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Abstract
A significant fraction of the circuitry in a modern 

processor is dedicated to converting the linear instruc-
tion stream into a representation that allows the execu-
tion of instructions in data dependence order, rather 
than program order, to extract instruction level paral-
lelism. All errors caused by hardware faults in this cir-
cuitry—which includes the fetch and decode stages, 
renaming and scheduling logic, as well as the commit 
stage—will manifest themselves as incorrectly con-
structed dataflow graphs. 

Dynamic Dataflow Verification (DDFV) compares 
the dynamically constructed and executed dataflow 
graph to the expected dataflow graph of the static pro-
gram binary, represented by a signature embedded in 
the instruction stream. The signature comparison 
enables comprehensive detection of transient errors, 
permanent errors, and design bugs in the dataflow cir-
cuitry. We show that DDFV detects errors with high 
probability, at a low hardware and performance cost.

1.  Introduction

As CMOS technology continues to scale, it becomes 
more susceptible to errors due to transient and perma-
nent hardware faults [29, 12]. In this work we contrib-
ute an inexpensive mechanism for detecting errors in 
parts of the processor that previously required hard-
ware replication or temporal redundancy for error 
detection. Our error detection scheme can be used for 
low-cost protection of a significant fraction of the core 
area or to reduce the area and performance costs of 
other previously proposed schemes. We focus on error 
detection and do not investigate the orthogonal prob-
lem of error recovery, which has been researched 
extensively in prior work (e.g., [9]). 

The mechanism presented in this paper, dynamic 
dataflow verification (DDFV), detects hardware errors 
by verifying at runtime that the dataflow graph speci-
fied by the program is the same as the dataflow graph 
being reconstructed and executed by the processor. 

Because the process of dynamically reconstructing the 
dataflow graph involves so many of the superscalar 
processor’s components—including the logic for fetch, 
decode, register rename, register read, writeback, and 
commit—DDFV can detect errors in a large fraction of 
the units within the core (illustrated in Figure 1). Fur-
themore, DDFV will inherently detect faults in the 
instruction cache logic and I-TLB, including errors in 
cache decoders and tag comparators that are not cov-
ered by error detecting codes, because errors in fetched 
instructions also alter the dynamic dataflow graph. 

DDFV provides error detection by dynamically veri-
fying a high-level invariant that an error-free system is 
guaranteed to maintain, rather than by adding low-level 
error detection in individual circuits. This high-level 
approach avoids coverage holes and leaves the design 
of lower-level components unchanged.

The following section (Section 2) discusses prior 
work in error detection and how it compares to DDFV. 
Section 3 specifies the system model and error model 
that we assume throughout the high-level overview of 
DDFV (Section 4), the discussion of its implementa-
tion details (Section 5), and the evaluation of DDFV’s 
error coverage and performance impact (Section 6). 

Figure 1. DDFV coverage area in an AMD K8
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Finally, we describe how our proposed technique can 
be combined with other techniques to provide low-cost 
error detection for different systems (Section 7), and 
we draw conclusions about this work (Section 8). 

2.  Related Work

DDFV detects errors due to transient and permanent 
faults, as well as many design bugs, that cause the data-
flow in the executed program to diverge from the cor-
rect dataflow specified in the binary. Prior schemes that 
cover the same space as DDFV use error detecting 
codes (EDC), temporal redundancy (re-execution), 
structural redundancy, built-in self-test (BIST), or con-
trol flow checking.
EDC. EDC is efficient for detecting errors in data val-
ues, particularly in storage and communication, and it 
is complementary to DDFV. In fact, our implementa-
tion of DDFV uses EDC to detect errors in the values
in the dataflow graph (in the register file, ROB, and 
bypass network). The rest of our DDFV implementa-
tion detects errors in the shape of the dataflow graph.

EDC, by itself, has often been considered sufficient 
for non-safety-critical processors, because storage has 
been more susceptible to errors than logic. Researchers 
project, however, that logic errors will become more 
prominent [27]. 
Temporal Redundancy. A popular variant of temporal 
redundancy is redundant multithreading (RMT) [25, 
23, 19], which detects transient errors by comparing 
the results of redundant threads. Permanent faults can 
be detected only in units that are replicated such that 
the two threads can use different copies. This is not 
typically the case for the front-end components and 
rename logic covered by DDFV. A detailed analysis of 
an RMT scheme showed that its performance degrada-
tion was about 30% [19]. RMT also incurs a significant 
increase in energy consumption, but the hardware costs 
of enabling RMT in a multithreaded processor are low. 
Another approach to temporal redundancy is software-
based replication of instructions [22, 24]. These 
schemes detect transient errors but cannot detect errors 
due to permanent faults in many components. Software 
is cheap and flexible, but comes at the cost of a 50% 
slowdown [24] and high energy consumption. 
Structural redundancy. Dual modular redundancy 
(DMR) and other structural redundancy schemes detect 
virtually 100% of all possible errors by running all 
operations on two copies of a component and compar-
ing the results. Replication can be performed at differ-
ent granularities (units vs. cores), but always comes at 
a considerable hardware cost.

DIVA is a heterogeneous DMR scheme [5,32] that 
uses a simplified, yet functionally identical, core for 
checking. This heterogeneous design reduces the hard-
ware cost, as compared to homogeneous DMR, with-
out sacrificing error coverage. Heterogeneous DMR is 
well-suited for large speculative RISC machines, such 
as the Alpha 21264, where it incurs virtually no slow-
down and only 6% area overhead for the checker core 
[32]. However, it is less efficient for processors that 
utilize little speculation and simple dependency track-
ing—e.g., VLIW (Itanium [18]), SMT (Ultrasparc T1
[15]), DSPs (TI CMS320C54x [10])—because the 
complexity gap between the primary and checker cores 
is much smaller. DIVA is also less suitable for units 
that are inherently complicated and hard to simplify,
such as fetch and decode on CISC machines, especially 
modern ones that crack instructions into micro-ops
(like the AMD K8 [1] and Intel Pentium4 [8]). DDFV 
does not have these problems, because its cost is 
mostly independent of the complexity of the verified 
hardware and lower than even a simple replicated unit.
BIST. BIST has long been used to detect defects dur-
ing start-up. Recently BIST has also been used in the 
BulletProof pipeline [28] for runtime detection of per-
manent faults. BulletProof detects and diagnoses 89% 
of the possible permanent faults in a VLIW processor 
model at the cost of 5.8% extra hardware and with neg-
ligible performance impact. However, it offers no pro-
tection from transient faults.
Control flow checking. Control flow checkers [7, 14, 
31] dynamically verify that a program is following a 
legal path of execution. Some checkers [31] only verify 
inter-block control-flow, and are thus complementary 
to DDFV, which implicitly checks intra-block control-
flow. Other control flow checkers also check decode 
signals generated during execution [7,14] and are 
closer in nature to DDFV as they also capture faulty 
instruction decoding and thus provide overlapping 
functionality. However, all of the latter schemes target 
strictly in-order processors and do not address errors in 
propagating instruction results or instruction schedul-
ing. Control flow checkers have negligible hardware 
cost and low performance impact. 
Summary. Most of these prior mechanisms at least 
partially overlap with DDFV and most exhibit weak-
nesses that can be mitigated by combining them with 
DDFV (see Table 1 for a summary). We discuss some 
attractive possible combinations in Section 7.

3.  System Model and Fault Model

DDFV verifies that the execution matches an 
abstract model, rather than checking the correct opera-
2



tion of any specific component, and it is therefore not 
tied to a specific architecture or error model. Neverthe-
less the details of our DDFV implementation and its 
error detection capabilities depend on the targeted sys-
tem and error model. 
System Model. We target superscalar, dynamically 
scheduled processors, such as the Intel Pentium4 [8], 
AMD K8 [1], etc. The focus on superscalar processors 
is not rooted in a fundamental limitation of DDFV, 
which can be applied to other types of processors, but 
reflects the dominant architecture. DDFV is strictly 
limited to dataflow within a single thread of execution 
and is therefore oblivious to the presence of multiple 
cores or thread contexts. 
Error Model. We consider errors due to transient and 
permanent hardware faults (stuck-at-0 and stuck-at-1) 
in all structures in the microprocessor core. By com-
paring hardware operation to an abstract model of cor-
rect behavior, dynamic verification schemes can also 
detect many design bugs1, which cause hardware to 
behave incorrectly despite the absence of physical 

errors. Schemes that use identical hardware for execu-
tion and verification (such as RMT and standard DMR) 
and schemes that verify hardware implementations 
rather than abstract behavior (such as BIST and Bullet-
Proof) cannot detect design bugs. Recent microproces-
sors from Intel and AMD have been shipped with 
dozens of design bugs [2, 11], and online mechanisms 
to uncover them can be a valuable tool in processor 
development and verification. 

4.  High-Level Overview of DDFV

The basic idea behind DDFV is to periodically com-
pare the static dataflow graph in the program binary to 
the actual dataflow in the processor during execution. 
To implement this idea we need three things: an effi-
cient representation of a dataflow graph that can be 
easily compared, a way to statically compute this rep-

Table 1. Error Detection Coverage Comparison. Entries in the table represent detection for T(ransient), 
P(ermanent), and D(esign) errors. Shaded entries correspond to no significant error detection coverage

Component/Activity DDFV 

control flow 
checking  
[7, 14]

DMR, 
DIVA 
[5,32]

redundant 
multi-
threading [19]

software 
redundancy 
[24]

BIST, 
Bullet-
Proof [28]

Fr
on

te
nd fetch logic T, P, D T, P, D T, P, D T T P

decode logic T, P, D (T, P, D)a

a. Only if control flow checksum is computed over control signals emitted by instruction decoder (e.g. [14]). All such pro-
posed schemes have only considered in-order cores.

T, P, D T T P
reg. rename/read logic T, P, D T, P, D T, P T, P P

Sc
he

du
lin

g reorder buffer T, P, D T, P, D T, P T, P P
reservation stations T, P, D T, P, D T, P T, P P
load-store queue T, P, D T, P T, P P

Ex
ec

ut
io

n

ALUs T, P, D T, Pb

b. Can detect permanent faults if original and redundant instruction use different instances of this resource.

T, Pb P
FPUs (T, P, D)c

c. Not detected by proposed DIVA implementations, but could be detected with straightforward extensions.

T, Pb T, Pb P
multiplier and divider T, P, D T, Pb T, Pb P
branch units (T, P, D)d

d. Only if incorrect branch target or corrupted PC is not at beginning of basic block. Does not guarantee legal path.

(T, P, D)e

e. Only if incorrect branch target or corrupted PC is not on a legal path. Cannot detect incorrect branch decision.

T, P, D T, Pb T, Pb P
load-store unit T, P, D T, Pb T, Pb P

Ba
ck

en
d PC update logic (T, P, D)d (T, P, D)e T, P, D T, Pb T, Pb P

register file write logic T, P, D T, P, D T, P T, P P

C
os

t area low very low low-high very low none low
performance low low low medium-high high none-low
power low very low low-high medium medium low

1.  We cannot quantify the coverage of design bugs, because there is 
an unbounded number of possible design bugs.
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resentation and attach it to the program, and a mecha-
nism to track dataflow between the instructions 
dynamically executed in the processor. 

4.1.  Dataflow Graph Representation

The full dataflow graph (DFG) of a program is not 
known at compile time, because it depends on dynami-
cally computed branches. To still be able to compare 
the entire program execution to a dataflow graph stati-
cally embedded in the program binary, DDFV parti-
tions the program into blocks of code that have 
statically known dataflow graphs, such as the simple 
example in Figure 2. After each block completes, 
DDFV verifies that the dataflow graph was executed 
correctly and moves on to verify the next block. 

The dataflow 
graph for a 
block of code 
has two types 
of vertices that 
do not repre-
sent instruc-
tions. Sources
represent the 
state at the 
beginning of 
the block (no 

incoming edges) and sinks represent the state at the end 
of the block (no outgoing edges). One source and one 
sink exist for every register. Two special sinks exist for 
the PC and memory. The sink for the PC is required
because otherwise an error in a branch or jump (e.g., 
“bnez r1, target” being decoded as “bnez r3, 
target”) would have no impact on the dataflow graph 
and would thus be undetectable. The sink for memory 
is required to capture the effects of stores, and the out-
put edges of all stores in a block flow into this memory 
sink. We maintain only a single sink for all of memory, 
because it is infeasible to maintain a separate sink for 
every possible location in memory, and dataflow in 
memory cannot be statically determined. Because of 
this simplification, DDFV will only ensure that store 
values reach memory correctly, but not that subsequent 
loads to that address will read the value written by the 
most recent store.

When a block is executed, data values flow along the 
edges from the sources to the sinks. Every value flow-
ing out of a vertex has a unique history of vertices 
involved in its creation. We refer to the set of histories 
flowing into a vertex as the input history of the vertex, 
and we refer to the history of values flowing out of a 
vertex as the vertex’s output history. A vertex’s output 

history is defined recursively as a combination of the 
histories of the inputs to that vertex and information 
about the vertex (instruction type, immediates, etc.). 
The size of a vertex’s input or output history depends 
on the length of the dependency path and is 
unbounded, which complicates storage and computa-
tion. To overcome this problem, DDFV uses a fixed-
size checksum of the vertex’s history, called the vertex 
history signature (VHS), instead of the full history. A 
checksum over the input histories of all sink vertices 
(i.e., histories of values flowing into sinks) represents 
the block’s full dataflow graph and is called the data-
flow graph signature (DGS). 

The functions that compute the output VHS of each 
vertex differ slightly for each vertex type, as we dis-
cuss in Section 5.1. The output history for each source 
is a constant, referred to as the initial history, that is 
unique to the source. When choosing the actual hash 
functions for computing the DGS and the VHSs, we 
must ensure that they are simple to implement in hard-
ware and that they minimize the probability of aliasing
(i.e., two different dataflow histories mapping to the 
same signature). However, with finite-sized signatures, 
there is always a non-zero probability of aliasing and 
thus false negatives (undetected errors). Therefore, 
DDFV can detect all errors within its coverage area, 
but only with a certain probability dependent on the 
number of bits in the signatures. 

4.2.  Providing Static DGSs to Hardware

Before a program is executed, we must identify code 
blocks with static dataflow graphs, compute the DGS 
for each such block, and store the DGSs in a way that 
makes it easy to locate and retrieve them at runtime. In 
this paper, we compute a DGS for every basic block.
We have written a binary analysis/rewriting tool that 
identifies basic blocks using symbol and relocation 
information in the binary. For each basic block, the 
dataflow graph is reconstructed to compute the VHSs 
for all sinks and the DGS. This step could alternatively 
be performed by the compiler backend or the JIT com-
piler in dynamically compiling virtual machines.

Once the DGSs for all blocks are known, they have 
to be made accessible to the processor at runtime. To 
avoid the necessity of an additional storage structure, 
we embed the static DGS value in the program binary 
by making the first instruction of every basic block a 
DGS instruction that contains the signature in its 
immediate field. To implement the DGS instruction, 
we define a new opcode and modify the decoder to rec-
ognize it and extract the signature. This process of 

Figure 2. Partitioned DFG

add r1, r2, r3 
mult r4, r1, r3 
beq r5, r1, PC+9
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embedding instructions in a binary is similar to that 
used in prior work [17].

4.3.  Runtime Operation

At runtime, DDFV hardware computes the DGS of 
each basic block it executes by computing output histo-
ries for all instructions executed and tracking input his-
tories for all registers, PC, and memory. We discuss the 
details of our particular implementation in Section 5.2.

As described in Section 4.2, the static DGS for every 
block is embedded in the program code as a special 
DGS instruction. Beside providing the actual signature, 
the DGS instruction also lets the processor know when 
to compare the static and dynamic DGS and reset the 
(dynamic) DGS and VHSs. When a DGS instruction is 
ready to commit, all instructions in the previous block 
must have already committed and updated the DGS 
register. Therefore the DGS register reflects the final 
signature of the previous block. At this point, the 
dynamically computed DGS is compared to the static 
DGS in the previous DGS instruction. 

Like other instructions, DGS instructions can be 
squashed in case of branch mis-prediction and need to 
be tracked while speculative. There are two design 
options that we considered for tracking in-flight DGS 
instructions: we can either dispatch them to the ROB or 
into a separate FIFO that is dedicated to DGS instruc-
tions. Unlike ROB entries for instructions with output 
values that are often read multiple times by later 
instructions, entries for DGS instructions are only read 
during the commit stage. Therefore they can easily be 
stored in a separate DGS instruction FIFO, which does 
not require multiple read ports and is narrower than the 
ROB, because each entry only needs to be as wide as a 
DGS. We assume a separate FIFO in our implementa-
tion, because it reduces pressure on the ROB and there-
fore minimizes DDFV’s performance impact. 

5.  Implementation Details

In this section, we provide the details of our DDFV 
implementation. 

5.1.  Signature Computation Functions

There are two types of dataflow graph vertices for 
which we compute a VHS: instruction outputs and 
sinks. We also compute the DGS for each basic block.
Instruction Output VHSs. The VHS of an instruc-
tion output, VHSinst, depends on the type of instruc-
tion. In general, VHSinst is computed as a hash of the 
VHSs of its inputs, the immediate operand (if any), and 

an identifier of the operation performed. We use CRC 
as the hash function. 
Sink VHSs. There are three types of sinks: registers, 
PC, and memory. The VHS of a sink refers to the sink’s 
input history, unlike the VHS of an instruction (which 
refers to the instruction’s output history). 

The VHS of a register sink, VHSreg, is simply the 
VHS of the last instruction output to write that register. 

The VHS of the PC sink, VHSpc, is updated after 
every branch instruction. In this work, there is only one 
branch per dataflow graph but, in general, the PC sink 
history can be determined by multiple input histories
(if the DGS is computed over multiple basic blocks). In 
the case of multiple branches, DDFV uses a combining 
function, combpc, to summarize them. For ease of 
implementation, we require that VHSpc can be com-
puted incrementally. In our implementation, the com-
bining function is base-1 addition. 

VHSpc,new = combpc(VHSpc,old, VHSinst,branch)
The history for the memory sink, VHSmem, is com-

puted using a combining function, combmem, that sum-
marizes all of the store output histories. As with 
VHSpc, we use base-1 addition for this combining 
function. VHSmem is seeded with a constant initial 
value at the beginning of each block, and it is updated 
whenever a new store commits. VHSmem covers the 
entire memory and can verify dataflow from registers 
to memory, but it cannot verify that stored data reaches 
future loads correctly.

VHSmem,new = combmem(VHSmem,old, VHSinst,store)
DGS. The DGS is computed by hashing together all of 
the sink VHSs with XOR. To avoid two identical incor-
rect histories cancelling each other out and to detect 
register sinks with swapped histories (despite using the 
commutative XOR function), we first hash each 
VHSreg using a function that depends on the register 
number. This hash function is a table-driven permuta-
tion function. 

DGS = hashreg(1,VHSreg1) ⊕ ... ⊕ 
hashreg(N,VHSregN) ⊕ VHSmem ⊕ VHSpc

Figure 3 illustrates an example of DDFV detecting 
an error in the same basic block as shown in Figure 2. 
For clarity, we simplified the system in several ways. It 
has only 5 registers, the DGS and VHSs are 4-bits 
long, and hash functions and initial values for the DGS 
and VHSs are simplistic.

5.2.  Dynamic DGS Computation

As the processor is executing, it must track the histo-
ries of values produced by the instructions (i.e., vertex 
5



input and output histories in the dataflow graph) so it 
can compute the DGS for comparison with the signa-
tures contained in the static binary. Initial signature 
values are held in a ROM. Throughout the section we 
assume PentiumPro-style, implicit register renaming 
(i.e., in-flight operands are tagged with ROB entry 
numbers). We discuss other system models in 
Section 5.6. 

5.2.1.  VHS computation. The VHSs propagate 
through the processor along with the values produced 
by instructions. Thus, we add a VHS field to every 
architectural register, every ROB entry, and to every 
operand in the operand bypass network. We also add 
single instances of VHSmem and VHSpc registers that 
are updated during the commit stage. 

By keeping the VHSs in the register file and the 
ROB, instead of in separate structures, we avoid the 
need for extra decoders and we allow DDFV to detect 
errors in the wordline decoders of the register file 
(because an error will cause the wrong history to be 
read). Hardware necessary for maintaining the VHSs 
includes additional SRAM cells, bitlines, and sense-
amps, but no new read or write ports, because VHSs 
and data values in a ROB entry or register are always 
accessed together.

Histories are processed analogously to the data val-
ues to which they belong. Input operand histories are 
either read along with the data value during register 

fetch or received over the bypass network before exe-
cution. An instruction’s new output history is com-
puted during the execute stage using the equations 
from Section 4.1, and it is written to the ROB with the 
instruction output during writeback. Finally, when an 
ALU or load instruction commits, it updates its desti-
nation’s VHS in the register file. Treating the history 
and data value as a unit makes an error in operand rout-
ing (e.g., incorrect renaming, scheduling, or bypassing) 
change the VHS of the instruction(s) consuming the 
operand and be detected. Stores and branches have no 
target VHS entries in the register file to overwrite; 
instead, they use the combmem and combpc functions to 
update VHSmem or VHSpc.

5.2.2.  DGS computation. At the end of every basic 
block, the DGS must be computed from the VHSmem
and VHSpc registers and all the VHSreg values in the 
register file. Computing the DGS by summarizing all 
sinks at the end of every basic block would be difficult, 
because it would require reading the VHSreg field from 
every single register. Instead, we maintain an interme-
diate DGS that always represents the summary of the 
current VHSreg values and is updated whenever one of 
the registers is written during commit. Changes to 
VHSmem and VHSpc are not immediately reflected in 
the DGS, because the changes require read-modify-
write updates using the combining functions. Instead 
they are XORed with the intermediate DGS at the end 
of every basic block to obtain the final DGS.

To update the DGS whenever a VHSreg value is 
updated, we must replace the register’s old history 
(VHSreg#i) with its updated history (VHS’reg#i) in the 
equation used to compute the DGS. The DGS is an 
XOR over the hashed VHSreg values (see Section 5.1) 
and allows for simple updating because of the special 
properties of the XOR operator (commutative, associa-
tive, A ⊕ A = 0, and A ⊕ 0 = A). To replace 
hashreg(VHSreg#i,i) with hashreg(VHS’reg#i,i), it is suf-
ficient to XOR the DGS with hashreg(VHSreg#i,i) ⊕ 
hashreg(VHS’reg#i,i). Because hashreg(VHSreg#i,i) was 
already part of the DGS before the update and is 
XORed in again, it occurs twice in the XOR expression 
and the two occurrences cancel each other out.

Although the update itself is simple, it still requires 
us to extend the instruction commit process from one 
cycle to two cycles. In cycle one, we read the destina-
tion’s original VHSreg from the register file and hash it 
with hashreg. In cycle two, we update the DGS using 
the old and the new destination VHSreg, and we write 
the updated destination VHSreg from the ROB to the 
register file. This way of updating the DGS appears to 
require an extra read port on the register file. Instead, 

Figure 3. Example of DDFV detecting an error. 
Mult reads r2 instead of r1 due to a transient fault.

System: 5 architectural registers, 4-bit DGS, 4-bit VHS. 
Initial values: VHSreg#i = i, VHSmem = 0, VHSpc= 0, DGS = 0 
Hashes: hashreg(VHSreg#i, i)=VHSreg#i; 

hashhist(VHSin1,VHSin2,op)=1*VHSin1⊕2*VHSin2⊕id(op);  
combpc(VHSpc,VHSbranch)=VHSpc+VHSbranch

Operation ids: id(add)=5, id(mult)=6, id(beq)=7

add r1, r2, r3 VHSr1 = 1*2 ⊕ 2*3 ⊕ 5 = 1 
mult r4, r1, r3 VHSr4 = 1*1 ⊕ 2*3 ⊕ 6 = 1 
beq r5, r1, PC+9 VHSbranch = 1*1 ⊕ 9 ⊕ 7 = 15
VHSpc = combpc(VHSpc,init,VHSbranch) = 0+15 = 15 
DGS = hashreg(VHSr1,1) ⊕ ... ⊕ hashreg(VHSr5,5)  

⊕ VHSmem ⊕ VHSpc 
= 1 ⊕ 2 ⊕ 3 ⊕ 1 ⊕ 5 ⊕ 0 ⊕ 15 = 11

Correct Execution

add r1, r2, r3 VHSr1 = 1*2 ⊕ 2*3 ⊕ 5 = 1 
mult r4, r2, r3 VHSr4 = 1*2 ⊕ 2*3 ⊕ 6 = 2 
beq r5, r1, PC+9 VHSbranch = 1*1 ⊕ 9 ⊕ 7 = 15
VHSpc = combpc(VHSpc,init,VHSbranch) = 0+15 = 15 
DGS = hashreg(VHSr1,1) ⊕ ... ⊕ hashreg(VHSr5,5)  

⊕ VHSmem ⊕ VHSpc 
= 1 ⊕ 2 ⊕ 3 ⊕ 2 ⊕ 5 ⊕ 0 ⊕ 15 = 8

Incorrect Execution N
ot

 E
qu

al
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we can convert the write port used to update the regis-
ter values and histories into a two-cycle read-modify-
write port with less extra hardware.2 

5.2.3.  Resetting the DGS and VHSs. After each 
basic block, we must reset the DGS and all VHSs to 
their initial values because they now represent source 
vertices in the dataflow graph. Resetting VHSmem, 
VHSpc, and the DGS is straightforward, because they 
are updated in-order at instruction commit, but reset-
ting the VHSreg values to their initial values is more 
challenging. An instruction reading the output VHSreg
can belong to either the same basic block or a subse-
quent basic block. Instructions in the same basic block 
expect the computed output history, but instructions in 
later basic blocks expect the VHSreg to be reset to its 
initial value. Due to reordering, instructions from the 
same basic block can read the VHSreg before or after 
instructions from subsequent basic blocks. Hence there 
is no point in time when all VHSreg values can be reset. 

Thus, in our implementation, we actually have two 
VHS fields in each ROB entry. Only ALU and load 
instructions use both fields to hold two values: 
VHSreg,ex is the VHS of the destination register, as 
computed during the execute stage, and VHSreg,init is 
the initial VHS of the destination register (i.e., assum-
ing the register is a source vertex). Intuitively, 
VHSreg,ex will be used by consumer instructions in the 
same basic block, and VHSreg,init will be used by con-
sumers in future basic blocks. As only one value is pro-
vided for all future blocks, some errors that cause a 
value to be forwarded to the wrong future block can go 
undetected. This problem could be mitigated by 
cycling through multiple sets of initial values, but this 
solution would require one DGS to be embedded for 
each set of initial values. In systems where the number 
of inputs and thus VHSreg,init values is smaller than the 
number of possible history values, VHSreg,init can be 
replaced with a shorter VHSreg,seed used to compute or 
look up the initial value. 

Besides the two VHS fields, this resetting scheme 
requires 3 control bits per ROB entry to determine if 
the operation is the first writer of its destination regis-
ter within the current basic block (FirstWriterThisBB) 
and if either input value is passed from the previous 
basic block (IsInput[A/B]FromPrevBB). These three 
bits are computed after decode (in rename or dispatch), 
when operations are still in order and architectural reg-
isters are already known, using a bitmask of all regis-

ters that have not been used as destinations within the 
current basic block.

These modifications affect DDFV’s operation as 
described thus far. During register read, an instruction 
uses the two IsInputXFromPrevBB bits to decide if it 
should request, for each operand, the operand’s current 
VHS value or initial VHS value. When an ALU or load 
instruction completes, it writes its destination value 
and both VHSreg,ex and VHSreg,init to its ROB entry. At 
commit, an ALU or load instruction writes its destina-
tion value and VHSreg,ex into the register file. Also at 
commit, an ALU or load instruction updates the DGS. 
The instruction uses its FirstWriterThisBB bit to deter-
mine whether to replace VHSreg,ex or VHSreg,init from 
the DGS before updating it. 

5.3.  Data Value Checking

As discussed earlier, the DGS only serves to verify 
the correct shape of the dataflow graph. To fully check 
correct dataflow, DDFV must further detect errors in 
data values flowing between vertices in the graph (i.e., 
instructions). For this purpose, each VHS is accompa-
nied by a checksum (parity bit) of its corresponding 
data value. The checksum is stored alongside the VHS 
in the register file and ROB. When a new history is 
computed, the data checksum for the inputs is checked 
and a checksum for the output is computed.

5.4.  Exceptions and Interrupts

Exceptions and interrupts violate our assumption 
that we statically know the expected dataflow graph 
between when a core enters execution of a basic block 
and when it exits. There are at least two solutions for 
adapting DDFV to handle exceptions and interrupts. 
First, we could simply choose to not check signatures
of blocks that are not executed without interruption. If 
exceptions and interrupts are sufficiently rare, the 
impact on error detection coverage will be small. Sec-
ond, we could make DDFV state visible to the operat-
ing system, such that it can be saved and restored along 
with other program state. The state that needs to be 
saved is small (~200-400 bits depending on the config-
uration). Our preference is to add hardware support for 
this second option but fall back to the first option for 
DDFV-oblivious operating systems.

5.5.  Implementation Cost and Complexity

DDFV requires additions to various structures (sum-
marized in Table 2) and slightly modifies the behavior 
of multiple pipeline stages (shown in Table 3). Never-

2.  We add an extra set of bitlines, sense amps, and wordlines driven 
by the decoder of the write port to the SRAM cells storing the 
VHSreg. We also add latches between the decoder outputs and the 
original wordlines. 
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theless, neither the design nor the overall hardware cost 
of DDFV is prohibitive because all added fields are 
small and the required logic is simple. DDFV may 
appear complex compared to replication, but it is 
straightforward to add to an existing design. The big-
gest change—the addition of history fields to the ROB, 
registers, and bypass network—requires widening of 
existing structures and paths, but does not introduce 
new structures or datapaths. The VHS computation 
units are simple combinatorial circuits and identical 
throughout the processor. The logic to compute the 
DGS is a simple logic block in the commit stage.

The major area cost is incurred by the DGS FIFO as 
well as adding the VHSs to the ROB and register file. 
In sum these add roughly 0.2 mm2 to the processor 
configuration in Table 4 implemented in 130nm, as 
estimated using Cacti [13]. This does not include the 
area for the wider bypass network and other data buses, 
which is impossible to assess without an actual design. 
The area cost of the logic for VHS updates, DGS com-
putation, and parity generation is negligible.

Although adding hardware always increases the 
potential for hardware faults, errors in DDFV hardware 

cannot impact program correctness. A transient error in 
the DGS computation can only lead to false positives 
(errors signalled despite correct execution) and unnec-
essary error recoveries. Permanent errors in the DDFV 
logic could prevent forward progress by continuously 
signalling errors, but this condition can be detected 
using retry counters.

5.6.  Other System Models

The implementation of DDFV needs to be adjusted 
to accommodate features in some microarchitectures.
We discuss two such issues in this section. 
Explicit Renaming. We have assumed a processor that 
renames registers using the ROB instead of an explicit 
map table. With explicit renaming, the register histo-
ries, VHSreg, are all stored in the register file and not in 
the ROB. The FirstWriterThisBB, IsInputAFromPre-
vBB, and IsInputBFromPrevBB state bits remain in the 
ROB. VHSmem, VHSpc, and DGS still only have one 
instance each, do not participate in renaming, and are 
updated during the commit stage.
Cracking of x86 instructions. Converting macro-ops 
into micro-ops changes the shape of the dataflow 
graph. We can overcome this problem by ensuring that 
the output history for the macro-op dataflow graph 
equals that of the micro-op dataflow graph. At a high 
level, we must design the VHS update functions for the 
micro-ops such that their composition is equal to the 
VHS update function for their macro-op. We have 
developed a matrix-based hashing scheme for this pur-
pose, and we describe it in Appendix A. Matrix-based 
hashing logic requires similar area as CRC for an equal 
number of VHS bits.

6.  Evaluation

To evaluate our DDFV implementation, we need to 
determine the impact of aliasing on DDFV’s error cov-
erage (Section 6.1) and the performance penalty 
caused by the embedded DGS instructions 
(Section 6.2). We use SimpleScalar [4] to simulate the 
processor model described in Table 4. We sample from 
the SPEC 2000 benchmark suite using SimPoints [26]. 

6.1.  Error Coverage

There are two aspects to DDFV’s error coverage: the 
chip area in which DDFV can potentially detect errors 
and the number of errors that go undetected due to 
aliasing. Simulation at the micro-architectural level is 
not suited to evaluate the former aspect, but it does pro-
vide insights into the latter. Faults within DDFV’s cov-

Table 2. DDFV Hardware Additions
Component Hardware Additions
register 
file

VHSreg,ex field and EDC bit in each register 
Read-modify-write port to replace write-port

reorder  
buffer

2 VHS fields (VHSreg,VHSreg,init/seed)  
3 control bits per ROB entry 
1 bit EDC (parity)

execution  
units

Logic to compute updated DGS and VHSs 
Logic to check and update EDC

back-end DGS register, VHSmem and VHSpc registers 
FIFO for in-flight signatures 
Comparator to check dynamic DGS 
Lookup table for initial DGS and VHS values

Table 3. DDFV Pipeline Behavior Changes
Stage Behavior Modifications
fetch none
decode Put signatures from DGS instructions into FIFO
rename none
dispatch Compute 3 control bits in ROB entry.
reg. read Read VHSreg,ex or VHSreg,init for input registers.
execute Compute updated VHS for destination. 

Check source EDC and compute new EDC.
complete If destination is register, write VHSreg,ex and 

VHSreg,init into ROB entry.
commit Now 2-cycles instead of one cycle. 

If destination is register, copy VHSreg,ex to reg-
ister file and update dynamic DGS. 
If last instruction in basic block, finalize 
dynamic DGS and compare static DGS in FIFO.
8



erage area manifest themselves as errors on the micro-
architectural level and the underlying physical fault is 
irrelevant for aliasing. 

To determine the impact of aliasing, we injected sin-
gle-bit errors (10000 per benchmark) and observed 
whether DDFV detected them. The errors included: 
errors in fetched instructions; incorrectly decoded reg-
ister numbers, opcodes, and immediates; errors in reg-
ister renaming; wrong register accessed during register 
read; and wrong register updated in writeback or com-
mit. We did not include single-bit errors injected into 
data values, because these are known to be detected 
using EDC. Many of the injected errors have no effect 
on correct program execution because of masking (e.g., 
faulty instruction squashed after misspeculation, error 
in unused instruction bit, etc.). Masked errors (47% of 
injected errors) are not considered in our results. 

In Figure 4, we plot the fraction of injected errors not 
detected as a function of the output history size in bits, 
which is the same for VHSreg, VHSbranch, and VHSs-
tore. Whereas the width of these output histories deter-
mines the size of the VHS field added to every entry in 

the register file and ROB, the width of the summary 
histories (DGS, VHSmem, and VHSpc) only affects the 
three registers added to store them and making them 
wider is inexpensive. Thus the width of these histories 
will be determined by the number of bits available for 
the signature in the DGS instruction. We assume a 24-
bit signature in each DGS instruction (32-bit instruc-
tion minus 8-bit opcode). The results are aggregated 
across all benchmarks, and they show that the fraction 
of undetected errors decreases exponentially as the 
number of history bits increases. 

Assuming uniform fault-sensitivity across the chip, 
DDFV’s FIT reduction is equal to coverage area multi-
plied by the error detection probability. Based on die 
schematics of various processors—AMD K8 (see 
Figure 1), MIPS R10000, Pentium 4, and Alpha 21264 
(not shown)—we estimate DDFV’s coverage to be 
around 35%-50% of the fault-sensitive core area. Thus, 
FIT reduction is dominated by coverage area, as the 
detection probability is over 99.5% even for 6-bit his-
tories. Estimates from die areas are not very accurate 
and vulnerability is likely to be non-uniform, but the 
estimates indicate that DDFV covers a significant por-
tion of the core. More accurate estimates would require 
error injection experiments for a DDFV implementa-
tion in a circuit-level model of a commercial supersca-
lar processor, which is unobtainable outside industry.

6.2.  Performance

DDFV can degrade performance because of the 
embedded DGS instructions which consume fetch, 
decode, and commit bandwidth as well as instruction 
cache entries. DDFV also adds a cycle to commit, 
which adds pressure to the ROB and LSQ. An indepen-
dent performance issue could arise from widening the 
ROB and the register file if either one is critical to tim-
ing. However, access latency for these structures is 
dominated by the (unmodified) word-line decoder, 
rather than word width [3]. Thus, we do not consider 
changes in clock cycle times in our experiments. 

In Figure 5 we show the experimental results of 
comparing the performances of a processor with 
DDFV and an unprotected processor. We assume that 
DGS instructions do not consume ROB entries (i.e., 
they are stored in a dedicated FIFO structure). The 
results show that DDFV has limited effect on average 
performance with a mean slowdown of 1.8% in 
Figure 5, but it varies considerably between bench-
marks. Some benchmarks with large basic blocks expe-
rience no slowdown, whereas the slowdowns for 
branch-heavy code with small basic blocks (e.g., gcc, 
perl, and crafty) approach 5%. apsi experiences a neg-

Table 4. Processor Configuration
pipe depth 4 front-end stages, variable execute, 1 

commit stage (2 with DDFV)
pipe width 4-wide decode/issue/commit 
reorder buffer 128 entries
ld-st queue 32 entries
integer FUs 4 ALUs, 1 integer multiplier
fl. pt. FUs 4 FPUs, 1 FP multiplier
branch pred. GShare, 32Kbits, 15-bit history
L1I cache 32KB, 2-way, 2-cycle hit, 32B blocks
L1D cache 32KB, 4-way, 2-cycle hit, 32B blocks
L2 cache 1 MB, 8-way, 8-cycle hit, 64B blocks
memory 48 cycles latency until first 8-bytes,  

55 cycles latency until last 8-bytes
VHS/DGS 10-bit VHS for insts and regs; 24-bit DGS, 

VHSmem, and VHSpc; 5-bit VHSreg,seed; 
DGS FIFO 64 entries

Figure 4. Fraction of undetected errors as a 
function of VHSreg/store/branch size (in bits)
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ligible speedup, because code rewriting leads to a 
realignment that reduces conflict misses in the L1I. We 
could potentially improve performance for branch-
heavy code by computing signatures over paths rather 
than basic blocks [6].

Figure 6 shows the number of instructions fetched, 
normalized to a processor without DDFV. The proces-
sor with DDFV fetches on average 8.5% more instruc-
tions from the L1I cache to obtain the embedded 
signatures. DDFV’s slowdown (1.8%) is less than the 
increase in the number of instructions fetched (8.5%), 
because many benchmarks are either not limited by the 
fetch stage at all or limited by the processor’s inability 
to fetch across a taken branch (within a cycle) rather 
than fetch width.

7.  DDFV Usage Models

DDFV can be used on its own or in conjunction with 
previously developed error detection schemes. By 
itself, DDFV protects a large number of components at 
very low cost. Some of the protected units, like the 
instruction fetch queue and the RAT, are known to be 
highly vulnerable to faults [20]. Unlike parity bits, 
DDFV not only protects the data stored in these struc-
tures and latches, but also the associated access logic.

DDFV can be inexpensively combined with control 
flow checking by changing the semantics of the DGS 
instruction. If, instead of the signature for the current 
block, it stores the signature for the successor block, 

inter-block control flow will be checked implicitly. 
Special considerations are necessary for conditional 
branches (two successors) and indirect branches (suc-
cessor specified in register). Details are beyond the 
scope of this paper.

DDFV can reduce the cost of DMR schemes by pro-
tecting the processor front-end without hardware repli-
cation or reduced performance. With DDFV protecting 
the early pipeline stages, DIVA no longer has to repli-
cate them in the checker core. This is particularly help-
ful for processors with little speculation or difficult-to-
simplify fetch and decode logic. With DDFV and an 
EDC-protected register file, DIVA no longer needs a 
redundant register file.

DDFV can alleviate RMT’s pressure on the fetch and 
decode stages, which are typically a bottleneck in SMT 
and RMT processors [30]. As described by Kumar et 
al. [16], performance overhead can be reduced by rep-
licating instructions after they have been fetched and 
decoded. Kumar et al. propose to protect the pipeline 
front-end using parity bits, which can protect storage 
structures but not logic. With DDFV instead of parity, 
we provide full protection of the instructions before 
replication and detect permanent errors in rename, 
scheduling, and writeback stages that elude RMT.

8.  Conclusions

DDFV offers a high-performance, low-cost solution 
for comprehensively detecting transient faults, perma-
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nent faults, and design bugs in a large fraction of the 
microprocessor core. It is not a replacement for all 
existing error detection mechanisms, but instead can be 
used to provide inexpensive partial coverage or to 
reduce the cost of full dynamic verification schemes 
such as RMT or DIVA. Given the increasing need to 
detect errors, we expect dynamic verification 
approaches like DDFV to become increasingly attrac-
tive to architects. The comprehensive nature of 
dynamic verification provides coverage for a large por-
tion of the processor rather than requiring low-level, 
component-specific error detection mechanisms. 
Beyond today’s superscalar processors, DDFV is also a 
good fit for emerging architectures with distributed 
computation such as TRIPS [21].
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Appendix A: Handling Micro-Ops
We can adapt DDFV to processors that break instruc-

tions into micro-ops before execution. Such processors 
(e.g., AMD Athlon [1] and Intel Pentium 4 [8]) are a 
particularly interesting target for DDFV because they 
are expensive to replicate and cannot easily be simpli-
fied to fit into a DIVA-like scheme. The conversion 
into micro-ops changes the shape of the dataflow graph 
as some of the original nodes (macro-ops) are replaced 
by a sub-graph (micro-ops) that differs between ven-
dors and processor generations. 

Figure 7 illustrates different implementations of the 
same CISC add instruction, which exhibits two fea-
tures found in many CISC ISAs: memory operands and 
complex addressing modes. To make DDFV portable 
across all implementations without changing the static 
signatures, the output histories of all dataflow graphs 
must be identical. In the native CISC implementation, 
the output VHS is a simple hash of the operation and 

inputs. In the micro-op case, the resulting history is a 
hash over hashes from earlier micro-ops. One way to 
enforce that the final output histories are equal is to use 
matrix multiplications as hash functions. In this 
scheme, each operation (micro-op or macro-op) is 
assigned a unique representative matrix that has one 
row for each output of the operation and one column 
for each input plus an additional column to avoid map-
ping zero-vectors to zeroes (e.g., an addition would be 
represented by a 1x3 matrix). Output history values are 
computed by multiplying the representative matrix 
with an input history vector containing all input history 
values and a constant one (see Figure 8). 

The easiest way to develop representative matrices 
for macro-ops is bottom-up. The macro-ops are first 
split into the smallest possible set of tasks (even if the 
micro-ops used in the implementation perform multi-
ple of these tasks). Next all the tasks are assigned rep-
resentative matrices. The macro-op matrix as well as 
the matrices for the micro-ops are derived from the 
task matrices by computing output histories symboli-
cally. Representative matrices can also be developed 
top-down (i.e., starting with a macro-op matrix) if tasks 
become smaller than anticipated.

The simplistic example in Figure 8 uses modulo-10 
arithmetic, but such matrix multiplications would be 
prohibitively expensive. Instead we interpret the input 
and output histories as bit vectors rather than numerical 
values and multiply them with binary matrices, which 
is inexpensive as +=xor and *=and. This scheme works 
only for simple macro-ops that break into a constant 
number of micro-ops. Uncommon, more complex 
macro-ops emit pseudo-histories for their outputs upon 
completion.

Figure 7. Various implementations of a CISC 
instruction

Native CISC (2-operand format)
add rC, MEM[rA+rB<<i] VHSrC ⇐ [1,2,6,4,5] × [2,5,6,2,1]T = 1
RISC-style μ-ops w/ special address op
adr tmp, [rA+rB<<i] VHStmp⇐ [1,8,2,7] × [5,6,2,1]T = 4
ld  tmp, [tmp] VHStmp⇐ [8,6] × [4,1]T = 8

add rC, tmp, rC VHSrC⇐ [4,1,7] × [8,2,1]T = 1
RISC-style μ-ops
shl tmp, rB, imm VHStmp⇐ [2,3,5] × [6,2,1]T = 3
add tmp, tmp, rA VHStmp⇐ [4,1,7] × [3,5,1]T = 4
ld  tmp, [tmp] VHStmp⇐ [8,6] × [4,1]T = 8

add rC, tmp, rC VHSrC⇐ [4,1,7] × [8,2,1]T = 1
Figure 8. Example of VHS computation for μ-ops.
Initial histories rA=5, rB=6, rC=2, i(mmediate)=2. All 
operations performed in modulo-10 arithmetic.
Left multiplicands are representative matrices (e.g. [4,1,7] 
= add regs), the right ones are input history vectors.
12


	Error Detection Using Dynamic Dataflow Verification
	Abstract
	1. Introduction
	2. Related Work
	EDC
	Temporal Redundancy
	Structural redundancy
	BIST
	Control flow checking
	Summary

	3. System Model and Fault Model
	System Model
	Error Model

	4. High-Level Overview of DDFV
	4.1. Dataflow Graph Representation
	4.2. Providing Static DGSs to Hardware
	4.3. Runtime Operation

	5. Implementation Details
	5.1. Signature Computation Functions
	Instruction Output VHSs
	Sink VHSs
	DGS

	5.2. Dynamic DGS Computation
	5.2.1. VHS computation
	5.2.2. DGS computation
	5.2.3. Resetting the DGS and VHSs

	5.3. Data Value Checking
	5.4. Exceptions and Interrupts
	5.5. Implementation Cost and Complexity
	5.6. Other System Models
	Explicit Renaming
	Cracking of x86 instructions


	6. Evaluation
	6.1. Error Coverage
	6.2. Performance

	7. DDFV Usage Models
	8. Conclusions
	References
	Appendix A: Handling Micro-Ops



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


