
Appears in the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Austin, Texas, April 2013

1

Evaluating Cache Coherent Shared Virtual Memory

for Heterogeneous Multicore Chips

Blake A. Hechtman and Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University

Although current homogeneous chips tightly couple the

cores with cache-coherent shared virtual memory (CCSVM),

this is not the communication paradigm used by any current

heterogeneous chip. In this paper, we present a CCSVM

design for a CPU/GPU chip, as well as an extension of the

pthreads programming model for programming this HMC.

We experimentally compare CCSVM/xthreads to a state-of-

the-art CPU/GPU chip from AMD that runs OpenCL

software. CCSVM’s more efficient communication enables

far better performance and far fewer DRAM accesses.

1 Introduction

The trend in general-purpose chips is for them to consist of

multiple cores of various types—including traditional,

general-purpose compute cores (CPU cores), graphics cores

(GPU cores), digital signal processing cores (DSPs),

cryptography engines, etc.—connected to each other and to a

memory system. Already, general-purpose chips from major

manufacturers include CPU and GPU cores, including Intel’s

Sandy Bridge [6][4] and AMD’s Fusion [2], as well as Nvidia

Research’s Echelon [5].

Perhaps surprisingly, the communication paradigms in

emerging heterogeneous multicores (HMCs) differ from the

established, dominant communication paradigm for

homogeneous multicores. The vast majority of homogeneous

multicores provide tight coupling between cores, with all

cores communicating and synchronizing via cache-coherent

shared virtual memory (CCSVM). Despite the benefits of

tight coupling, current HMCs are loosely coupled and do not

support CCSVM.

We develop a tightly coupled CCSVM architecture and

microarchitecture for an HMC consisting of CPU cores and

GPU cores. We do not claim to invent CCSVM for HMCs;

rather our goal is to evaluate one strawman design in this

space. We also present a programming model that we have

developed for utilizing CCSVM on an HMC. The

programming model, called xthreads, is a natural extension of

pthreads. In the xthreads programming model, a process

running on a CPU can spawn a set of threads on GPU cores in

a way that is similar to how one can spawn threads on CPU

cores using pthreads.

2 CCSVM Chip Design

The chip consists of CPU cores and GPU cores that are

connected together via some interconnection network. Each

CPU core and each GPU core has its own private cache (or

cache hierarchy) and its own private TLB and page table

walker. All cores share one or more levels of globally shared

cache. This cache is logically shared and CPU and GPU

cores can communicate via loads and stores to this cache.

We illustrate the organization of our microarchitecture in

Figure 1. The key aspect of our architecture is to extend

CCSVM from homogeneous to heterogeneous chips. The

CCSVM design is intentionally simple and conservative. The

architecture provides sequential consistency using an

unoptimized cache coherence protocol that treats CPU and

GPU cores identically.

3 Xthreads Programming Model

We developed xthreads with the goal of providing a

pthreads-like programming model that exploits CCSVM and

is easy to use. The xthreads API extends pthreads by

enabling a thread on a CPU core to spawn threads on non-

CPU cores. The two primary mechanisms for

synchronization are wait/signal and barrier. A CPU thread or

a set of GPU threads can wait until signaled by CPU or GPU

threads. The wait/signal pair operates on condition variables

in memory. The barrier function is a global barrier across one

CPU thread and a set of GPU threads.

When a process begins, the CPU cores begin executing

threads as they would in a “normal” pthreads application.

The differences begin when a CPU initiates a GPU task with

N threads. For each task, the library performs a write syscall

to the GPU interface device (GIFD). The GIFD then assigns

incoming tasks to available GPU cores. A GPU core with a

task begins executing from the program counter it receives.

When it reaches an Exit instruction, it halts and waits for the

GIFD to send it a new task.

Figure 1. System Model.

Appears in the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Austin, Texas, April 2013

2

4 Experimental Evaluation

We have implemented our chip design in the gem5 full-

system simulator [1]. Our extensions to gem5 enable it to

faithfully model the functionality and timing of the entire

system. The simulated CPU cores are in-order x86 cores that

run unmodified Linux 2.6 with the addition of our simple

GIFD driver (~30 lines of C code). The GPU cores are SIMT

cores that have an Alpha-like ISA that has been modified to

be data parallel.

We purchased an AMD “Llano” system based on its

Quad-Core A8-3850 APU [3], and we use this real hardware

running OpenCL software for comparisons to CCSVM

running xthreads software.

To experimentally demonstrate the potential benefits of

tighter coupling between the CPU and GPU cores, we

compare the execution of a (dense) matrix multiplication

kernel that is launched from a CPU to as many GPU cores as

can be utilized for the matrix size. Intuitively, the overhead

to launch a task will be better amortized over larger task

sizes, and the benefit of CCSVM will be highlighted by how

it enables smaller tasks to be profitably offloaded to the GPU

cores. In Figure 2, we plot the log-scale runtimes of the

AMD APU running OpenCL code and CCSVM running

xthreads code, relative to the AMD CPU core (i.e., just using

the CPU core on the APU chip), as a function of matrix sizes.

The results are striking: CCSVM/xthreads greatly

outperforms the APU, especially for smaller matrix sizes.

Eventually, as the matrices reach 1024x1024, the APU’s

performance catches up to CCSVM/xthreads, because the

APU’s raw GPU performance exceeds that of our simulated

GPU cores. The results dramatically confirm that optimizing

the communication between the CPU and GPU cores offers

opportunities for profitably offloading smaller units of work

to GPU cores, thus increasing their benefits.

CCVSM avoids the vast amount of off-chip traffic that

current chips require for CPU-GPU communication. We plot

the memory traffic results in Figure 3. As with the

performance results, the differences between the

APU/OpenCL and CCSVM/xthreads are dramatic.

Furthermore, as the problem size increases, that ratio remains

roughly the same, and the number of DRAM accesses from

the AMD CPU core increases greatly as the working set

outgrows the CPU core’s caches.

These DRAM access results have two implications. First,

the results help to explain the performance results. The APU

requires far more DRAM accesses, and these long-latency

off-chip accesses hurt its performance, relative to CCSVM

and its largely on-chip communication. Second, given both

the importance of using DRAM bandwidth efficiently and the

energy consumed by DRAM accesses, the results show that

CCSVM/xthreads offers large advantages for system design.

5 Conclusions

We have demonstrated that the tight coupling of cores

provided by CCSVM can potentially offer great benefits to an

HMC. Our CCSVM architecture with the xthreads

programming model is a functional and promising starting

point for future research into new features (e.g., programming

language extensions) and optimizations for performance and

efficiency.

Acknowledgment

This material is based on work supported by the National

Science Foundation under grant CCF-1216695.

References

[1] N. Binkert et al., “The Gem5 Simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, p. 1, Aug. 2011.

[2] B. Burgess, B. Cohen, M. Denman, J. Dundas, D. Kaplan, and J.

Rupley, “Bobcat: AMD’s Low-Power x86 Processor,” IEEE Micro, vol.

31, no. 2, pp. 16–25, Mar. 2011.

[3] D. Foley et al., “AMD’s ‘Llano’ Fusion APU,” in Hot Chips 23, 2011.

[4] Intel, “Intel® OpenSource HD Graphics Programmer’s Reference

Manual (PRM), Volume 1, Part 1: Graphics Core (SandyBridge).” May-

2011.

[5] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,

“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31, no.

5, pp. 7–17, Oct. 2011.

[6] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A Fully

Integrated Multi-CPU, GPU and Memory Controller 32nm Processor,” in

2011 IEEE International Solid-State Circuits Conference, 2011, pp. 264–

266.

Figure 2. Performance on Matrix Multiply Figure 3. DRAM Accesses for Matrix Multiply

