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Although current homogeneous chips tightly couple the 

cores with cache-coherent shared virtual memory (CCSVM), 

this is not the communication paradigm used by any current 

heterogeneous chip.  In this paper, we present a CCSVM 

design for a CPU/GPU chip, as well as an extension of the 

pthreads programming model for programming this HMC.  

We experimentally compare CCSVM/xthreads to a state-of-

the-art CPU/GPU chip from AMD that runs OpenCL 

software.  CCSVM’s more efficient communication enables 

far better performance and far fewer DRAM accesses. 

1 Introduction 

The trend in general-purpose chips is for them to consist of 

multiple cores of various types—including traditional, 

general-purpose compute cores (CPU cores), graphics cores 

(GPU cores), digital signal processing cores (DSPs), 

cryptography engines, etc.—connected to each other and to a 

memory system.  Already, general-purpose chips from major 

manufacturers include CPU and GPU cores, including Intel’s 

Sandy Bridge [6][4] and AMD’s Fusion [2], as well as Nvidia 

Research’s Echelon [5].  

Perhaps surprisingly, the communication paradigms in 

emerging heterogeneous multicores (HMCs) differ from the 

established, dominant communication paradigm for 

homogeneous multicores.  The vast majority of homogeneous 

multicores provide tight coupling between cores, with all 

cores communicating and synchronizing via cache-coherent 

shared virtual memory (CCSVM).  Despite the benefits of 

tight coupling, current HMCs are loosely coupled and do not 

support CCSVM. 

We develop a tightly coupled CCSVM architecture and 

microarchitecture for an HMC consisting of CPU cores and 

GPU cores.  We do not claim to invent CCSVM for HMCs; 

rather our goal is to evaluate one strawman design in this 

space. We also present a programming model that we have 

developed for utilizing CCSVM on an HMC.  The 

programming model, called xthreads, is a natural extension of 

pthreads.  In the xthreads programming model, a process 

running on a CPU can spawn a set of threads on GPU cores in 

a way that is similar to how one can spawn threads on CPU 

cores using pthreads.   

2 CCSVM Chip Design 

The chip consists of CPU cores and GPU cores that are 

connected together via some interconnection network.  Each 

CPU core and each GPU core has its own private cache (or 

cache hierarchy) and its own private TLB and page table 

walker.  All cores share one or more levels of globally shared 

cache.  This cache is logically shared and CPU and GPU 

cores can communicate via loads and stores to this cache.   

We illustrate the organization of our microarchitecture in 

Figure 1.  The key aspect of our architecture is to extend 

CCSVM from homogeneous to heterogeneous chips.  The 

CCSVM design is intentionally simple and conservative.  The 

architecture provides sequential consistency using an 

unoptimized cache coherence protocol that treats CPU and 

GPU cores identically. 

3 Xthreads Programming Model 

We developed xthreads with the goal of providing a 

pthreads-like programming model that exploits CCSVM and 

is easy to use.  The xthreads API extends pthreads by 

enabling a thread on a CPU core to spawn threads on non-

CPU cores.  The two primary mechanisms for 

synchronization are wait/signal and barrier.  A CPU thread or 

a set of GPU threads can wait until signaled by CPU or GPU 

threads.  The wait/signal pair operates on condition variables 

in memory.  The barrier function is a global barrier across one 

CPU thread and a set of GPU threads.     

When a process begins, the CPU cores begin executing 

threads as they would in a “normal” pthreads application.  

The differences begin when a CPU initiates a GPU task with 

N threads.  For each task, the library performs a write syscall 

to the GPU interface device (GIFD).  The GIFD then assigns 

incoming tasks to available GPU cores.   A GPU core with a 

task begins executing from the program counter it receives.   

When it reaches an Exit instruction, it halts and waits for the 

GIFD to send it a new task.  

 

 
Figure 1.  System Model. 
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4 Experimental Evaluation 

We have implemented our chip design in the gem5 full-

system simulator [1].  Our extensions to gem5 enable it to 

faithfully model the functionality and timing of the entire 

system.  The simulated CPU cores are in-order x86 cores that 

run unmodified Linux 2.6 with the addition of our simple 

GIFD driver (~30 lines of C code).  The GPU cores are SIMT 

cores that have an Alpha-like ISA that has been modified to 

be data parallel.   

We purchased an AMD “Llano” system based on its 

Quad-Core A8-3850 APU [3], and we use this real hardware 

running OpenCL software for comparisons to CCSVM 

running xthreads software.  

To experimentally demonstrate the potential benefits of 

tighter coupling between the CPU and GPU cores, we 

compare the execution of a (dense) matrix multiplication 

kernel that is launched from a CPU to as many GPU cores as 

can be utilized for the matrix size.  Intuitively, the overhead 

to launch a task will be better amortized over larger task 

sizes, and the benefit of CCSVM will be highlighted by how 

it enables smaller tasks to be profitably offloaded to the GPU 

cores.  In Figure 2, we plot the log-scale runtimes of the 

AMD APU running OpenCL code and CCSVM running 

xthreads code, relative to the AMD CPU core (i.e., just using 

the CPU core on the APU chip), as a function of matrix sizes.   

The results are striking: CCSVM/xthreads greatly 

outperforms the APU, especially for smaller matrix sizes.  

Eventually, as the matrices reach 1024x1024, the APU’s 

performance catches up to CCSVM/xthreads, because the 

APU’s raw GPU performance exceeds that of our simulated 

GPU cores.  The results dramatically confirm that optimizing 

the communication between the CPU and GPU cores offers 

opportunities for profitably offloading smaller units of work 

to GPU cores, thus increasing their benefits. 

CCVSM avoids the vast amount of off-chip traffic that 

current chips require for CPU-GPU communication.  We plot 

the memory traffic results in Figure 3.  As with the 

performance results, the differences between the 

APU/OpenCL and CCSVM/xthreads are dramatic.  

Furthermore, as the problem size increases, that ratio remains 

roughly the same, and the number of DRAM accesses from 

the AMD CPU core increases greatly as the working set 

outgrows the CPU core’s caches.   

These DRAM access results have two implications.  First, 

the results help to explain the performance results.  The APU 

requires far more DRAM accesses, and these long-latency 

off-chip accesses hurt its performance, relative to CCSVM 

and its largely on-chip communication.  Second, given both 

the importance of using DRAM bandwidth efficiently and the 

energy consumed by DRAM accesses, the results show that 

CCSVM/xthreads offers large advantages for system design. 

5 Conclusions  

We have demonstrated that the tight coupling of cores 

provided by CCSVM can potentially offer great benefits to an 

HMC. Our CCSVM architecture with the xthreads 

programming model is a functional and promising starting 

point for future research into new features (e.g., programming 

language extensions) and optimizations for performance and 

efficiency. 
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