
Error Detection Using Dynamic Dataflow Verification

Appears in the International Conference on Parallel Architectures and Compilation Techniques (PACT)
Brasov, Romania, September, 2007
Albert Meixner
Dept. of Computer Science

Duke University
albert@cs.duke.edu

Daniel J. Sorin
Dept. of Electrical and Computer Engineering

Duke University
sorin@ee.duke.edu
Abstract
A significant fraction of the circuitry in a modern

processor is dedicated to converting the linear instruc-
tion stream into a representation that allows the execu-
tion of instructions in data dependence order, rather
than program order, to extract instruction level paral-
lelism. All errors caused by hardware faults in this cir-
cuitry—which includes the fetch and decode stages,
renaming and scheduling logic, as well as the commit
stage—will manifest themselves as incorrectly con-
structed dataflow graphs.

Dynamic Dataflow Verification (DDFV) compares
the dynamically constructed and executed dataflow
graph to the expected dataflow graph of the static pro-
gram binary, represented by a signature embedded in
the instruction stream. The signature comparison
enables comprehensive detection of transient errors,
permanent errors, and design bugs in the dataflow cir-
cuitry. We show that DDFV detects errors with high
probability, at a low hardware and performance cost.

1. Introduction

As CMOS technology continues to scale, it becomes
more susceptible to errors due to transient and perma-
nent hardware faults [29, 12]. In this work we contrib-
ute an inexpensive mechanism for detecting errors in
parts of the processor that previously required hard-
ware replication or temporal redundancy for error
detection. Our error detection scheme can be used for
low-cost protection of a significant fraction of the core
area or to reduce the area and performance costs of
other previously proposed schemes. We focus on error
detection and do not investigate the orthogonal prob-
lem of error recovery, which has been researched
extensively in prior work (e.g., [9]).

The mechanism presented in this paper, dynamic
dataflow verification (DDFV), detects hardware errors
by verifying at runtime that the dataflow graph speci-
fied by the program is the same as the dataflow graph
being reconstructed and executed by the processor.

Because the process of dynamically reconstructing the
dataflow graph involves so many of the superscalar
processor’s components—including the logic for fetch,
decode, register rename, register read, writeback, and
commit—DDFV can detect errors in a large fraction of
the units within the core (illustrated in Figure 1). Fur-
themore, DDFV will inherently detect faults in the
instruction cache logic and I-TLB, including errors in
cache decoders and tag comparators that are not cov-
ered by error detecting codes, because errors in fetched
instructions also alter the dynamic dataflow graph.

DDFV provides error detection by dynamically veri-
fying a high-level invariant that an error-free system is
guaranteed to maintain, rather than by adding low-level
error detection in individual circuits. This high-level
approach avoids coverage holes and leaves the design
of lower-level components unchanged.

The following section (Section 2) discusses prior
work in error detection and how it compares to DDFV.
Section 3 specifies the system model and error model
that we assume throughout the high-level overview of
DDFV (Section 4), the discussion of its implementa-
tion details (Section 5), and the evaluation of DDFV’s
error coverage and performance impact (Section 6).

Figure 1. DDFV coverage area in an AMD K8

C
om

pl
ex

 D
ec

od
er

M
ic

ro
C

od
e

M
em

or
y

&

S
eq

ue
nc

er

P
re

D
ec

od
e

P
re

D
ec

od
e

Fl
ag

s

ICache
Tags

BTB

BHT

Branch
Selectors

L1 Instruction
Cache

Register
File

ROB

In
te

ge
r A

LU
s

In
te

ge
r

S
ch

ed
ul

er

I-TLBs

Load/Store
Unit 2

LSU2 Control

Load / Store Unit 1

FP
Schedulers
& Rename

FP Register
Files

FP
-In

t
C

on
ve

rt

3dNow

L1 Data
Cache

DCache
Tags

DCache ECC

In
st

ru
ct

io
n

P
ac

k
St

ag
eD-TLB

L2

D-
TLBDCache

Snoop
Tags

ICache
Snoop
Tags

FP
 &

 S
IM

D
 A

LU
s

FP
 &

 S
IM

D
 A

LU
s

Mostly DDFV
protected

DDFV
Protected

Not DDFV
Protected

Fault-Insensitive
Structures Unknown
1

Finally, we describe how our proposed technique can
be combined with other techniques to provide low-cost
error detection for different systems (Section 7), and
we draw conclusions about this work (Section 8).

2. Related Work

DDFV detects errors due to transient and permanent
faults, as well as many design bugs, that cause the data-
flow in the executed program to diverge from the cor-
rect dataflow specified in the binary. Prior schemes that
cover the same space as DDFV use error detecting
codes (EDC), temporal redundancy (re-execution),
structural redundancy, built-in self-test (BIST), or con-
trol flow checking.
EDC. EDC is efficient for detecting errors in data val-
ues, particularly in storage and communication, and it
is complementary to DDFV. In fact, our implementa-
tion of DDFV uses EDC to detect errors in the values
in the dataflow graph (in the register file, ROB, and
bypass network). The rest of our DDFV implementa-
tion detects errors in the shape of the dataflow graph.

EDC, by itself, has often been considered sufficient
for non-safety-critical processors, because storage has
been more susceptible to errors than logic. Researchers
project, however, that logic errors will become more
prominent [27].
Temporal Redundancy. A popular variant of temporal
redundancy is redundant multithreading (RMT) [25,
23, 19], which detects transient errors by comparing
the results of redundant threads. Permanent faults can
be detected only in units that are replicated such that
the two threads can use different copies. This is not
typically the case for the front-end components and
rename logic covered by DDFV. A detailed analysis of
an RMT scheme showed that its performance degrada-
tion was about 30% [19]. RMT also incurs a significant
increase in energy consumption, but the hardware costs
of enabling RMT in a multithreaded processor are low.
Another approach to temporal redundancy is software-
based replication of instructions [22, 24]. These
schemes detect transient errors but cannot detect errors
due to permanent faults in many components. Software
is cheap and flexible, but comes at the cost of a 50%
slowdown [24] and high energy consumption.
Structural redundancy. Dual modular redundancy
(DMR) and other structural redundancy schemes detect
virtually 100% of all possible errors by running all
operations on two copies of a component and compar-
ing the results. Replication can be performed at differ-
ent granularities (units vs. cores), but always comes at
a considerable hardware cost.

DIVA is a heterogeneous DMR scheme [5,32] that
uses a simplified, yet functionally identical, core for
checking. This heterogeneous design reduces the hard-
ware cost, as compared to homogeneous DMR, with-
out sacrificing error coverage. Heterogeneous DMR is
well-suited for large speculative RISC machines, such
as the Alpha 21264, where it incurs virtually no slow-
down and only 6% area overhead for the checker core
[32]. However, it is less efficient for processors that
utilize little speculation and simple dependency track-
ing—e.g., VLIW (Itanium [18]), SMT (Ultrasparc T1
[15]), DSPs (TI CMS320C54x [10])—because the
complexity gap between the primary and checker cores
is much smaller. DIVA is also less suitable for units
that are inherently complicated and hard to simplify,
such as fetch and decode on CISC machines, especially
modern ones that crack instructions into micro-ops
(like the AMD K8 [1] and Intel Pentium4 [8]). DDFV
does not have these problems, because its cost is
mostly independent of the complexity of the verified
hardware and lower than even a simple replicated unit.
BIST. BIST has long been used to detect defects dur-
ing start-up. Recently BIST has also been used in the
BulletProof pipeline [28] for runtime detection of per-
manent faults. BulletProof detects and diagnoses 89%
of the possible permanent faults in a VLIW processor
model at the cost of 5.8% extra hardware and with neg-
ligible performance impact. However, it offers no pro-
tection from transient faults.
Control flow checking. Control flow checkers [7, 14,
31] dynamically verify that a program is following a
legal path of execution. Some checkers [31] only verify
inter-block control-flow, and are thus complementary
to DDFV, which implicitly checks intra-block control-
flow. Other control flow checkers also check decode
signals generated during execution [7,14] and are
closer in nature to DDFV as they also capture faulty
instruction decoding and thus provide overlapping
functionality. However, all of the latter schemes target
strictly in-order processors and do not address errors in
propagating instruction results or instruction schedul-
ing. Control flow checkers have negligible hardware
cost and low performance impact.
Summary. Most of these prior mechanisms at least
partially overlap with DDFV and most exhibit weak-
nesses that can be mitigated by combining them with
DDFV (see Table 1 for a summary). We discuss some
attractive possible combinations in Section 7.

3. System Model and Fault Model

DDFV verifies that the execution matches an
abstract model, rather than checking the correct opera-
2

tion of any specific component, and it is therefore not
tied to a specific architecture or error model. Neverthe-
less the details of our DDFV implementation and its
error detection capabilities depend on the targeted sys-
tem and error model.
System Model. We target superscalar, dynamically
scheduled processors, such as the Intel Pentium4 [8],
AMD K8 [1], etc. The focus on superscalar processors
is not rooted in a fundamental limitation of DDFV,
which can be applied to other types of processors, but
reflects the dominant architecture. DDFV is strictly
limited to dataflow within a single thread of execution
and is therefore oblivious to the presence of multiple
cores or thread contexts.
Error Model. We consider errors due to transient and
permanent hardware faults (stuck-at-0 and stuck-at-1)
in all structures in the microprocessor core. By com-
paring hardware operation to an abstract model of cor-
rect behavior, dynamic verification schemes can also
detect many design bugs1, which cause hardware to
behave incorrectly despite the absence of physical

errors. Schemes that use identical hardware for execu-
tion and verification (such as RMT and standard DMR)
and schemes that verify hardware implementations
rather than abstract behavior (such as BIST and Bullet-
Proof) cannot detect design bugs. Recent microproces-
sors from Intel and AMD have been shipped with
dozens of design bugs [2, 11], and online mechanisms
to uncover them can be a valuable tool in processor
development and verification.

4. High-Level Overview of DDFV

The basic idea behind DDFV is to periodically com-
pare the static dataflow graph in the program binary to
the actual dataflow in the processor during execution.
To implement this idea we need three things: an effi-
cient representation of a dataflow graph that can be
easily compared, a way to statically compute this rep-

Table 1. Error Detection Coverage Comparison. Entries in the table represent detection for T(ransient),
P(ermanent), and D(esign) errors. Shaded entries correspond to no significant error detection coverage

Component/Activity DDFV

control flow
checking
[7, 14]

DMR,
DIVA
[5,32]

redundant
multi-
threading [19]

software
redundancy
[24]

BIST,
Bullet-
Proof [28]

Fr
on

te
nd fetch logic T, P, D T, P, D T, P, D T T P

decode logic T, P, D (T, P, D)a

a. Only if control flow checksum is computed over control signals emitted by instruction decoder (e.g. [14]). All such pro-
posed schemes have only considered in-order cores.

T, P, D T T P
reg. rename/read logic T, P, D T, P, D T, P T, P P

Sc
he

du
lin

g reorder buffer T, P, D T, P, D T, P T, P P
reservation stations T, P, D T, P, D T, P T, P P
load-store queue T, P, D T, P T, P P

Ex
ec

ut
io

n

ALUs T, P, D T, Pb

b. Can detect permanent faults if original and redundant instruction use different instances of this resource.

T, Pb P
FPUs (T, P, D)c

c. Not detected by proposed DIVA implementations, but could be detected with straightforward extensions.

T, Pb T, Pb P
multiplier and divider T, P, D T, Pb T, Pb P
branch units (T, P, D)d

d. Only if incorrect branch target or corrupted PC is not at beginning of basic block. Does not guarantee legal path.

(T, P, D)e

e. Only if incorrect branch target or corrupted PC is not on a legal path. Cannot detect incorrect branch decision.

T, P, D T, Pb T, Pb P
load-store unit T, P, D T, Pb T, Pb P

Ba
ck

en
d PC update logic (T, P, D)d (T, P, D)e T, P, D T, Pb T, Pb P

register file write logic T, P, D T, P, D T, P T, P P

C
os

t area low very low low-high very low none low
performance low low low medium-high high none-low
power low very low low-high medium medium low

1. We cannot quantify the coverage of design bugs, because there is
an unbounded number of possible design bugs.
3

resentation and attach it to the program, and a mecha-
nism to track dataflow between the instructions
dynamically executed in the processor.

4.1. Dataflow Graph Representation

The full dataflow graph (DFG) of a program is not
known at compile time, because it depends on dynami-
cally computed branches. To still be able to compare
the entire program execution to a dataflow graph stati-
cally embedded in the program binary, DDFV parti-
tions the program into blocks of code that have
statically known dataflow graphs, such as the simple
example in Figure 2. After each block completes,
DDFV verifies that the dataflow graph was executed
correctly and moves on to verify the next block.

The dataflow
graph for a
block of code
has two types
of vertices that
do not repre-
sent instruc-
tions. Sources
represent the
state at the
beginning of
the block (no

incoming edges) and sinks represent the state at the end
of the block (no outgoing edges). One source and one
sink exist for every register. Two special sinks exist for
the PC and memory. The sink for the PC is required
because otherwise an error in a branch or jump (e.g.,
“bnez r1, target” being decoded as “bnez r3,
target”) would have no impact on the dataflow graph
and would thus be undetectable. The sink for memory
is required to capture the effects of stores, and the out-
put edges of all stores in a block flow into this memory
sink. We maintain only a single sink for all of memory,
because it is infeasible to maintain a separate sink for
every possible location in memory, and dataflow in
memory cannot be statically determined. Because of
this simplification, DDFV will only ensure that store
values reach memory correctly, but not that subsequent
loads to that address will read the value written by the
most recent store.

When a block is executed, data values flow along the
edges from the sources to the sinks. Every value flow-
ing out of a vertex has a unique history of vertices
involved in its creation. We refer to the set of histories
flowing into a vertex as the input history of the vertex,
and we refer to the history of values flowing out of a
vertex as the vertex’s output history. A vertex’s output

history is defined recursively as a combination of the
histories of the inputs to that vertex and information
about the vertex (instruction type, immediates, etc.).
The size of a vertex’s input or output history depends
on the length of the dependency path and is
unbounded, which complicates storage and computa-
tion. To overcome this problem, DDFV uses a fixed-
size checksum of the vertex’s history, called the vertex
history signature (VHS), instead of the full history. A
checksum over the input histories of all sink vertices
(i.e., histories of values flowing into sinks) represents
the block’s full dataflow graph and is called the data-
flow graph signature (DGS).

The functions that compute the output VHS of each
vertex differ slightly for each vertex type, as we dis-
cuss in Section 5.1. The output history for each source
is a constant, referred to as the initial history, that is
unique to the source. When choosing the actual hash
functions for computing the DGS and the VHSs, we
must ensure that they are simple to implement in hard-
ware and that they minimize the probability of aliasing
(i.e., two different dataflow histories mapping to the
same signature). However, with finite-sized signatures,
there is always a non-zero probability of aliasing and
thus false negatives (undetected errors). Therefore,
DDFV can detect all errors within its coverage area,
but only with a certain probability dependent on the
number of bits in the signatures.

4.2. Providing Static DGSs to Hardware

Before a program is executed, we must identify code
blocks with static dataflow graphs, compute the DGS
for each such block, and store the DGSs in a way that
makes it easy to locate and retrieve them at runtime. In
this paper, we compute a DGS for every basic block.
We have written a binary analysis/rewriting tool that
identifies basic blocks using symbol and relocation
information in the binary. For each basic block, the
dataflow graph is reconstructed to compute the VHSs
for all sinks and the DGS. This step could alternatively
be performed by the compiler backend or the JIT com-
piler in dynamically compiling virtual machines.

Once the DGSs for all blocks are known, they have
to be made accessible to the processor at runtime. To
avoid the necessity of an additional storage structure,
we embed the static DGS value in the program binary
by making the first instruction of every basic block a
DGS instruction that contains the signature in its
immediate field. To implement the DGS instruction,
we define a new opcode and modify the decoder to rec-
ognize it and extract the signature. This process of

Figure 2. Partitioned DFG

add r1, r2, r3
mult r4, r1, r3
beq r5, r1, PC+9
4

embedding instructions in a binary is similar to that
used in prior work [17].

4.3. Runtime Operation

At runtime, DDFV hardware computes the DGS of
each basic block it executes by computing output histo-
ries for all instructions executed and tracking input his-
tories for all registers, PC, and memory. We discuss the
details of our particular implementation in Section 5.2.

As described in Section 4.2, the static DGS for every
block is embedded in the program code as a special
DGS instruction. Beside providing the actual signature,
the DGS instruction also lets the processor know when
to compare the static and dynamic DGS and reset the
(dynamic) DGS and VHSs. When a DGS instruction is
ready to commit, all instructions in the previous block
must have already committed and updated the DGS
register. Therefore the DGS register reflects the final
signature of the previous block. At this point, the
dynamically computed DGS is compared to the static
DGS in the previous DGS instruction.

Like other instructions, DGS instructions can be
squashed in case of branch mis-prediction and need to
be tracked while speculative. There are two design
options that we considered for tracking in-flight DGS
instructions: we can either dispatch them to the ROB or
into a separate FIFO that is dedicated to DGS instruc-
tions. Unlike ROB entries for instructions with output
values that are often read multiple times by later
instructions, entries for DGS instructions are only read
during the commit stage. Therefore they can easily be
stored in a separate DGS instruction FIFO, which does
not require multiple read ports and is narrower than the
ROB, because each entry only needs to be as wide as a
DGS. We assume a separate FIFO in our implementa-
tion, because it reduces pressure on the ROB and there-
fore minimizes DDFV’s performance impact.

5. Implementation Details

In this section, we provide the details of our DDFV
implementation.

5.1. Signature Computation Functions

There are two types of dataflow graph vertices for
which we compute a VHS: instruction outputs and
sinks. We also compute the DGS for each basic block.
Instruction Output VHSs. The VHS of an instruc-
tion output, VHSinst, depends on the type of instruc-
tion. In general, VHSinst is computed as a hash of the
VHSs of its inputs, the immediate operand (if any), and

an identifier of the operation performed. We use CRC
as the hash function.
Sink VHSs. There are three types of sinks: registers,
PC, and memory. The VHS of a sink refers to the sink’s
input history, unlike the VHS of an instruction (which
refers to the instruction’s output history).

The VHS of a register sink, VHSreg, is simply the
VHS of the last instruction output to write that register.

The VHS of the PC sink, VHSpc, is updated after
every branch instruction. In this work, there is only one
branch per dataflow graph but, in general, the PC sink
history can be determined by multiple input histories
(if the DGS is computed over multiple basic blocks). In
the case of multiple branches, DDFV uses a combining
function, combpc, to summarize them. For ease of
implementation, we require that VHSpc can be com-
puted incrementally. In our implementation, the com-
bining function is base-1 addition.

VHSpc,new = combpc(VHSpc,old, VHSinst,branch)
The history for the memory sink, VHSmem, is com-

puted using a combining function, combmem, that sum-
marizes all of the store output histories. As with
VHSpc, we use base-1 addition for this combining
function. VHSmem is seeded with a constant initial
value at the beginning of each block, and it is updated
whenever a new store commits. VHSmem covers the
entire memory and can verify dataflow from registers
to memory, but it cannot verify that stored data reaches
future loads correctly.

VHSmem,new = combmem(VHSmem,old, VHSinst,store)
DGS. The DGS is computed by hashing together all of
the sink VHSs with XOR. To avoid two identical incor-
rect histories cancelling each other out and to detect
register sinks with swapped histories (despite using the
commutative XOR function), we first hash each
VHSreg using a function that depends on the register
number. This hash function is a table-driven permuta-
tion function.

DGS = hashreg(1,VHSreg1) ⊕ ... ⊕
hashreg(N,VHSregN) ⊕ VHSmem ⊕ VHSpc

Figure 3 illustrates an example of DDFV detecting
an error in the same basic block as shown in Figure 2.
For clarity, we simplified the system in several ways. It
has only 5 registers, the DGS and VHSs are 4-bits
long, and hash functions and initial values for the DGS
and VHSs are simplistic.

5.2. Dynamic DGS Computation

As the processor is executing, it must track the histo-
ries of values produced by the instructions (i.e., vertex
5

input and output histories in the dataflow graph) so it
can compute the DGS for comparison with the signa-
tures contained in the static binary. Initial signature
values are held in a ROM. Throughout the section we
assume PentiumPro-style, implicit register renaming
(i.e., in-flight operands are tagged with ROB entry
numbers). We discuss other system models in
Section 5.6.

5.2.1. VHS computation. The VHSs propagate
through the processor along with the values produced
by instructions. Thus, we add a VHS field to every
architectural register, every ROB entry, and to every
operand in the operand bypass network. We also add
single instances of VHSmem and VHSpc registers that
are updated during the commit stage.

By keeping the VHSs in the register file and the
ROB, instead of in separate structures, we avoid the
need for extra decoders and we allow DDFV to detect
errors in the wordline decoders of the register file
(because an error will cause the wrong history to be
read). Hardware necessary for maintaining the VHSs
includes additional SRAM cells, bitlines, and sense-
amps, but no new read or write ports, because VHSs
and data values in a ROB entry or register are always
accessed together.

Histories are processed analogously to the data val-
ues to which they belong. Input operand histories are
either read along with the data value during register

fetch or received over the bypass network before exe-
cution. An instruction’s new output history is com-
puted during the execute stage using the equations
from Section 4.1, and it is written to the ROB with the
instruction output during writeback. Finally, when an
ALU or load instruction commits, it updates its desti-
nation’s VHS in the register file. Treating the history
and data value as a unit makes an error in operand rout-
ing (e.g., incorrect renaming, scheduling, or bypassing)
change the VHS of the instruction(s) consuming the
operand and be detected. Stores and branches have no
target VHS entries in the register file to overwrite;
instead, they use the combmem and combpc functions to
update VHSmem or VHSpc.

5.2.2. DGS computation. At the end of every basic
block, the DGS must be computed from the VHSmem
and VHSpc registers and all the VHSreg values in the
register file. Computing the DGS by summarizing all
sinks at the end of every basic block would be difficult,
because it would require reading the VHSreg field from
every single register. Instead, we maintain an interme-
diate DGS that always represents the summary of the
current VHSreg values and is updated whenever one of
the registers is written during commit. Changes to
VHSmem and VHSpc are not immediately reflected in
the DGS, because the changes require read-modify-
write updates using the combining functions. Instead
they are XORed with the intermediate DGS at the end
of every basic block to obtain the final DGS.

To update the DGS whenever a VHSreg value is
updated, we must replace the register’s old history
(VHSreg#i) with its updated history (VHS’reg#i) in the
equation used to compute the DGS. The DGS is an
XOR over the hashed VHSreg values (see Section 5.1)
and allows for simple updating because of the special
properties of the XOR operator (commutative, associa-
tive, A ⊕ A = 0, and A ⊕ 0 = A). To replace
hashreg(VHSreg#i,i) with hashreg(VHS’reg#i,i), it is suf-
ficient to XOR the DGS with hashreg(VHSreg#i,i) ⊕
hashreg(VHS’reg#i,i). Because hashreg(VHSreg#i,i) was
already part of the DGS before the update and is
XORed in again, it occurs twice in the XOR expression
and the two occurrences cancel each other out.

Although the update itself is simple, it still requires
us to extend the instruction commit process from one
cycle to two cycles. In cycle one, we read the destina-
tion’s original VHSreg from the register file and hash it
with hashreg. In cycle two, we update the DGS using
the old and the new destination VHSreg, and we write
the updated destination VHSreg from the ROB to the
register file. This way of updating the DGS appears to
require an extra read port on the register file. Instead,

Figure 3. Example of DDFV detecting an error.
Mult reads r2 instead of r1 due to a transient fault.

System: 5 architectural registers, 4-bit DGS, 4-bit VHS.
Initial values: VHSreg#i = i, VHSmem = 0, VHSpc= 0, DGS = 0
Hashes: hashreg(VHSreg#i, i)=VHSreg#i;

hashhist(VHSin1,VHSin2,op)=1*VHSin1⊕2*VHSin2⊕id(op);
combpc(VHSpc,VHSbranch)=VHSpc+VHSbranch

Operation ids: id(add)=5, id(mult)=6, id(beq)=7

add r1, r2, r3 VHSr1 = 1*2 ⊕ 2*3 ⊕ 5 = 1
mult r4, r1, r3 VHSr4 = 1*1 ⊕ 2*3 ⊕ 6 = 1
beq r5, r1, PC+9 VHSbranch = 1*1 ⊕ 9 ⊕ 7 = 15
VHSpc = combpc(VHSpc,init,VHSbranch) = 0+15 = 15
DGS = hashreg(VHSr1,1) ⊕ ... ⊕ hashreg(VHSr5,5)

⊕ VHSmem ⊕ VHSpc
= 1 ⊕ 2 ⊕ 3 ⊕ 1 ⊕ 5 ⊕ 0 ⊕ 15 = 11

Correct Execution

add r1, r2, r3 VHSr1 = 1*2 ⊕ 2*3 ⊕ 5 = 1
mult r4, r2, r3 VHSr4 = 1*2 ⊕ 2*3 ⊕ 6 = 2
beq r5, r1, PC+9 VHSbranch = 1*1 ⊕ 9 ⊕ 7 = 15
VHSpc = combpc(VHSpc,init,VHSbranch) = 0+15 = 15
DGS = hashreg(VHSr1,1) ⊕ ... ⊕ hashreg(VHSr5,5)

⊕ VHSmem ⊕ VHSpc
= 1 ⊕ 2 ⊕ 3 ⊕ 2 ⊕ 5 ⊕ 0 ⊕ 15 = 8

Incorrect Execution N
ot

 E
qu

al
6

we can convert the write port used to update the regis-
ter values and histories into a two-cycle read-modify-
write port with less extra hardware.2

5.2.3. Resetting the DGS and VHSs. After each
basic block, we must reset the DGS and all VHSs to
their initial values because they now represent source
vertices in the dataflow graph. Resetting VHSmem,
VHSpc, and the DGS is straightforward, because they
are updated in-order at instruction commit, but reset-
ting the VHSreg values to their initial values is more
challenging. An instruction reading the output VHSreg
can belong to either the same basic block or a subse-
quent basic block. Instructions in the same basic block
expect the computed output history, but instructions in
later basic blocks expect the VHSreg to be reset to its
initial value. Due to reordering, instructions from the
same basic block can read the VHSreg before or after
instructions from subsequent basic blocks. Hence there
is no point in time when all VHSreg values can be reset.

Thus, in our implementation, we actually have two
VHS fields in each ROB entry. Only ALU and load
instructions use both fields to hold two values:
VHSreg,ex is the VHS of the destination register, as
computed during the execute stage, and VHSreg,init is
the initial VHS of the destination register (i.e., assum-
ing the register is a source vertex). Intuitively,
VHSreg,ex will be used by consumer instructions in the
same basic block, and VHSreg,init will be used by con-
sumers in future basic blocks. As only one value is pro-
vided for all future blocks, some errors that cause a
value to be forwarded to the wrong future block can go
undetected. This problem could be mitigated by
cycling through multiple sets of initial values, but this
solution would require one DGS to be embedded for
each set of initial values. In systems where the number
of inputs and thus VHSreg,init values is smaller than the
number of possible history values, VHSreg,init can be
replaced with a shorter VHSreg,seed used to compute or
look up the initial value.

Besides the two VHS fields, this resetting scheme
requires 3 control bits per ROB entry to determine if
the operation is the first writer of its destination regis-
ter within the current basic block (FirstWriterThisBB)
and if either input value is passed from the previous
basic block (IsInput[A/B]FromPrevBB). These three
bits are computed after decode (in rename or dispatch),
when operations are still in order and architectural reg-
isters are already known, using a bitmask of all regis-

ters that have not been used as destinations within the
current basic block.

These modifications affect DDFV’s operation as
described thus far. During register read, an instruction
uses the two IsInputXFromPrevBB bits to decide if it
should request, for each operand, the operand’s current
VHS value or initial VHS value. When an ALU or load
instruction completes, it writes its destination value
and both VHSreg,ex and VHSreg,init to its ROB entry. At
commit, an ALU or load instruction writes its destina-
tion value and VHSreg,ex into the register file. Also at
commit, an ALU or load instruction updates the DGS.
The instruction uses its FirstWriterThisBB bit to deter-
mine whether to replace VHSreg,ex or VHSreg,init from
the DGS before updating it.

5.3. Data Value Checking

As discussed earlier, the DGS only serves to verify
the correct shape of the dataflow graph. To fully check
correct dataflow, DDFV must further detect errors in
data values flowing between vertices in the graph (i.e.,
instructions). For this purpose, each VHS is accompa-
nied by a checksum (parity bit) of its corresponding
data value. The checksum is stored alongside the VHS
in the register file and ROB. When a new history is
computed, the data checksum for the inputs is checked
and a checksum for the output is computed.

5.4. Exceptions and Interrupts

Exceptions and interrupts violate our assumption
that we statically know the expected dataflow graph
between when a core enters execution of a basic block
and when it exits. There are at least two solutions for
adapting DDFV to handle exceptions and interrupts.
First, we could simply choose to not check signatures
of blocks that are not executed without interruption. If
exceptions and interrupts are sufficiently rare, the
impact on error detection coverage will be small. Sec-
ond, we could make DDFV state visible to the operat-
ing system, such that it can be saved and restored along
with other program state. The state that needs to be
saved is small (~200-400 bits depending on the config-
uration). Our preference is to add hardware support for
this second option but fall back to the first option for
DDFV-oblivious operating systems.

5.5. Implementation Cost and Complexity

DDFV requires additions to various structures (sum-
marized in Table 2) and slightly modifies the behavior
of multiple pipeline stages (shown in Table 3). Never-

2. We add an extra set of bitlines, sense amps, and wordlines driven
by the decoder of the write port to the SRAM cells storing the
VHSreg. We also add latches between the decoder outputs and the
original wordlines.
7

theless, neither the design nor the overall hardware cost
of DDFV is prohibitive because all added fields are
small and the required logic is simple. DDFV may
appear complex compared to replication, but it is
straightforward to add to an existing design. The big-
gest change—the addition of history fields to the ROB,
registers, and bypass network—requires widening of
existing structures and paths, but does not introduce
new structures or datapaths. The VHS computation
units are simple combinatorial circuits and identical
throughout the processor. The logic to compute the
DGS is a simple logic block in the commit stage.

The major area cost is incurred by the DGS FIFO as
well as adding the VHSs to the ROB and register file.
In sum these add roughly 0.2 mm2 to the processor
configuration in Table 4 implemented in 130nm, as
estimated using Cacti [13]. This does not include the
area for the wider bypass network and other data buses,
which is impossible to assess without an actual design.
The area cost of the logic for VHS updates, DGS com-
putation, and parity generation is negligible.

Although adding hardware always increases the
potential for hardware faults, errors in DDFV hardware

cannot impact program correctness. A transient error in
the DGS computation can only lead to false positives
(errors signalled despite correct execution) and unnec-
essary error recoveries. Permanent errors in the DDFV
logic could prevent forward progress by continuously
signalling errors, but this condition can be detected
using retry counters.

5.6. Other System Models

The implementation of DDFV needs to be adjusted
to accommodate features in some microarchitectures.
We discuss two such issues in this section.
Explicit Renaming. We have assumed a processor that
renames registers using the ROB instead of an explicit
map table. With explicit renaming, the register histo-
ries, VHSreg, are all stored in the register file and not in
the ROB. The FirstWriterThisBB, IsInputAFromPre-
vBB, and IsInputBFromPrevBB state bits remain in the
ROB. VHSmem, VHSpc, and DGS still only have one
instance each, do not participate in renaming, and are
updated during the commit stage.
Cracking of x86 instructions. Converting macro-ops
into micro-ops changes the shape of the dataflow
graph. We can overcome this problem by ensuring that
the output history for the macro-op dataflow graph
equals that of the micro-op dataflow graph. At a high
level, we must design the VHS update functions for the
micro-ops such that their composition is equal to the
VHS update function for their macro-op. We have
developed a matrix-based hashing scheme for this pur-
pose, and we describe it in Appendix A. Matrix-based
hashing logic requires similar area as CRC for an equal
number of VHS bits.

6. Evaluation

To evaluate our DDFV implementation, we need to
determine the impact of aliasing on DDFV’s error cov-
erage (Section 6.1) and the performance penalty
caused by the embedded DGS instructions
(Section 6.2). We use SimpleScalar [4] to simulate the
processor model described in Table 4. We sample from
the SPEC 2000 benchmark suite using SimPoints [26].

6.1. Error Coverage

There are two aspects to DDFV’s error coverage: the
chip area in which DDFV can potentially detect errors
and the number of errors that go undetected due to
aliasing. Simulation at the micro-architectural level is
not suited to evaluate the former aspect, but it does pro-
vide insights into the latter. Faults within DDFV’s cov-

Table 2. DDFV Hardware Additions
Component Hardware Additions
register
file

VHSreg,ex field and EDC bit in each register
Read-modify-write port to replace write-port

reorder
buffer

2 VHS fields (VHSreg,VHSreg,init/seed)
3 control bits per ROB entry
1 bit EDC (parity)

execution
units

Logic to compute updated DGS and VHSs
Logic to check and update EDC

back-end DGS register, VHSmem and VHSpc registers
FIFO for in-flight signatures
Comparator to check dynamic DGS
Lookup table for initial DGS and VHS values

Table 3. DDFV Pipeline Behavior Changes
Stage Behavior Modifications
fetch none
decode Put signatures from DGS instructions into FIFO
rename none
dispatch Compute 3 control bits in ROB entry.
reg. read Read VHSreg,ex or VHSreg,init for input registers.
execute Compute updated VHS for destination.

Check source EDC and compute new EDC.
complete If destination is register, write VHSreg,ex and

VHSreg,init into ROB entry.
commit Now 2-cycles instead of one cycle.

If destination is register, copy VHSreg,ex to reg-
ister file and update dynamic DGS.
If last instruction in basic block, finalize
dynamic DGS and compare static DGS in FIFO.
8

erage area manifest themselves as errors on the micro-
architectural level and the underlying physical fault is
irrelevant for aliasing.

To determine the impact of aliasing, we injected sin-
gle-bit errors (10000 per benchmark) and observed
whether DDFV detected them. The errors included:
errors in fetched instructions; incorrectly decoded reg-
ister numbers, opcodes, and immediates; errors in reg-
ister renaming; wrong register accessed during register
read; and wrong register updated in writeback or com-
mit. We did not include single-bit errors injected into
data values, because these are known to be detected
using EDC. Many of the injected errors have no effect
on correct program execution because of masking (e.g.,
faulty instruction squashed after misspeculation, error
in unused instruction bit, etc.). Masked errors (47% of
injected errors) are not considered in our results.

In Figure 4, we plot the fraction of injected errors not
detected as a function of the output history size in bits,
which is the same for VHSreg, VHSbranch, and VHSs-
tore. Whereas the width of these output histories deter-
mines the size of the VHS field added to every entry in

the register file and ROB, the width of the summary
histories (DGS, VHSmem, and VHSpc) only affects the
three registers added to store them and making them
wider is inexpensive. Thus the width of these histories
will be determined by the number of bits available for
the signature in the DGS instruction. We assume a 24-
bit signature in each DGS instruction (32-bit instruc-
tion minus 8-bit opcode). The results are aggregated
across all benchmarks, and they show that the fraction
of undetected errors decreases exponentially as the
number of history bits increases.

Assuming uniform fault-sensitivity across the chip,
DDFV’s FIT reduction is equal to coverage area multi-
plied by the error detection probability. Based on die
schematics of various processors—AMD K8 (see
Figure 1), MIPS R10000, Pentium 4, and Alpha 21264
(not shown)—we estimate DDFV’s coverage to be
around 35%-50% of the fault-sensitive core area. Thus,
FIT reduction is dominated by coverage area, as the
detection probability is over 99.5% even for 6-bit his-
tories. Estimates from die areas are not very accurate
and vulnerability is likely to be non-uniform, but the
estimates indicate that DDFV covers a significant por-
tion of the core. More accurate estimates would require
error injection experiments for a DDFV implementa-
tion in a circuit-level model of a commercial supersca-
lar processor, which is unobtainable outside industry.

6.2. Performance

DDFV can degrade performance because of the
embedded DGS instructions which consume fetch,
decode, and commit bandwidth as well as instruction
cache entries. DDFV also adds a cycle to commit,
which adds pressure to the ROB and LSQ. An indepen-
dent performance issue could arise from widening the
ROB and the register file if either one is critical to tim-
ing. However, access latency for these structures is
dominated by the (unmodified) word-line decoder,
rather than word width [3]. Thus, we do not consider
changes in clock cycle times in our experiments.

In Figure 5 we show the experimental results of
comparing the performances of a processor with
DDFV and an unprotected processor. We assume that
DGS instructions do not consume ROB entries (i.e.,
they are stored in a dedicated FIFO structure). The
results show that DDFV has limited effect on average
performance with a mean slowdown of 1.8% in
Figure 5, but it varies considerably between bench-
marks. Some benchmarks with large basic blocks expe-
rience no slowdown, whereas the slowdowns for
branch-heavy code with small basic blocks (e.g., gcc,
perl, and crafty) approach 5%. apsi experiences a neg-

Table 4. Processor Configuration
pipe depth 4 front-end stages, variable execute, 1

commit stage (2 with DDFV)
pipe width 4-wide decode/issue/commit
reorder buffer 128 entries
ld-st queue 32 entries
integer FUs 4 ALUs, 1 integer multiplier
fl. pt. FUs 4 FPUs, 1 FP multiplier
branch pred. GShare, 32Kbits, 15-bit history
L1I cache 32KB, 2-way, 2-cycle hit, 32B blocks
L1D cache 32KB, 4-way, 2-cycle hit, 32B blocks
L2 cache 1 MB, 8-way, 8-cycle hit, 64B blocks
memory 48 cycles latency until first 8-bytes,

55 cycles latency until last 8-bytes
VHS/DGS 10-bit VHS for insts and regs; 24-bit DGS,

VHSmem, and VHSpc; 5-bit VHSreg,seed;
DGS FIFO 64 entries

Figure 4. Fraction of undetected errors as a
function of VHSreg/store/branch size (in bits)

10E-7

10E-6

10E-5

10E-4

10E-3

10E-2

10E-1

Fr
ac

tio
n

of
 U

nd
et

ec
te

d
E

rr
or

s

16 bits

14 bits

12 bits

10 bits

8 bits

6 bits

4 bits
9

ligible speedup, because code rewriting leads to a
realignment that reduces conflict misses in the L1I. We
could potentially improve performance for branch-
heavy code by computing signatures over paths rather
than basic blocks [6].

Figure 6 shows the number of instructions fetched,
normalized to a processor without DDFV. The proces-
sor with DDFV fetches on average 8.5% more instruc-
tions from the L1I cache to obtain the embedded
signatures. DDFV’s slowdown (1.8%) is less than the
increase in the number of instructions fetched (8.5%),
because many benchmarks are either not limited by the
fetch stage at all or limited by the processor’s inability
to fetch across a taken branch (within a cycle) rather
than fetch width.

7. DDFV Usage Models

DDFV can be used on its own or in conjunction with
previously developed error detection schemes. By
itself, DDFV protects a large number of components at
very low cost. Some of the protected units, like the
instruction fetch queue and the RAT, are known to be
highly vulnerable to faults [20]. Unlike parity bits,
DDFV not only protects the data stored in these struc-
tures and latches, but also the associated access logic.

DDFV can be inexpensively combined with control
flow checking by changing the semantics of the DGS
instruction. If, instead of the signature for the current
block, it stores the signature for the successor block,

inter-block control flow will be checked implicitly.
Special considerations are necessary for conditional
branches (two successors) and indirect branches (suc-
cessor specified in register). Details are beyond the
scope of this paper.

DDFV can reduce the cost of DMR schemes by pro-
tecting the processor front-end without hardware repli-
cation or reduced performance. With DDFV protecting
the early pipeline stages, DIVA no longer has to repli-
cate them in the checker core. This is particularly help-
ful for processors with little speculation or difficult-to-
simplify fetch and decode logic. With DDFV and an
EDC-protected register file, DIVA no longer needs a
redundant register file.

DDFV can alleviate RMT’s pressure on the fetch and
decode stages, which are typically a bottleneck in SMT
and RMT processors [30]. As described by Kumar et
al. [16], performance overhead can be reduced by rep-
licating instructions after they have been fetched and
decoded. Kumar et al. propose to protect the pipeline
front-end using parity bits, which can protect storage
structures but not logic. With DDFV instead of parity,
we provide full protection of the instructions before
replication and detect permanent errors in rename,
scheduling, and writeback stages that elude RMT.

8. Conclusions

DDFV offers a high-performance, low-cost solution
for comprehensively detecting transient faults, perma-

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
un

tim
e

ammp
applu

apsi
art-110

art-470

bzip2-graphic

bzip2-program

crafty
eon-rushmeier

equake

facerec

gcc-166

gcc-200

gcc-expr

gcc-integrate

gcc-scilab

gzip-graphic

gzip-program

lucas
mcf

mesa
mgrid

parser
perlbmk-makerand

perlbmk-splitmail

sixtrack

swim
twolf

vortex2

vpr-route

wupwise

gmean

Figure 5. Runtime with DDFV relative to unprotected baseline processor.

0.8

1.0

1.2

N
or

m
al

iz
ed

 In
st

ru
ct

io
ns

 F
et

ch
ed

ammp
applu

apsi
art-110

art-470

bzip2-graphic

bzip2-program

crafty
eon-rushmeier

equake

facerec

gcc-166

gcc-200

gcc-expr

gcc-integrate

gcc-scilab

gzip-graphic

gzip-program

lucas
mcf

mesa
mgrid

parser
perlbmk-makerand

perlbmk-splitmail

sixtrack

swim
twolf

vortex2

vpr-route

wupwise

gmean

Figure 6. Instructions fetched with DDFV relative to unprotected baseline processor.
10

nent faults, and design bugs in a large fraction of the
microprocessor core. It is not a replacement for all
existing error detection mechanisms, but instead can be
used to provide inexpensive partial coverage or to
reduce the cost of full dynamic verification schemes
such as RMT or DIVA. Given the increasing need to
detect errors, we expect dynamic verification
approaches like DDFV to become increasingly attrac-
tive to architects. The comprehensive nature of
dynamic verification provides coverage for a large por-
tion of the processor rather than requiring low-level,
component-specific error detection mechanisms.
Beyond today’s superscalar processors, DDFV is also a
good fit for emerging architectures with distributed
computation such as TRIPS [21].
Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grants No. CCR-
0309164 and EIA-9972879, the National Aeronautics
and Space Administration under grant NNG04GQ06G,
an equipment donation from Intel Corporation, and a
Duke Warren Faculty Scholarship. We thank Alvy Leb-
eck, Chris Dwyer, Mike Bauer, Fred Bower, Curt Hart-
ing, Anita Lungu, Bogdan Romanescu, Amir Roth, and
David Wood, for helpful discussions about this work.

References
[1] Advanced Micro Devices. AMD Eighth-Generation

Processor Architecture. Advanced Micro Devices
Whitepaper, Oct 2001.

[2] Advanced Micro Devices. Revision Guide for AMD
Athlon64 and AMD Opteron Processors. Publication
25759, Revision 3.59, Sept. 2006.

[3] B. S. Amrutur and M. A. Horowitz. Fast Low-Power
Decoders for RAMs. IEEE Journal of Solid-State
Circuits, 36(10):1506–1515, Oct 2001.

[4] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling. IEEE
Computer, 35(2):59–67, Feb. 2002.

[5] T. M. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. In Proc. of the
32nd Annual Int’l Symp. on Microarchitecture, pp.
196–207, Nov. 1999.

[6] T. Ball and J. Larus. Using Paths to Measure, Explain,
and Enhance Program Behavior. IEEE Computer,
33(7):57–65, July 2000.

[7] X. Delord and G. Saucier. Formalizing Signature
Analysis for Control Flow Checking of Pipelined RISC
Microprocessors. In Proceedings of International Test
Conference, pp. 936–945, 1991.

[8] G. Hinton et al. The Microarchitecture of the Pentium 4
Processor. Intel Technology Journal, Feb. 2001.

[9] D. Hunt and P. Marinos. A General Purpose Cache-
Aided Rollback Error Recovery (CARER) Technique.
In Proceedings of the 17th International Symposium on

Fault-Tolerant Computing Systems, pp. 170–175, 1987.
[10] T. I. Inc. TMS320C54x DSP Reference Set, Mar. 2001.
[11] Intel Corporation. Intel Pentium 4 Processor

Specification Update. Document Number 249199-065,
June 2006.

[12] International Technology Roadmap for
Semiconductors, 2003.

[13] N. P. Jouppi and S. J. Wilton. An Enhanced Access and
Cycle Time Model for On-Chip Caches. DEC WRL
Research Report 93/5, July 1994.

[14] S. Kim and A. K. Somani. On-Line Integrity
Monitoring of Microprocessor Control Logic. In Proc.
of the Int’l Conf. on Computer Design, pp. 314–319,
Sept. 2001.

[15] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way Multithreaded SPARC Processor. IEEE
Micro, 25(2):21–29, Mar/Apr 2005.

[16] S. Kumar and A. Aggarwal. Self-checking Instructions:
Reducing Instruction Redundancy for Concurrent Error
Detection. In Int’l Conference on Parallel Architectures
and Compilation Techniques, pp. 64–73, Sept. 2006.

[17] J. R. Larus and E. Schnarr. EEL: Machine-Independent
Executable Editing. In Proceedings of the SIGPLAN
1995 Conference on Programming Language Design
and Implementation, pp. 291–300, June 1995.

[18] C. McNairy and D. Soltis. Itanium 2 Processor
Microarchitecture. IEEE Micro, 23(2):44–55, Mar/Apr
2003.

[19] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt.
Detailed Design and Implementation of Redundant
Multithreading Alternatives. In 29th Annual Int’l Symp.
on Computer Architecture, pp. 99–110, May 2002.

[20] S. S. Mukherjee et al. A Systematic Methodology to
Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor. In Proc. of the 36th
Annual Int’l Symp. on Microarchitecture, Dec. 2003.

[21] R. Nagarajan et al. A Design Space Evaluation of Grid
Processor Architectures. In Proc. 34rd Annual Int’l
Symp. on Microarchitecture, pp. 40–51, Dec. 2001.

[22] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error
Detection by Duplicated Instructions in Super-Scalar
Processors. IEEE Transactions on Reliability,
51(1):63–74, Mar. 2002.

[23] S. K. Reinhardt and S. S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading. In Proc.
27th Annual Int’l Symp. on Computer Architecture, pp.
25–36, June 2000.

[24] G. A. Reis et al. SWIFT: Software Implemented Fault
Tolerance. In Proc. of the Int’l Symp. on Code
Generation and Optimization, pp. 243–254, Mar. 2005.

[25] E. Rotenberg. AR-SMT: A Microarchitectural
Approach to Fault Tolerance in Microprocessors. In
Proc. 29th Int’l Symp. on Fault-Tolerant Computing
Systems, pp. 84–91, June 1999.

[26] T. Sherwood et al. Automatically Characterizing Large
Scale Program Behavior. In Proc. of the Tenth Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[27] P. Shivakumar et al. Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic.
In Proceedings of the International Conference on
11

Dependable Systems and Networks, June 2002.
[28] S. Shyam et al. Ultra Low-Cost Defect Protection for

Microprocessor Pipelines. In Proc. of the Twelfth Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[29] J. Srinivasan et al. The Impact of Technology Scaling
on Lifetime Reliability. In Proc. of the Int’l Conference
on Dependable Systems and Networks, June 2004.

[30] D. M. Tullsen et al. Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In Proceedings of the 23rd
Annual International Symposium on Computer
Architecture, pp. 191–202, May 1996.

[31] N. J. Warter and W.-M. W. Hwu. A Software Based
Approach to Achieving Optimal Performance for
Signature Control Flow Checking. In Proc. 20th Int’l
Symp. on Fault-Tolerant Computing Systems, pp. 442–
449, June 1990.

[32] C. Weaver and T. Austin. A Fault Tolerant Approach to
Microprocessor Design. In Int’l Conf. on Dependable
Systems and Networks, pp. 411–420, July 2001.

Appendix A: Handling Micro-Ops
We can adapt DDFV to processors that break instruc-

tions into micro-ops before execution. Such processors
(e.g., AMD Athlon [1] and Intel Pentium 4 [8]) are a
particularly interesting target for DDFV because they
are expensive to replicate and cannot easily be simpli-
fied to fit into a DIVA-like scheme. The conversion
into micro-ops changes the shape of the dataflow graph
as some of the original nodes (macro-ops) are replaced
by a sub-graph (micro-ops) that differs between ven-
dors and processor generations.

Figure 7 illustrates different implementations of the
same CISC add instruction, which exhibits two fea-
tures found in many CISC ISAs: memory operands and
complex addressing modes. To make DDFV portable
across all implementations without changing the static
signatures, the output histories of all dataflow graphs
must be identical. In the native CISC implementation,
the output VHS is a simple hash of the operation and

inputs. In the micro-op case, the resulting history is a
hash over hashes from earlier micro-ops. One way to
enforce that the final output histories are equal is to use
matrix multiplications as hash functions. In this
scheme, each operation (micro-op or macro-op) is
assigned a unique representative matrix that has one
row for each output of the operation and one column
for each input plus an additional column to avoid map-
ping zero-vectors to zeroes (e.g., an addition would be
represented by a 1x3 matrix). Output history values are
computed by multiplying the representative matrix
with an input history vector containing all input history
values and a constant one (see Figure 8).

The easiest way to develop representative matrices
for macro-ops is bottom-up. The macro-ops are first
split into the smallest possible set of tasks (even if the
micro-ops used in the implementation perform multi-
ple of these tasks). Next all the tasks are assigned rep-
resentative matrices. The macro-op matrix as well as
the matrices for the micro-ops are derived from the
task matrices by computing output histories symboli-
cally. Representative matrices can also be developed
top-down (i.e., starting with a macro-op matrix) if tasks
become smaller than anticipated.

The simplistic example in Figure 8 uses modulo-10
arithmetic, but such matrix multiplications would be
prohibitively expensive. Instead we interpret the input
and output histories as bit vectors rather than numerical
values and multiply them with binary matrices, which
is inexpensive as +=xor and *=and. This scheme works
only for simple macro-ops that break into a constant
number of micro-ops. Uncommon, more complex
macro-ops emit pseudo-histories for their outputs upon
completion.

Figure 7. Various implementations of a CISC
instruction

Native CISC (2-operand format)
add rC, MEM[rA+rB<<i] VHSrC ⇐ [1,2,6,4,5] × [2,5,6,2,1]T = 1
RISC-style μ-ops w/ special address op
adr tmp, [rA+rB<<i] VHStmp⇐ [1,8,2,7] × [5,6,2,1]T = 4
ld tmp, [tmp] VHStmp⇐ [8,6] × [4,1]T = 8

add rC, tmp, rC VHSrC⇐ [4,1,7] × [8,2,1]T = 1
RISC-style μ-ops
shl tmp, rB, imm VHStmp⇐ [2,3,5] × [6,2,1]T = 3
add tmp, tmp, rA VHStmp⇐ [4,1,7] × [3,5,1]T = 4
ld tmp, [tmp] VHStmp⇐ [8,6] × [4,1]T = 8

add rC, tmp, rC VHSrC⇐ [4,1,7] × [8,2,1]T = 1
Figure 8. Example of VHS computation for μ-ops.
Initial histories rA=5, rB=6, rC=2, i(mmediate)=2. All
operations performed in modulo-10 arithmetic.
Left multiplicands are representative matrices (e.g. [4,1,7]
= add regs), the right ones are input history vectors.
12

	Error Detection Using Dynamic Dataflow Verification
	Abstract
	1. Introduction
	2. Related Work
	EDC
	Temporal Redundancy
	Structural redundancy
	BIST
	Control flow checking
	Summary

	3. System Model and Fault Model
	System Model
	Error Model

	4. High-Level Overview of DDFV
	4.1. Dataflow Graph Representation
	4.2. Providing Static DGSs to Hardware
	4.3. Runtime Operation

	5. Implementation Details
	5.1. Signature Computation Functions
	Instruction Output VHSs
	Sink VHSs
	DGS

	5.2. Dynamic DGS Computation
	5.2.1. VHS computation
	5.2.2. DGS computation
	5.2.3. Resetting the DGS and VHSs

	5.3. Data Value Checking
	5.4. Exceptions and Interrupts
	5.5. Implementation Cost and Complexity
	5.6. Other System Models
	Explicit Renaming
	Cracking of x86 instructions

	6. Evaluation
	6.1. Error Coverage
	6.2. Performance

	7. DDFV Usage Models
	8. Conclusions
	References
	Appendix A: Handling Micro-Ops

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

