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Abstract

Architectures built using bottom-up self-assembly of 
nanoelectronic devices will need to tolerate defect rates that 
are orders of magnitude higher than those found in current 
CMOS technologies. In this paper, we describe and evaluate 
an approach to provide defect isolation in such an architec-
ture that consists of a large number of simple computational 
nodes, each of which can communicate with four neighbors 
on single-bit asynchronous links. Our approach does not 
require an external defect map, nor does it require redun-
dancy of complex computational circuits, either of which will 
limit the scalability of the system. We use the reverse path 
forwarding broadcast routing algorithm, commonly used in 
wide-area networks, to map out defective nodes at startup. 
The algorithm guarantees two things (a) the broadcast even-
tually terminates and (b) all functional nodes that have a 
path to the broadcast source will receive it. Thus, all func-
tional and reachable nodes are connected through a broad-
cast tree, resulting in defect isolation. Simulations show that, 
for a fail-stop model of node failure, the broadcast connects 
all nodes that are reachable from the source. In case of low 
defect rates ( 10%), the broadcast reaches more than 97% 
of non-defective nodes. For a network of nodes in the form of 
a grid, our results show that, in most cases, the time taken to 
complete the broadcast is proportional to the square root of 
the number of nodes in the system. Finally, we also present 
an analysis of the characteristics of the trees generated by 
our broadcast mechanism.

1  Introduction
The ability to scale down the feature size in CMOS has 

allowed the semiconductor industry to match and even sur-
pass the fast pace of progress dictated by Moore’s law. How-
ever, we are fast approaching hard physical limits that will 
make it difficult if not impossible to shrink CMOS devices 
below a certain threshold. Recent semiconductor industry 
roadmaps [12] have encouraged the investigation of alternate 
device technologies to replace CMOS. This has led to the 
development of a variety of interesting electronic devices, 
including nanocells [23], carbon nanotube transistors (CNT) 
[1,21], silicon nanowires [3,10], and silicon nanorods [17]. 

These devices are extremely small, and thus need very low 
charge transfers to switch state. This small size and low 
charge give rise to desirable power consumption characteris-
tics but also makes circuits made using these devices suscep-
tible to defects and faults.

One of the primary advantages of using emerging nano-
electronic devices is the potential for greater device density. 
It will be hard to adapt conventional top-down fabrication 
techniques like optical lithography for use with these nano-
scale devices. This is largely because of the conflict between 
the small wavelengths required in the lithography process, 
the high energy associated with shorter wavelengths and the 
accuracy needed to fabricate devices. There has been signifi-
cant research in bottom-up alternatives to optical lithogra-
phy, particularly in DNA self-assembly using DNA as a 
scaffold material to attach electronic devices 
[2,13,14,20,25]. Self-assembly is well suited to assemble 
large numbers of dense circuits, however, it is also prone to 
higher defect rates than those produced by optical lithogra-
phy. This is because self-assembly does not have the precise 
control over the placement of devices that can be achieved 
by optical lithography.

Systems built using bottom-up self-assembly of nano-
electronic devices will need to incorporate defect tolerance 
in their design to maintain their advantage over CMOS. Past 
work on defect tolerance has included schemes like NAND 
multiplexing [8,18], voting mechanisms [16,24] and obtain-
ing defects maps to allow configuration around defects 
[4,7,9]. The requirement of an external defect map, or exten-
sive redundancy make it difficult to adapt these schemes sys-
tems with billions or trillions of processing elements. 

In this paper, we describe a mechanism for tolerating 
defects in a large system built using DNA-guided self-
assembly of nanoelectronic devices. We use the reverse path 
forwarding (RPF) algorithm for broadcast routing [5] once at 
startup to create a broadcast tree of non-defective nodes. 
This maps out defects in the system at run-time and allows 
us to use the largest connected subset of the random network 
reachable from the source of the broadcast for useful compu-
tation. Our approach does not require us to extract a defect 
map to configure the system to avoid defects. In our previous 
work [19], we used the broadcast mechanism described in 
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this paper to isolate defects and impart logical structure to a 
random network of nodes. The structure was then used by an 
architecture to build a memory system and an execution net-
work to run simple programs. 

The goal of this work is to evaluate the characteristics of 
self-assembled networks. We make the following contribu-
tions: 1) we evaluate the efficiency of our broadcast mecha-
nism by computing the latency and “coverage” of the 
broadcast (the fraction of the non-defective nodes that the 
broadcast reaches) for different network sizes, 2) we evaluate 
the connectivity of the self-assembled network and analyze 
the properties of the broadcast tree generated by the broad-
cast, 3) we outline some limitations of the current approach 
and suggest techniques to overcome the limitations.

The rest of the paper is organized as follows. Section 2
presents an overview of the target system, Section 3
describes our defect tolerance mechanism. In Section 4 we 
describe our simulation setup, and in Section 5 we present 
and analyze our results. Section 6 discusses related work, 
and we conclude in Section 7.

2  Large Scale Self-Assembled Systems
The parallel nature of self-assembly enables the manu-

facture of systems with a large number of identical compo-
nents. However, self-assembly is not as precise a 
manufacturing technique as optical lithography. This lack of 
precision increases the probability that some of the manufac-
tured components will be defective. Our defect tolerance 
mechanism is targeted towards systems with up to 1012 self-
assembled processing elements. This is several orders of 
magnitude larger than previous systems that have incorpo-
rated defect tolerance in their design. The scale of the tar-
geted system makes it impractical to use an external defect 
map [4,7,9] to configure the system around defects. In the 
rest of this section, we describe the properties of our self-
assembled system. While we use a specific instance [19] of 
such a system in our evaluation, in general, our defect toler-
ance mechanism is applicable to large systems that are com-
posed of processing elements that need to communicate with 
each other. We break up our discussion of the system into 
three components. First, we discuss the use of self-assembly 
in our system. Next, we discuss the capabilities of each node 
in the system, and then describe our interface with the exter-
nal micro-scale world. Finally, we provide a high-level over-
view of the capabilities of the whole system.

2.1  Self-Assembly
The system we target is composed of a self-assembled 

network of nano-scale nodes. To build a large scale system 
with up to 1012 interconnected nodes, we use hierarchical 
self-assembly. At the lowest level, we use DNA-guided self-
assembly of nanoelectronic devices to create small process-

ing elements. The self-assembled DNA lattice acts as a scaf-
folding for the nanoelectronic devices. Figure 1 shows an 
image of a DNA lattice taken with an atomic force micro-
scope. Using appropriate DNA segments during the con-
struction of the lattice, the lattice can be made “addressable”. 
This addressability allows us to place active devices at spe-
cific positions in the lattice to form a circuit.

Once individual nodes have been self-assembled, they 
need to be linked together to form a network of nodes. This 
is achieved by growing DNA nanotubes between nodes, and 
then metallizing them to make them conductive [15,26]. This 
second level of self-assembly gives rise to a random network 
of nodes. Figure 2 shows a schematic of a section of the net-
work of nodes, including regions with defective or discon-
nected links.

2.2  Nodes
We impose minimal requirements on the capabilities of 

each node. Each node is assumed to have four transceivers, a 
simple single-bit ALU and some control circuitry. Each 
transceiver controls the transmission and reception of data 
over a single-bit asynchronous link that connect nodes in the 
random network. A node has up to four active links, each 
connected to a transceiver. The ALU can perform simple 
arithmetic and logic operations on single-bit data. It can 
store a single-bit of data, like a carry bit. Each node has some 
storage space for global and local state. Finally, nodes have 
circuitry to control the flow of data through them. This 
includes control over the routing and actual decisions about 
performing operations in the ALU. While the nodes 
described here are very simple, they represent a lower bound 
of the requirements for our scheme. Any system that uses 
more complex nodes would work equally well with our 
defect isolation mechanism.

2.3  External Interface
We need to have a way to interface the system with the 

external world. In this work, we assume that there are multi-
ple such interfaces (called “vias”) (see Figure 3) scattered 

FIGURE 1. A DNA 
scaffolding for nanoelectronic 

circuits

100 nm

FIGURE 2. Schematic of self-
assembled network of nodes
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across the random network of nodes. Each via overlaps sev-
eral nodes, but is controlled through a single node, called the 
anchor node. All external input is inserted through the vias. 

2.4  System Architecture
The hierarchical self-assembly process builds a random 

network connecting the nodes described in Section 2.2. The 
total computing power of such a system with a large number 
of nodes is tremendous. For example, if each node operates 
at 1GHz, and can perform a single bit ALU operation per 
cycle, the peak performance of a system with 1012 nodes 
would be 31.25x1018 32-bit operations per second. However, 
this assumes the ability to use and perfectly co-ordinate all 
nodes, which is unrealistic. To tap the tremendous comput-
ing power of this system, nodes must be able to communi-
cate with each other.

In order for the nodes to communicate, we need to 
impose some structure on the random network. There are 
multiple ways in which this can be achieved. We have 
explored one architectural approach [19] that imposes logi-
cal structure on the network using the broadcast mechanism. 
Our design is similar to an “Active Network” [22]. Nodes 
communicate using “packets” of information that hold both 
instructions and data that the instructions operate on (thus 
the resemblance to an active network). The architecture pro-
vides a mechanism for configuring a memory system, 
defines the execution-memory interface and the execution 
model. We have demonstrated the execution of simple pro-
grams on this architecture. The architecture relies on the 
broadcast mechanism to impose logical structure on the ran-
dom network of nodes. In the next section, we describe how 
we impose this structure and isolate defects.

3  Defect Tolerance
Our defect tolerance strategy involves a simple configu-

ration step at startup to connect non-defective nodes together 
that results in the isolation of defective regions. Before we 
describe the defect tolerance mechanism, we present the 
defect model used in this work.

3.1  Defect Model
For the purposes of this work, we assume a simple fail-

stop defect model for the node. If a node fails or is defective, 
it is completely isolated from its neighbors, i.e, it cannot per-
form any processing or communication. We do not examine 
more complex defect models involving partially defective 
nodes. Short-circuited links are handled at the architectural 
level using a back-off mechanism. At start-up, nodes assert 
signals on their links. If a node detects more than two asserts 
on a link, it assumes that there are already two active nodes 
on the link and shuts down the corresponding transceiver.

3.2  Isolating Defects
The key to defect tolerance in our scheme is isolating 

defects using the reverse path forwarding (RPF) broadcast 
routing algorithm [5]. Section 2.3 introduced our concept of 
a via which is an interface between the system and the 
micro-scale world. We use a via close to the boundary of the 
system to insert a special broadcast packet into the network. 
Each node then forwards the packet using the RPF algo-
rithm. On receiving this packet (called a gradient packet), the 
node broadcasts it on all its links, except the link that it 
received the packet on. Before forwarding the packet, the 
node stores the id of the link it received the packet on. Once 
a node gets a gradient packet, it does not forward any other 
gradient broadcast packets it receives. This ensures that the 
broadcast eventually terminates. Once all broadcast activity 
stops, we have effectively established a “gradient” [11] 
broadcast tree rooted at the via where we inserted the broad-
cast packet. Each node that received a gradient packet knows 
how to get a packet to this via. 

We use vias located at four ends of the system to broad-
cast four “gradients” across the system. The idea is to set up 
a general routing framework with the ability to route in four 
directions (corresponding to each of the gradients). This 
routing framework can be used by a higher level architecture 
to route instructions and data across the system. To allow 
multiple gradient broadcasts in the network, we add a gradi-
ent ID (GID) field to each packet, such that each node runs 
the RPF algorithm once per gradient. By examining the GID 
in the packets, the nodes can decide whether to propagate the 
broadcast (in case of a GID not seen before), or to squash the 
broadcast (in case of a repeated GID).

The gradient broadcast mechanism also helps us achieve 
defect isolation. Since defective nodes cannot participate in 
the gradient forwarding process, no node ever receives a gra-
dient packet from a defective node or link. This implies that 
we can never route data into a defective node, thus achieving 
defect isolation. The gradient broadcast mechanism is fairly 
robust as defect rates increase. As long as there are large 
connected components in the random network, the gradient 
mechanism will connect all nodes within that region if the 
gradient source is also included in that region.

We illustrate gradients in a network in Figure 3. The fig-
ure shows a small network, with each node having an arrow 
pointing in the direction that it received the gradient from 
(the gradient that originated from via 1). The absence of 
nodes (i.e. white spaces in place of nodes) corresponds to 
defects. The network in the figure has five vias, one in each 
corner four vias and one in the center (via 5). The figure 
illustrates how the gradient broadcast covers a large part of 
the network. It also shows how defects can cause regions of 
non-defective nodes to get isolated (region 1 and 2). In the 
next section, we describe the experimental setup we use to 
3



evaluate the connectivity of our network of nodes equipped 
with this defect tolerance mechanism.

4  Experimental Setup
We use a custom event driven simulator to evaluate the 

defect tolerance mechanism. In this work, the network of 
nodes is assumed to be a regular grid, with defects distrib-
uted randomly on the grid. The user specifies various system 
parameters, including defect rate and network size (number 
of nodes), as input to the simulator. The simulator first cre-
ates the nodes and arranges them in a square grid, connecting 
each node to its four nearest neighbors. Then, using the 
defect probability and a random number generator, we mark 
certain nodes to be “defective”. Once a node has been 
marked defective, it ceases to be part of the network.

In our experiments, we vary the defect rate from 0% to 
50% defects. We vary network size from 30x30 nodes to 
100x100 nodes arranged in a regular grid. The simulator is 
capable of running larger topologies, but we are limited by 
the simulation time required to generate statistically mean-
ingful results. For each configuration, we present the average 
of 50 runs with random seeds used to generate distinct node 
topologies with different defect locations. All experiments 
use a single gradient source on the side of a square grid 
(except in Section 5.3).

5  Evaluation and Analysis
To evaluate the performance of our defect tolerance 

mechanism, we ask the following questions.

What is the coverage of the broadcast?  Ideally, the 
broadcast should reach all non-defective nodes. However, 
there could be cases where some nodes are cut-off due to the 
presence of surrounding defects. (Section 5.1)

What is the latency of a gradient broadcast as a function 
of network size?  The best case latency in a network with 
NxN nodes would be O(N). This would be obtained in the 
absence of all defects. In the worst case, the gradient needs 
to traverse the entire network in a linear manner, giving a 
worst case latency of O(N2). (Section 5.2)

What is the effect of changing the location of the gradient 
insertion point in the network?  The location of the source 
of the gradients should make a difference in the coverage and 
latency of the broadcast mechanism. Conceptually, the 
source should be placed in a region that minimizes the 
chances of it being cut-off from a majority of the network. 
(Section 5.3)

What are the properties of the broadcast trees?  Ideally, 
we want to minimize the distance between the source and 
leaves of the tree. This will minimize the time spent in mov-
ing the data around the network. The minimum distance can 
be achieved if the broadcast follows the shortest path from 
the source to any other node. (Section 5.4)

5.1  Broadcast Coverage
The broadcast mechanism can get packets to all nodes 

that are “connected” to the gradient source. This means that 
any functional node that has a path to the gradient source, 
will receive a gradient packet. However, as the defect rate 
increases, there is an increasing probability that regions of 
non-defective nodes will be cut-off from the gradient source 
because of a wall of defective nodes (see Figure 3). Figure 4
plots the percentage of non-defective nodes receiving the 
broadcast, for a range of defect rates. Each line corresponds 
to a different network size. Data for limited (10) runs each 
for networks of 400x400, 500x500 and 800x800 nodes show 
trends similar to those observed for smaller networks.

As expected, we see that as defect rates increase, the per-
centage of nodes receiving the broadcast drops because of 

FIGURE 3. Gradient directions in a small network of nodes
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regions of non-defective nodes being cut-off. In addition, we 
see that for defect rates up to 20%, the broadcast mechanism 
typically reaches 90% of the non-defective nodes in the net-
work. This shows that for low defect rates ( 20%), the gra-
dient broadcast is a good mechanism for isolating defective 
nodes and connecting non-defective nodes.

5.2  Broadcast Latency
One of the reasons we choose to use a self-configuring 

system is to eliminate the time overhead of obtaining an 
external defect map of the system. However, the gradient 
broadcast itself takes a non-zero time to complete. If a node 
can process and forward a gradient packet in unit time, we 
would expect that it would take at most 2N time units to fin-
ish broadcasting in an NxN system (corresponding to the 
manhattan distance between the nodes in opposite corners). 
In Figure 5 we plot the time taken to broadcast the gradients 
as a function of the square root of the number of nodes in the 
system, for different defect rates. For a system with no 
defects, we see that the time taken to complete a gradient 
broadcast is a linear function of the square root of the num-
ber of nodes in the system (it is proportional to the maximum 
distance the broadcast packet has to cover, which for a 
square network of NxN nodes is N). We see similar trends 
for larger networks (up to 800x800). As the defect rate 
increases, we see that the time taken to complete the gradient 
broadcast decreases. This happens due to the fact that as 

defect probabilities increase, the probability of isolating a 
region of non-defective nodes increases. Thus, there are 
fewer “reachable” nodes in the system, reducing the time 
taken to complete the broadcast. Indeed, for a system with 
50% defects, the time taken to complete the broadcast is 
almost independent of the number of nodes. This is because, 
as we see in Figure 4, the broadcast reaches very few nodes.

Our analysis shows that, in general, the latency of the 
broadcast is directly proportional to the maximum distance a 
broadcast packet has to cover in the network. This allows us 
to scale to very large systems and still have a broadcast 
latency low enough for practical use.

5.3  Changing Broadcast Source
Intuitively, the placement of the gradient source vias in 

the random network will have an effect on how many non-
defective nodes successfully receive a gradient. We run two 
configurations, one with gradients injected from the corner, 
and another configuration with the gradient injected from 
one of the sides of the network grid as shown schematically 
in Figure 6. The result of this analysis is useful in choosing 
between the corners and the side midpoints as the source of 
the four planar gradients.

Figure 7 shows a graph where we compare the two 
schemes in terms of the time taken to complete a broadcast 
for a network with 10,000 nodes. From the figure we see that 
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for defect rates less than 35%, having a source in the corner 
takes longer to complete a gradient broadcast than having a 
source at the midpoint of a side of the grid. This is expected 
since a broadcast from a corner needs to travel a longer dis-
tance to get to all parts of the grid. However, once we have 
more than 35% defects, the probability of a corner source 
being cut off is higher than a source on the side being cut off. 
If a source is cut off from a large part of the network, it will 
“complete” the broadcast faster, as seen in the figure. In 
Figure 8 we compare how the two schemes compare in terms 
of the number of non-defective nodes reached by a gradient. 
For defect rates less than 10%, the two schemes perform 
equally well, reaching most non-defective nodes. However, 
as we increase defect rates beyond 10%, the corner source 
reaches fewer nodes on average, since it has a higher proba-
bility of being cut off due to defects. Our analysis shows 
that, as expected, the midpoint of a side of the grid is a better 
choice for the gradient source. A broadcast originating at this 
source is able to reach a larger fraction of nodes, with lower 
latency than one originating at a corner.

5.4  Broadcast Tree Properties
The gradient broadcast builds a spanning tree over the 

graph of all non-defective nodes that are reachable from the 
source. In most cases, there exist several spanning trees that 
can be built using the gradient source as a root. In the ideal 
case, we want a balanced 3-ary tree. However, given our 
grid-like topology, it is not possible to build a perfectly bal-
anced 3-ary tree. An alternative to a balanced tree would be a 
tree that minimizes the number of hops between the source 
of the gradient and any other node in the network (i.e. mini-
mizes the manhattan distance).

We analyze the broadcast trees generated by the gradient 
broadcast to determine their characteristics. Table 1 shows 
the results from this analysis on a network with 10,000 
nodes. The source of the gradient is the midpoint of a side of 
the 100x100 square. The average manhattan distance from 
the source to any other point in the network is 74.5 hops, 

while the maximum distance is 149 hops. For the case with 
no defects, we see that the maximum and average height of 
the tree correspond exactly to the maximum and average 
manhattan distance between the gradient source and other 
nodes in the network. This implies that in case of a defect 
free system, the broadcast finds a minimum-manhattan dis-
tance path between the gradient source and any other node. 
As we increase defect rates, the efficiency of a path from the 
gradient source to another node decreases. For example, in a 
network with 20% defects, we see 7,186 nodes in the broad-
cast tree with an average manhattan distance of 70 hops 
between the gradient source and other nodes. If we had a 
square grid with 7,186 nodes (~85x85), the average manhat-
tan distance between the gradient source and other nodes 
would be 63 hops. This shows that the broadcast can no 
longer pick the ideal path because of defects, but picks the 
shortest path that avoids defects.

Another interesting property of the broadcast tree is the 
branching factor of nodes in the broadcast tree. It is prefera-
ble to have nodes with three children as that reduces the dis-
tance between the root and the leaves. If we have a large 
number of nodes with only one child, a failure in the link 
connecting this node to its child could potentially cut off a 
large section of nodes (Section 5.5 discusses one possible 
mechanism to avoid this single point of failure). From the 
table we see that as defect rates increase, the number of 
nodes with three children actually increases, which is desir-
able. At first, this seems counter-intuitive, but is the result of 
a peculiarity of the broadcast mechanism. As a broadcast 
packet spreads through the network, it often follows a “pre-
ferred” path. We illustrate this phenomenon in Figure 9. As 
the packet reaches node 1, it is sent to nodes 2 and 3. Now, 
nodes 2 and 3 both try to send the packet to node 4, however, 
only one of them (node 2) succeeds in this. All the crossed 
arrows show broadcasts that are not accepted. This “selec-
tion” of one direction over the other has a cascading effect 
and most nodes end up receiving a particular gradient from 
the same general direction. However, in the presence of 
defects, this phenomenon gets disrupted, creating more 
opportunities for the broadcast tree to branch out. This is 
also sensitive to the timing of the communication between 

TABLE 1. Properties of Broadcast Trees (100x100 network)

Defect 
Rate 
(%)

# of 
Nodes

Number of Children
Tree 

Height

0 1 2 3 Max Avg

0 10000 2430 5192 2329 49 149 75

10 8822 1872 5167 1696 87 146 74

20 7186 1708 3926 1397 155 135 70

30 5203 1409 2553 1075 166 123 65

40 1382 394 641 301 46 93.6 50

50 23.22 6.22 11.8 4.6 0.6 9.2 4.8

FIGURE 9. Gradient Broadcast: Cause of low branching 
factor
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nodes. If two nodes are not identical, one node will broadcast 
faster, reducing this problem in systems with low defects.

From our analysis of the properties of broadcast trees 
presented in this subsection, we conclude the following: a) 
the broadcast mechanism picks the shortest path consisting 
of non-defective nodes, but defects often cause the length of 
this path to deviate from the manhattan distance in a grid, b) 
defects in the network could improve the average out-degree 
of nodes in the broadcast tree.

5.5  Extending Gradient Broadcast
Our evaluation shows that gradient broadcast using the 

RPF algorithm should be an efficient way of achieving defect 
isolation in large scale systems of self-assembled nodes. If 
the system has high defect rates, the gradient broadcast 
scheme can still be used on smaller scales using vias distrib-
uted across the network of nodes. By broadcasting a gradient 
per via, we can establish small “cells” of connected nodes.

The gradient broadcast mechanism presented here has no 
provision for handling transient or permanent faults during 
system operation. One simple extension to the current sys-
tem to handle runtime faults would be to maintain redundant 
path information at each node. Nodes often get the same 
broadcast packet on multiple links. The original scheme dis-
cards all but the first packet. If we use information from sub-
sequent gradient packets to maintain multiple paths, the 
system could possibly handle transient faults. In addition, 
this redundant path information could also be used by higher 
level protocols for load-balanced routing. There is a trade-off 
to be made in maintaining multiple paths. Each additional 
path that needs to be stored requires extra storage at each 
node. There is also no guarantee that a node will actually 
receive multiple paths. In addition, path information will 
need to be periodically refreshed to keep it up to date. This 
will add to the overhead of gradient broadcast.

Our work assumed a fail-stop defect model for nodes. In 
a real system, it is far more likely that only a part of a node is 
defective. Evaluating the performance of gradient broadcast 
with a node defect model that allows partially defective 
nodes will be much more complex. However, except in the 
case of byzantine failures, partially defective nodes will not 
reduce the effectiveness of gradient broadcasts. It is impor-
tant to point out that our system assumes the existence of 
some sort of built-in-self-test (BIST) or external test cir-
cuitry to verify node operation. A variation of the BIST 
would be the ability to inject a test vector packet into the net-
work and have it propagate. Each node would execute the 
packet and get disabled if it fails the test.

6  Related Work
Recently, there has been a large body of work focused on 

self-assembly, emerging nano-electronic devices and tech-

niques to tolerate defects in these architectures. We focus 
here on related work in defect tolerance.

Work in emerging nano-electronic devices has led to an 
increased interest in defect tolerance. The Teramac [4,9] was 
one of the first machines built that incorporated defect toler-
ance in the design. The machine consisted of a large number 
of defective FPGAs. The defect tolerance mechanism relied 
on obtaining an external defect map, and then configuring 
the FPGAs to not use defective regions. Such an approach 
would not scale to very large systems, as extracting a defect 
maps would not be feasible. The Nanofabrics [7] work from 
CMU was similar to the teramac in its use of reconfigurable 
devices as well as its approach to defect tolerance. Nanofab-
rics relies on using an external defect map to configure the 
system.

Another technique is to overprovision the system with 
“spare” units. If the active unit has a defect, one of the spare 
units is activated and becomes the primary unit. There are 
two flavors of sparing. The first, or hot sparing runs the spare 
units all the time, but does not use answers from them. If the 
active unit fails, the hot spares have all the state from the 
active unit and can be directly switched in to replace the 
faulty unit. The second scheme is cold sparing, where spare 
units are kept inactive until needed. Molecular electronic 
systems using array based circuits have proposed using spar-
ing to tolerate defects [6]. 

Another common approach, which is a special case of 
hot-sparing, is the use of N-modular redundancy (NMR) 
[24]. Triple-modular redundancy (TMR) [16] is one com-
monly used implementation of NMR. TMR and, in general, 
NMR operates on the premise that it is easier to verify the 
operation of a simple voting circuit, than it is to verify the 
operation of a complex computing unit. The system has N (N 
is 3 for TMR) replicas of the computing unit. The output of 
all these units is fed into a voting unit. This unit then picks 
the answer that corresponds to a majority of the N units. 
NMR works well for defect rates below 50%, beyond which, 
the voting mechanism cannot reliably decide between the 
correct and incorrect answers. NMR wastes a lot of comput-
ing resources that need to be dedicated to computing the 
same answer in multiple units. 

Han et al. [8] and Nikolic et al. [18] present a comparison 
of N-modular redundancy, NAND multiplexing, cascaded 
TMR and other approaches to using redundancy for defect 
tolerance. Our approach differs fundamentally from theirs in 
that we are trying to isolate defects from the active parts of 
the system while their approach compensates for defects in 
active parts of the system.

7  Conclusions
Self-assembly may enable the construction of large scale 

systems with more than a trillion processing elements. How-
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ever, self-assembled systems will need to be designed to 
include mechanisms for defect tolerance. In this paper, we 
have presented one mechanism to achieve defect tolerance in 
a system that is composed of up to 1012 processing elements. 
We have adapted the reverse path forwarding broadcast rout-
ing algorithm for use in a self-assembled network of nodes. 
We have shown that our mechanism can isolate defects in a 
system and create a broadcast tree that connects most of the 
functional nodes. We have also presented an analysis of the 
connectivity of such a network of self-assembled nodes. Our 
mechanism can be extended to include multiple paths, thus 
providing robustness in the face of runtime faults. This 
extension involves a tradeoff in terms of the storage required 
at each node, and the desired path redundancy.
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