each core has 32 registers and sepa-
rate instruction and data caches. When this core is imple-
mented in 90nm technology, our CAD tools estimate a clock
frequency of roughly 400MHz.
An NC’s use of a cannibalized CC stage introduces issues
that are specific to that particular stage, so we now discuss
the cannibalization of each stage.
Fetch. The Fetch stage accesses the I-cache. If an NC has to
use a CC’s Fetch stage, it also uses the CC’s I-cache; the NC
no longer uses its own I-cache.
Decode. In addition to decoding instructions, the Decode
stage also reads registers and computes branch/jump target
addresses. The register file is part of the Decode stage, so an
NC that uses a CC’s Decode stage also uses that CC’s register

file. Thus, an NC that uses a CC’s Decode stage must route
back to the CC’s register file during Writeback.
Execute. The Execute stage is where computations occur and
where loads and stores access the D-cache. An NC that uses a
CC’s Execute stage also uses that CC’s D-cache; the NC no
longer uses its own D-cache.
Writeback. CCA does not require modifications to be made
for Writeback, but it motivates a small change for register
writing. Because the register writing logic is extremely small,
it is preferable, in terms of area and performance, to simply
replicate it (as a cold spare) in the original Writeback stage.
Intuitively, forcing an NC to go to a CC for a tiny piece of
logic is not efficient.

3.2. CCA3: 3-Core CCA Implementation
We first consider a 3-core chip that we refer to as CCA3(2/1).
The “CCA3(2/1)” notation means that the chip has 3 cores, 2
of which are NCs and 1 of which is a CC. Our CCA3(2/1)
implementation arranges the cores as shown in Figure 3, and
we designate only the middle core, Core2, as a CC. By align-
ing the cores in the same orientation, we facilitate routing
from an NC to a CC. By provisioning one CC, we obtain bet-
ter chip performance than if we had implemented
CCA3(1/2), which would have 1 NC and 2 CCs. With more
than one CC, the fault-free performance of each core
decreases, due to added wires and multiplexing, and the abil-
ity to tolerate more faults does not increase much. Note that,
if a single fault occurs in either Core1 or Core3, it is prefera-
ble to just not use that core, rather than cannibalize Core2.
CCA3(2/1)’s reconfigurability requires some extra hardware
and wires, similar to the overhead required to be able to use
spare components. Each NC (Core1 and Core3) has multi-
plexors at the input to each stage that allow it to choose
between signals from its own other stages (the majority of
which are from the immediate predecessor stage) and those
from the CC (Core2). Similarly, Core2 has multiplexors at
the input to each stage that allow it to choose between signals
from its other stages and signals from the two NCs. Table 1
shows the number of wires that are the inputs and outputs of
each stage. These are the wires that cross between NCs and
CCs and that must be multiplexed.
In CCA3(2/1)’s chip layout, the distance to route from Core1
or Core3 to Core2 and back is short. The cores are small, and

Figure 3. CCA3(2/1)
layout. The shaded core,
Core2, is a CC.

Core1 Core3Core2

L2 Cache

L1D L1I L1D L1IL1D L1I

Table 1. Each Stage’s Inputs and Outputs

stage #input signals #output signals

Fetch 56 65

Decode 38 115

Execute 110 61

Writeback 87 52
3

the distance each way is approximately 1mm in 90nm tech-
nology. Furthermore, because these simple cores are
designed for power efficiency rather than for maximum clock
frequency, we do not expect them to have very high clock
rates. Thus, given a clock frequency in the 400 MHz range
and such short wires, the penalty of routing to and from a
cannibalized stage is a relatively small fraction of a clock
period (as we show in Section 4.2.2). Rather than add wire
delay pipe stages to avoid lengthening the clock period
(which we consider for our 4-core implementations in
Section 3.3), we simply slow the clock slightly. For chips
with larger cores, adding wire delay pipe stages may be pref-
erable.
One way to mitigate the impact of lengthening the clock
period is to use clock borrowing [24]. Consider a fault in
Core1. If Core1’s normal clock period is T and its extra wire
delay to and from Core2 is W, then a simplistic solution is to
increase Core1’s clock period to T’=T+W. Clock borrowing
can mitigate this performance impact by time sharing W
across its two neighboring stages [24]. By sharing this delay,
we can reduce the clock period penalty to 1/3 of W, i.e., T’=T
+ W/3. As a concrete example, if Core1 has a 50ns clock
period (T=50ns) when fault-free and W=15ns, then we can
use time borrowing to achieve a clock cycle of T’=55ns. We
borrow 5ns from both of the neighboring stages, pushing
them from 50ns to 55ns. Thus, we have 65ns-10ns=55ns for
the longer stage.

3.3. CCA4: 4-Core CCA Implementations
We illustrate two viable CCA4 arrangements in Figure 4.
CCA4(3/1) chips are natural extensions of the CCA3(2/1)
chip. The CCA4(2/2) chips, which have two cannibalizable
cores, differ from the CCA4(3/1) chips in how they share
stages. Core1 can use a stage from Core2 or Core3, Core2
and Core3 can use stages from each other, and Core4 can use
a stage from Core3 or Core2. This sharing policy allows CCs
to share with each other, and it allows the NCs to share from
their more distant CCs.
An important distinction between CCA3 and CCA4 chips (of
any kind) is that, in a CCA4 chip, an NC may have to borrow
a stage from a CC that is not an immediate neighbor. For
example, in Figure 4b, Core4 is approximately twice as far
from a CC as Core3 is. Furthermore, as shown in Figure 4a, a
given NC might have different distances to the two CCs (e.g.,
Core4’s distance to Core2 and Core3).

The increase in distance from an NC to a CC may, for some
core microarchitectures, discourage the simple approach of
lengthening the clock period of an NC that is using a canni-
balized stage. In Figure 4a, for example, there might be an
unacceptable clock frequency penalty if we slow Core1 to
accommodate using a cannibalized stage from Core3. Based
on this clock penalty, we consider two approaches: the clock
period lengthening we have already discussed and adding
clock cycles to the pipeline. The first approach sacrifices
clock frequency and the second approach sacrifices IPC. The
preferred approach, in terms of overall performance, depends
on the details of the core, so we discuss both here.

3.3.1. CCA4-clock
If the performance penalty of slowing the clock is preferable
to adding pipeline stages, we can use what we refer to as the
CCA4-clock design. The only new issue for CCA4-clock,
with respect to CCA3, is that it is possible that we want to
have different pipeline stages of the same CC operate at dif-
ferent frequencies. For example, in Figure 4b, if Core1 is
using Core2’s Decode stage and Core4 is using Core2’s Exe-
cute stage, then we want Core2’s Decode stage to be at a
higher frequency than its Execute stage. This difference
results from Core4 being further from the CC than Core1 is
from the CC. Prior work has shown how to provide different
clocks within a single core [10]. However, if such a solution
is considered too costly, then Core2’s clock frequency must
be lowered to match the lowest frequency needed, such as the
one imposed by Core4 in the example.

3.3.2. CCA4-Pipe
The CCA4-pipe design, like CCA3, assumes that routing
from an NC to an immediately neighboring CC can be effi-
ciently accommodated by lengthening the clock period of the
NC and the CC. However, it allows routing from an NC to a
CC that is not an immediate neighbor to take one additional
cycle, and routing back from the CC to the NC takes another
cycle. We do not lengthen the clock, because the wire and
mux delays fit well within a cycle for a simple, relatively
low-frequency core. To avoid adding too much complexity to
the NC’s control, we do not allow a single NC to borrow
more than one stage that requires adding cycles.
When we add wire delay pipeline stages to a core’s pipeline,
we must add extra pipeline latches and solve four problems:
1) Conditional Branch Resolution. In the OR1200, the
decision to take a branch is determined by a single Branch-
Flag signal that is continuously propagated from Execute
back to Fetch. This BranchFlag is explicitly set/unset by
instructions. Because the OR1200 has a single delay slot, the
Fetch stage expects to see a BranchFlag signal that corre-
sponds to the instruction that is exactly two instructions
ahead of it in program order. However, adding cycles
between Fetch and Execute can cause the BranchFlag signal
seen by Fetch to be stale, because it corresponds to an
instruction that is more than two ahead of it. To address this
issue, we slightly modify the pipeline to predict that the stale
BranchFlag value is the same as the value that would have
been seen in the unmodified pipeline. We add a small amount

Core1 Core4Core2

L2 Cache

L1D L1I L1D L1IL1D L1I

Core3

L1D L1I

Core1 Core4Core2

L2 Cache

L1D L1I L1D L1IL1D L1I

Core3

L1D L1I

(a) CCA4(2/2)

(b) CCA4(3/1)

Figure 4. CCA4 Layouts. Shaded cores are CCs, and
unshaded cores are NCs.
4

of hardware to remember the program counter of a branch in
case of a misprediction. If the prediction is correct, there is
no penalty. A misprediction causes a penalty of two cycles.
2) Branch/Jump Target Computation. The target address
is computed using a small piece of logic in the Decode stage,
and having this unit close to the Fetch stage is critical to per-
formance. We treat this logic separately from the rest of the
Decode stage, and we consider it to be logically associated
with Fetch. Thus, if there is a fault in the rest of the NC’s
Decode stage, it still uses its original target address logic.
This design avoids penalties for jump address computation.
3) Operand Bypassing. When an NC uses a CC’s Execute
stage, there are some additional bypassing possibilities. The
output of the CC’s Execute stage may need to be bypassed to
an instruction that is in the wire delay stage of the pipeline
right before Execute. Instead of adding a bypass path, we
simply latch this data and bypass it to this instruction when it
reaches the usual place to receive bypassed data (i.e., when it
reaches the Execute stage).
4) Pipeline Latch Hazards. The extra stages introduce two
structural hazards for pipeline latches. First, if a cannibalized
stage can incur an unexpected stall, then we must buffer this
stage’s inputs so they do not get overwritten. For the
OR1200, Fetch and Execute require input buffering due to I-
cache and D-cache misses, respectively. Second, if a canni-
balized stage is upstream from (closer to Fetch than) a stage
that can incur an unexpected stall, then the stall will reach the
cannibalized stage late. To avoid overwriting the output of
that stage, we buffer its output. For the OR1200, the Fetch
and Decode stages require output buffering, because the Exe-
cute stage can stall on D-cache misses.
If the area costs of buffering are considered unacceptably
high, it is possible to squash the pipeline to avoid the struc-
tural hazards. For example, a D-cache miss could trigger a
squash of younger instructions. In our evaluation of CCA’s
area, we pessimistically assume the use of buffering rather
than squashes, even though squashing on D-cache misses
would have no IPC impact on the OR1200 (because, after the
squash, the pipe would refill before the D-cache miss
resolves).

3.4. CCA Chips with More Cores
Technological trends suggest that future chips will have far
more than 3 or 4 cores. One feasible and straightforward way
to apply CCA to chips with more cores is to design these
chips as groups of CCA3 or CCA4 clusters. We leave for
future work the exploration and evaluation of unclustered
designs for chips with greater numbers of cores.

4. EVALUATION

We evaluated CCA to answer two questions. First, how much
chip area overhead do our CCA implementations introduce?
Second, how well do multicore processors consisting of
CCA3 and CCA4 clusters perform, compared to CS proces-
sors?

4.1. Area Overhead
CCA’s area overhead is due to the logic and wiring that
enable stages from CCs to be connected to NCs. In Figure 5,
we plot the area overheads (compared to CS) for various
CCA chip implementations in 90nm technology. These areas
include the entire chip: cores and the L1I and L1D caches,
which are both 8KB and 2-way set-associative. We consider
all of the following CCA designs: CCA3(2/1), CCA4-
clock(3/1), CCA4-pipe(3/1), and CCA4-clock(2/2).
We observe that no CCA chip has an area overhead greater
than 3.5%. CCA3(2/1) incurs less than 2% overhead, which
is a difference so small that it would require more than 50
cores on the chip—approximately 18 CCA3(2/1) clusters—
before the additional area was equivalent to a single baseline
core. The CCA4 overheads are comparable to the CCA3
overhead, except for CCA4-pipe, which requires some
input/output buffering and modified control logic in the
cores.

4.2. Lifetime Performance
The primary goal of CCA is to provide better lifetime chip
performance than CS. We show in Section 4.2.4 that CCA
achieves this goal, despite the small per-core performance
overheads introduced by CCA. To better understand these
results, we first present our fault model and then evaluate
fault-free single core performance (for both NCs and CCs)
and the performance of an NC using a cannibalized stage.

4.2.1. Fault Model
We consider only hard faults, and we choose fault rates for
each pipeline stage that are based on prior work by both
Blome et al. [2] and Srinivasan et al. [22]. Blome et al.
decomposed the OR1200 core into 12 structures (e.g., fetch
logic, ALU, load-store unit, etc.) and, for each structure,
determined its mean time to failure in 90nm technology.
Their analysis considered the utilization of each structure,
and they studied faults due only to gate oxide breakdown.
Thus, actual fault rates are expected to be greater [22], due to
electromigration, NBTI, thermal stress, etc. Srinivasan et al.
assume that fault rates adhere to a lognormal distribution
with a variance of 0.5; the lognormal distribution is generally

Figure 5. CCA Area Overhead
5

considered more realistic for hard faults due to wearout,
because it captures the increasing rate of faults at the end of a
chip’s expected lifetime. The variance of 0.5 is a typical
value for wearout phenomena [22]. By combining these two
results, we can compute fault rates for each pipeline stage.
We also consider faults in CCA-specific logic (including
added latches and muxes), and we assume that these faults
occur at a rate that is the average of the pipeline stage fault
rates.
In our experiments, we consider these fault rates to be the
nominal fault rates, and we also explore fault rates that are
both more pessimistic (2x and 4x nominal) and less pessimis-
tic (1/4x and 1/2x nominal). We assume that there are no
faults present at time zero due to fabrication defects. The
presence of fabrication defects would improve the relative
lifetime performance of CCA with respect to CS by reducing
the time until there are enough faults that CCA outperforms
CS. We also do not consider faults in the cache interface
logic, which CCA could handle, and thus we slightly further
bias our results against CCA.

4.2.2. Fault-Free Single Core Performance
A fault-free NC or CC pays a modest performance penalty
due to the multiplexors (muxes) that determine from where
each stage chooses its inputs. These muxes, which affect
every pipeline stage, require a somewhat longer clock period
to accommodate their latency. Also, CCA’s additional area
introduces some extra wiring delays, but the CAD tools
revealed that this effect on the clock frequency was less than
0.3%.
The mux delays are identical for NCs and CCs, and they are
not a function of the number of cores or number of CCs. In
CCA3(2/1), each NC is choosing from among two inputs
(itself or the CC). The CC is choosing from among three
inputs (itself and both NCs), and thus has a 3-to-1 mux. How-
ever, at least one of those inputs is not changing, so the criti-
cal path of this 3-to-1 mux is the same as that of a 2-to-1
mux. In the other CCA chips, the NC and CC muxes are
either 2-to-1 or 3-to-1, but we can leverage the same observa-
tion about non-changing inputs. Thus, in all CCA chips, each
NC and each CC has a clock period penalty that is equal to
the latency of one 2-to-1 mux. This clock period penalty is
4.5% in 90nm technology.

4.2.3. Single NC Performance When Using CC
An NC’s use of cannibalized stages introduces some perfor-
mance degradation. In Figure 6, we plot the performance of
an NC in several situations: fault-free, using any immediate
neighbor CC’s stage and extending the clock period, and
using a CC’s stage and adding pipeline stages (i.e., for
CCA4-pipe). Results are normalized to the performance
(instructions per second) of a single baseline core that has
none of CCA’s added hardware. We compute wire delays
based on prior work by Ho et al. [8], and we assume that the
wires between NCs and CCs are routed using middle and
upper metal layers. We used a modified version of the Open-
RISC simulator to evaluate the IPC overhead for CCA4-pipe
as a function of the cannibalized stage. We use the Media-

Bench benchmark suite [13] for these experiments, and the
results are averaged over all of the benchmarks.
The results show that, when an NC borrows a CC’s stage, the
NC’s slowdown is between 5% and 12%. Most slowdowns
are in the 10-12% range, except when we add pipeline stages
to borrow a Writeback stage; extending the Writeback stage
incurs only a miniscule IPC penalty, because exceptions are
rare.
The performance when slowing the clock to accommodate a
borrowed stage (the second bar from the left in Figure 6) is a
function of the technology node. In Figure 6, we assumed
90nm technology. For larger/smaller CMOS technologies,
the wire delays are smaller/greater [8]. Even at 45nm, the
wire delays remain under 15% and 19% for immediate and
non-immediate neighbors, respectively. Even a worst-case
19% clock degradation for a core is still preferable to dis-
abling the core.

4.2.4. Lifetime Multicore Performance
To determine aggregate multicore performance in the pres-
ence of faults, we developed Petri Net models of the CS and
CCA chips. The Petri Net computes the expected perfor-
mance of a chip as a function of time. We model each chip at
the same 12-structure granularity as Blome et al. [2]. To eval-
uate a given chip, the Petri Net uses one million Monte Carlo
simulations1 in which we inject hard faults in each of the pro-
cessor structures (including CCA logic and latches), using
the distributions specified in Section 4.2.1. Once a fault
occurs in a structure, the corresponding stage is considered
unusable. For example, a fault in the ALU triggers the failure
of the Execute stage. We do not consider the time needed to
detect failures and reconfigure the chip.
We first evaluate chips with an equal number of cores and
then evaluate equal-area chips. We report expected perfor-
mance in units of “fault-free baseline processors.” A CS3
chip with no faults has an expected performance of 3.
CCA3(2/1) with no faults has an expected performance of
2.85, due to CCA3(2/1)’s clock penalty for mux delays. For

1. The results always converge well before the millionth simulation.

Figure 6. Performance of NC. With and without use of
immediate neighbor CC (normalized to baseline core)
6

brevity, we refer to “expected performance” as simply “per-
formance.”
3-core Chips. Figure 7 plots performance over the lifetime
of the chips. Figure 7a shows the performance of 3-core
chips, assuming the nominal fault rates. The difference
between the curves at time zero reflects CCA’s fault-free per-
formance overhead. We observe that the crossover point—the
time at which the performances of CS3 and CCA3(2/1) are
identical—is at a little under 2 years. After this early cross-
over point, CCA3(2/1)’s performance degradation is far less
steep than CS3’s. For example, after 6 years, CCA3(2/1) out-
performs CS3 by one fault-free baseline core.
To better illustrate the importance of the gap between the
curves in Figure 7a, Figure 7b shows the cumulative perfor-
mance, for a variety of fault rates. The two bars for each fault
rate represent the cumulative performance after 6 and 12
years, respectively. The cumulative performance is the inte-
gral (area under the curve) of the performance in Figure 7a.
For nominal fault rates or greater, CCA3(2/1) provides sub-
stantially greater cumulative lifetime performance. After only
6 years at the nominal fault rate, CCA3(2/1) has a 30%
advantage, and this advantage grows to over 60% by 12
years. Even at only half of the nominal fault rate, CCA3(2/1)
has achieved a 30% improvement at 12 years. For very low
fault rates, CCA3(2/1) has slightly less cumulative perfor-
mance after 6 years and slightly more cumulative perfor-
mance after 12 years, but neither difference is large.

4-core Chips. We present the results for 4-core chips in
Figure 8. For CCA4-clock(3/1), Figure 8a shows that the
crossover point is at approximately 2 years. Figure 8b shows
that CCA4-clock(3/1) achieves a greater than 50% improve-
ment in cumulative lifetime performance for the nominal and
twice-nominal fault rates. Due to space constraints, we do not
graph the results for CCA4-clock(2/2) and CCA4-pipe(3/1),
but they exhibit very similar trends.
Equal-Area Comparisons. The 3-core and 4-core results
presented thus far were not equal-area comparisons. CCA
chips are slightly (less than 3.5%) larger than CS chips. To

Figure 7. Lifetime Performance of 3-core Chips
(a) Performance (nominal fault rates) (b) Cumulative performance

Figure 8. Lifetime Performance of 4-core Chips

(a) CCA4-clock(3/1) Performance (nominal fault rates) (b) CCA4-clock(3/1) Cumulative performance

Figure 9. Equal-Area Lifetime Performance (6-year
cumulative results)
7

provide another comparison point, we now compare chips of
equal area. Note that the ratio of the chips’ performances is
independent of the chip size. Figure 9 plots the cumulative
(over 6 years) performance advantages of the CCA chips.
These results are quite similar to the earlier results, because
CCA’s area overheads are fairly small.

4.3. Performance of Chips Using
TMR/DMR
If multiple cores are used to provide error detection with
DMR or error correction with TMR, then CCA is beneficial
as it allows for more cores to be available. We consider the
performance of a chip to be the performance of the slowest
core in a DMR or TMR configuration. If fewer than 2 cores
are available, the chip has zero performance; we assume the
user is unwilling to run without at least DMR to detect errors.
TMR. We plot the performance of 3-core chips that are being
used in a TMR configuration in Figure 10. The crossover
point is at about 2 years, similar to the comparison between
CCA3 and CS3 when we were not considering TMR. How-
ever, the difference in cumulative performance is even
greater. CCA3 provides more than 50% more cumulative per-
formance for nominal and higher fault rates, even after only 6
years. At just half of the nominal fault rate, which is an opti-
mistic assumption, CCA3 still has a 45% edge. The intuition
for CCA’s large advantage is that it greatly prolongs the

chip’s ability to operate in DMR mode. This analysis also
applies to chips with more cores but where the cores are
grouped into TMR clusters.
DMR. We consider the performance of 4-core chips that are
comprised of two DMR pairs of cores (i.e., 4 cores total). The
first fault in any core leads to the loss of one core and thus
one DMR pair, for both CS4 and CCA4. Additional faults,
however, are often tolerable with CCA4. Figure 11 shows the
results for CCA4-clock(2/2), which is the best CCA4 design
for this situation. Between approximately 2 and 2.5 years,
CS4 and CCA4-clock(2/2) have similar performances. After
that, though, CCA4-clock(2/2) significantly outperforms
CS4. The cumulative results show that, for nominal and
greater fault rates, CCA4-clock(2/2) provides lifetime advan-
tages greater than 35% over 6 years and greater than 63%
over 12 years.

5. RELATED WORK

We compare CCA to prior work in self-repair, pooling of
core resources, and lifetime reliability.

5.1. Multicore-Specific Self-Repair
Multicore processors are inherently redundant, in that they
contain multiple cores. Aggarwal et al. [1] proposed a recon-
figurable approach to using multiple cores to provide redun-
dant execution. When three cores are used to provide TMR, a

Figure 10. Lifetime Performance of 3-core Chips Using TMR Cores

(a) Performance (nominal fault rates) (b) Cumulative performance

Figure 11. Lifetime Performance of 4-core Chips Using Pairs of DMR Cores

(a) CCA4-clock(2/2) Performance (nominal fault rates) (b) CCA4-clock(2/2) Cumulative performance
8

hard fault in any given core will be masked. This use of
redundant cores is related to the traditional fault tolerance
schemes of multi-chip multiprocessors, such as IBM main-
frames [19]. CCA is complementary to this work, in that
CCA enables a larger fraction of on-chip cores to be available
for TMR or DMR use. Concurrently with our work, Gupta et
al. [6] have developed a single core in which the pipeline
stages are connected by routers; this design could be used in
a multicore chip to enable sharing of resources across cores.
Such a multicore chip would enable greater flexibility in
sharing than CCA, but it would incur a greater performance
overhead for this flexibility.

5.2. Self-Repair for Superscalar Cores
Numerous researchers have observed that a superscalar core
contains a significant amount of redundancy. Bower et al. [3]
diagnose where a hard fault is—at the granularity of an ALU,
reservation station, ROB entry, etc.—and deconfigure it. Shi-
vakumar et al. [17] and Srinivasan et al. [22] similarly decon-
figure components that are diagnosed by some other
mechanism (e.g., post-fabrication testing). Rescue [15]
deconfigures an entire “way” of a superscalar core if post-
fabrication testing uncovers a fault in it. CCA differs from all
of this work by targeting simple cores with little intra-core
redundancy.

5.3. Pooling of Core Resources
There have been proposals to group cores together during
phases of high ILP. Both Voltron [25] and Core Fusion [9]
allow cores to be dynamically fused and un-fused to accom-
modate the software. These schemes both add a substantial
amount of hardware, to allow tight coupling of cores, in pur-
suit of performance and power-efficiency. CCA differs from
this work by being less invasive. CCA’s goals are also differ-
ent in that CCA seeks to improve lifetime performance.

5.4. Lifetime Reliability
Srinivasan et al. [20, 22] have explored ways to improve the
lifetime reliability of a single superscalar core. These tech-
niques include adding spare components, exploiting existing
redundancy in a superscalar core, and adjusting voltage and
frequency to avoid wearing out components too quickly.
CCA is complementary to this work.

6. CONCLUSIONS

For multiprocessors with simple cores, there is an opportu-
nity to improve lifetime performance by enabling sharing of
resources in the presence of hard faults. The Core Cannibal-
ization Architecture represents a class of designs that can
retain performance and availability despite faults. Despite
incurring slight performance overhead in fault-free scenarios,
CCA’s advantages over the course of time outweigh this ini-
tial disadvantage. From among the CCA designs we pre-
sented in this paper, we believe that CCA-clock designs are
preferable to CCA-pipe designs. Even in those situations
when CCA-pipe designs might eke out a bit more perfor-

mance, it is not clear that their added complexity is worth this
slight performance benefit. However, for future CMOS tech-
nologies, other core models, or cores with faster clocks,
CCA-pipe may be worth its complexity.
Based on our results, we expect CCA (or designs like it) to
flourish in two domains in particular. First, for many embed-
ded applications, the key metric is availability at a reasonable
performance, moreso than raw performance. Many embed-
ded chips must stay available for long periods of time—
longer than the average lifetime of a desktop, for example—
and CCA improves this availability. Second, CCA’s large
benefits for chips that use cores in TMR and DMR configura-
tions, suggest that CCA is a natural fit for chips using redun-
dant cores to provide reliability.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grant CCF-0444516, the
National Aeronautics and Space Administration under grant
NNG04GQ06G, Toyota InfoTechnology Center, and an
equipment donation from Intel Corporation. We thank Alvy
Lebeck, Anita Lungu, and Albert Meixner for their feedback
on this work.

REFERENCES

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E.
Smith. Configurable Isolation: Building High
Availability Systems with Commodity Multi-Core
Processors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture,
pages 470–481, June 2007.

[2] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-
calibrating Online Wearout Detection. In Proceedings of
the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2007.

[3] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for
Online Diagnosis of Hard Faults in Microprocessors. In
Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
197–208, Nov. 2005.

[4] L. Carter, J. Feo, and A. Snavely. Performance and
Programming Experience on the Tera MTA. In
Proceedings of the SIAM Conference on Parallel
Processing, Mar. 1999.

[5] Cisco Systems. Cisco Carrier Router System.
http://www.cisco.com/application/pdf/en/us/guest/produ
cts/ps5763/c1031/cdcco% nt_0900aecd800f8118.pdf,
Oct. 2006.

[6] S. Gupta, S. Feng, J. Blome, and S. Mahlke.
StageNetSlice: A Reconfigurable Microarchitecture
Building Block for Resilient CMP Systems. In
International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, Oct. 2008.

[7] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, third edition, 2003.

[8] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of
Wires. Proceedings of the IEEE, 89(4):490–504, Apr.
9

2001.
[9] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core

Fusion: Accommodating Software Diversity in Chip
Multiprocessors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture,
pages 186–197, June 2007.

[10] A. Iyer and D. Marculescu. Power Efficiency of Voltage
Scaling in Multiple Clock, Multiple Voltage Cores. In
Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pages 379–386, 2002.

[11] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way Multithreaded SPARC Processor. IEEE Micro,
25(2):21–29, Mar/Apr 2005.

[12] D. Lampret. OpenRISC 1200 IP Core Specification,
Rev. 0.7. http://www.opencores.org, Sept. 2001.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In
Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
330–335, Dec. 1997.

[14] T. Nakura, K. Nose, and M. Mizuno. Fine-Grain
Redundant Logic Using Defect-Prediction Flip-Flops. In
Proceedings of IEEE International Solid-State Circuits
Conference, 2007.

[15] E. Schuchman and T. N. Vijaykumar. Rescue: A
Microarchitecture for Testability and Defect Tolerance.
In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 160–171,
June 2005.

[16] M. Shah et al. UltraSPARC T2: A Highly-Threaded,
Power-Efficient, SPARC SOC. In Proceedings of the
IEEE Asian Solid-State Circuits Conference, pages 22–
25, Nov. 2007.

[17] P. Shivakumar, S. W. Keckler, C. R. Moore, and
D. Burger. Exploiting Microarchitectural Redundancy
For Defect Tolerance. In Proceedings of the 21st
International Conference on Computer Design, Oct.

2003.
[18] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco,

and T. Austin. Ultra Low-Cost Defect Protection for
Microprocessor Pipelines. In Proceedings of the Twelfth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct.
2006.

[19] L. Spainhower and T. A. Gregg. IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective. IBM Journal of Research and Development,
43(5/6), September/November 1999.

[20] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The
Case for Lifetime Reliability-Aware Microprocessors. In
Proceedings of the 31st Annual International Symposium
on Computer Architecture, June 2004.

[21] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The
Impact of Technology Scaling on Lifetime Reliability. In
Proceedings of the International Conference on
Dependable Systems and Networks, June 2004.

[22] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Exploiting Structural Duplication for Lifetime
Reliability Enhancement. In Proceedings of the 32nd
Annual International Symposium on Computer
Architecture, June 2005.

[23] Y. Sugure et al. Low-Latency Superscalar and Small-
Code-Size Microcontroller Core for Automotive,
Industrial, and PC-Peripheral Applications. IEICE
Transactions on Electronics, E89-C(6), June 2006.

[24] N. Weste and K. Eshragian. Principles of CMOS VLSI
Design: A Systems Perspective. Addison-Wesley
Publishing Co., 1982.

[25] H. Zhong, S. A. Lieberman, and S. A. Mahlke.
Extending Multicore Architectures to Exploit Hybrid
Parallelism in Single-Thread Applications. In
Proceedings of the Twelfth International Symposium on
High-Performance Computer Architecture, pages 25–
36, Feb. 2007.
10

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. OVERVIEW OF CORE CANNIBALIZATION
	2.1. Core Model
	2.2. Background: Core Shutdown
	2.3. High-Level View of CCA
	2.4. CCA Design Space
	Spare Granularity
	Sharing Policy
	Chip Layout

	3. CCA IMPLEMENTATIONS
	3.1. Baseline Multicore Processor
	Fetch
	Decode
	Execute
	Writeback

	3.2. CCA3: 3-Core CCA Implementation
	3.3. CCA4: 4-Core CCA Implementations
	3.3.1. CCA4-clock
	3.3.2. CCA4-Pipe
	1) Conditional Branch Resolution
	2) Branch/Jump Target Computation
	3) Operand Bypassing
	4) Pipeline Latch Hazards

	3.4. CCA Chips with More Cores

	4. EVALUATION
	4.1. Area Overhead
	4.2. Lifetime Performance
	4.2.1. Fault Model
	4.2.2. Fault-Free Single Core Performance
	4.2.3. Single NC Performance When Using CC
	4.2.4. Lifetime Multicore Performance
	3-core Chips
	4-core Chips
	Equal-Area Comparisons

	4.3. Performance of Chips Using TMR/DMR
	TMR
	DMR

	5. RELATED WORK
	5.1. Multicore-Specific Self-Repair
	5.2. Self-Repair for Superscalar Cores
	5.3. Pooling of Core Resources
	5.4. Lifetime Reliability

	6. CONCLUSIONS
	REFERENCES
	Core Cannibalization Architecture: Improving Lifetime Chip Performance for Multicore Processors in the Presence of Hard Faults

