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Abstract

This paper develops and validates an analytical model
for evaluating various types of architectural alternatives for
shared-memory systems with processors that aggressively
exploit instruction-level parallelism. Compared to simu-
lation, the analytical model is many orders of magnitude
faster to solve, yielding highly accurate system performance
estimates in seconds.

The model input parameters characterize the ability of
an application to exploit instruction-level parallelism as
well as the interaction between the application and the
memory system architecture. A trace-driven simulation
methodology is developed that allows these parameters to
be generated over 100 times faster than with a detailed
execution-driven simulator.

Finally, this paper shows that the analytical model can
be used to gain insights into application performance and
to evaluate architectural design trade-offs.

1 Intr oduction

Sharedmemorymultiprocessorsaregainingwide popu-
larity asplatformsfor technicalandcommercialcomputing.
Computerarchitectshavegenerallyreliedonsimulationfor
designingshared-memorysystems.However, an architec-
turalsimulatorfor shared-memorysystemswith processors
thataggressively exploit instruction-level parallelism(ILP)
requiresseveralhoursto simulatea few secondsof realex-
ecutiontime with reasonableaccuracy [6]. This severely
restrictstheapplicationandarchitecturaldesignspacethat
canbeexplored.�
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supportedin partby anIBM UniversityPartnershipawardandby theTexas
AdvancedTechnologyProgramunderGrantNo. 003604-025. Vijay S.Pai
is supportedby aFannieandJohnHertzFoundationFellowship.

This papertakes an alternate,potentially complemen-
tary, approach.We developandvalidateananalyticmodel
for evaluatingarchitecturaltrade-offs for shared-memory
systemswith ILP processors. The model validatesex-
tremely well againstdetailedexecution-driven simulation
andproduceseachresultin a few seconds.Thus,themodel
canbea usefultool for culling the designspace,andthen
simulationcanbeusedfor furtherstudiesof the important
regions.In addition,themodelinputparametervaluesyield
insight into how particularapplications(andcurrentcom-
piler technology)interactwith thememorysystem.

One challengein developing a high-fidelity analytical
modelof a complex architectureis to createa tractablesys-
temof equationsthatrepresentsall of thesystemdetailsthat
have non-negligible impact on the predictedperformance
measures.Anothersignificantchallengeis tocreateamodel
that hasa relatively small setof input parametersthat are
easyto measureor estimate.A key questionaddressedin
this researchis whethera highly accurateyet tractablesys-
temof equationswith fairly simpleinputparameterscanbe
createdfor complex parallelILP-processorarchitectures.

We areawareof two previousanalyticalmodelsof mul-
tiprocessorsthat have non-blockingcaches[4, 27]. The
model by Albonesi and Koren [4] was not validatedand
hasat leasttwo significantdrawbacks: (1) the numberof
memoryreadsthatareissuedbeforethenext readblocksis
assumedto befixed,whereasthatnumberchangesdynam-
ically for ILP processors,and(2) someof thefixedmodel
input parameters,suchas the probability the write buffer
is full or thepercentoverlapbetweenmemoryreadlatency
andcomputation,dependon the outputsthemodelis sup-
posedto compute. The modelby Willick andEager[27]
also assumesa fixed limit on the numberof outstanding
memoryrequests(e.g.,a hardwareupperbound),andwas
validatedagainsta simulationthathadstatisticalworkload
assumptionssimilar to theanalyticalmodel.We extendthe
Willick andEagermodel in a numberof significantways,
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and we validateour model againstdetailedsimulationof
applicationsona modernarchitecture.

Thekey featuresof themodelin thispaperare:

� TheILP processorandits associatedtwo-level cache
systemare viewed as a black box that generates
requeststo the memory systemand intermittently
blocks after a dynamically changing numberof re-
quests.Parametersthat characterizethis black box,
including the time betweenlevel two (L2) cache
misses,the distribution of the numberof outstand-
ing requestsbeforea processorblocks,andthe ratio
of requeststhataresatisfiedby the local vs. remote
memory, lead to insights into applicationbehavior
(andcurrentcompilertechnology)thatarediscussed
in Section6.

� We iteratebetweentwo submodels.Onesubmodel
computestheprocessorstall time dueto loadmisses
thatcannotberetireduntil thedatareturnsfrommem-
ory. Theothersubmodelcomputesthestall time due
to thehardwareconstraintonthetotalnumberof out-
standingmemoryrequests.

� In eachsubmodel,the memorysystemis viewed as
a systemof queues(e.g., the memorybus, DRAM
modulesandassociateddirectories,andnetwork in-
terfaces)anddelaycenters(e.g.,switchesin theinter-
connectionnetwork). Wecreateasetof intuitivecus-
tomized meanvalueanalysis(CMVA) equations[26]
to obtaintheestimatesof processorstall time in each
submodel. The CMVA techniquehasproven to be
accuratein validationexperimentsfor a numberof
simplerarchitecturalmodels[26, 5].

� Weshow thatreasonableapproximationsof key input
parametersthatcharacterizetheapplicationbehavior
canbeobtainedfrom ahigh-level simulator, FastILP,
that runstwo ordersof magnitudefasterthanthede-
tailed simulation. Moreover, other input parameters
canalsobeobtainedfrom veryfastsimulationor may
be variedwithin rangesthat have beenobserved for
similarapplications.

The analytic model estimatesprocessorthroughput
within 1-12%of theestimatesfrom detailedsimulationfor
several complex applicationsand architecturalconfigura-
tions. Although the input parametervaluesthat character-
ize applicationbehavior areobtainedfrom simulation,the
model’sarchitecturalparameterscanbevariedquickly and
easilyusingjust theanalyticalmodel.We will illustratethe
useof theanalyticmodelto cull thesystemdesignspacein
Section6.

Mem

DirL2 Cache

Processor

Bus

Interface

L1 Cache

Figure 1. Parallel System Architecture

2 SystemAr chitecture

The architecturechosen for this study is a cache-
coherent,releaseconsistentshared-memorymultiprocessor
systemwheretheprocessingnodesareconnectedby amesh
interconnectionnetwork, as shown in Figure 1. The ar-
chitectureis modeledin RSIM [20], a detailedexecution-
driven simulatorfor shared-memorymultiprocessorswith
ILP processorsagainstwhichwevalidateourmodel.How-
ever, with fairly straightforward modifications,the model
caneasilybeappliedto variationson thisarchitecture(e.g.,
othercachecoherenceprotocols,changesin the intercon-
nector memorysystemorganization,etc.)

Theprocessorexploits ILP usingfeaturessuchasmulti-
ple issue,out-of-orderscheduling,non-blockingloads,and
speculative execution. Instructionsarefetchedinto the in-
structionwindow, andthey areissuedto thefunctionalunits
whenall of theirdependencesaresatisfied.Theinstructions
arefetchedinto andretiredfrom thewindow in programor-
der, but they may be issuedto the functionalunits out of
programorder. In particular, becausethesystemis release
consistent,loadsandstorescanexecuteoutof order.

To maintainpreciseinterrupts,storesissueto themem-
ory systemonly whenthey reachthe top of the instruction
window. Releaseconsistency allows a storeto retire from
the instructionwindow even while it is not yet complete
(or even issued)in the memorysystem. Thus, storesdo
not directly block the processor. Exceptfor stores,an in-
structioncanretire from the instructionwindow only after
it completesexecution.An implicationof this requirement
is that whena load reachesthe top of the instructionwin-
dow, retirementmuststall if the valueof the load hasnot
yet returned.

The L1 cacheis write-through,multiported,and non-
blocking. The L2 cacheis writeback,write-allocate,non-
blocking, andfully pipelined. The cachesusemissstatus
holding registers(MSHRs) to track the statusof all out-
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parameter description value�
numberof nodes� memorymodulespernode 4	�

�
numberof MSHRs 8������������� �
NI sendoccupancy for request 8����� ������� �
NI sendoccupancy for data 8� ����� � � �
NI receiveoccupancy for request 8� ��� � � � �
NI receiveoccupancy for data 8�"!$#&%(' )
busoccupancy for request 4�"!$#&%(' *
busoccupancy for data 12��+-,.+
memory/directory(DRAM) access 40�0/�132
L2 tagcheck 4�"% �04 /�5 

per-wordnetwork switchoccupancy 8

Table 1. System Architecture Parameter s

standingmisses[14]. Missesto the samecacheline are
coalesced in theMSHRs;only onememoryrequestis gen-
eratedfor suchcoalescedmisses.

Thememoryanddirectoryareinterleaved.Directoryac-
cessesareoverlappedwith memoryaccesses.The bus is
split transaction.All traffic out of the nodegoesthrough
the sendnetwork interface(NI) via the bus, and all traf-
fic into the nodecomesfrom the receive NI via the bus.
Themeshinterconnectionnetwork useswormhole-routing.
Separaterequestandreply networksareusedfor deadlock
avoidance.

Cachecoherenceismaintainedbyafairly standardthree-
state(MSI) directory-basedinvalidationprotocol.Thepro-
tocol supportscache-to-cachetransfersin thecaseof a re-
questfor datathat is dirty in a remotecache.For deadlock
avoidance,writebacksusethereplynetworkanddonotgen-
erateacknowledgments.Consequently, they do not reserve
MSHRsor othercacheresources.

3 Model Parameters

Table1 definesthe systemarchitectureparameters,in-
cludingthevaluesthatareusedin thebaselinearchitecture
in Section5. Occupanciesarein unitsof CPUcycles.

In any modeling study, defining a good set of appli-
cation or workload parametersposesa significant chal-
lenge. Table2 summarizestheapplicationparametersthat
weredevelopedwith the following goals: (1) ableto cap-
ture the principal performance-determiningcharacteristics
of theworkloadfor theintendedapplicationsof themodel,
(2) relatively few andsimpleto measure(makingthemodel
practicallyuseful),and(3) insensitive to changesin thear-
chitecturalparametersthatwill bevariedto cull thesystem
designspace.

Thefirst fiveparametersin Table2 characterizetheabil-
ity of the processorto overlap multiple memoryrequests

while runningagivencompiledapplication(or setof appli-
cations).Theseparameters,referredto asILP parameters,
arediscussedin moredetail below. The otherparameters
in thetablearestandardparametersfor modelsof architec-
turesbasedon directorycoherenceprotocols[1]. Further
descriptionof thoseparametersis omitteddueto spacecon-
straints.

Note that the parametersare definedfor homogeneous
applications; that is, eachprocessorhasthesamevaluefor
eachparameterin the table,andmemoryrequestsareas-
sumedto beequallydistributedacrosstherelevantmemory
modules(local or remote)dueto interleaving andeffective
datalayout.Thereis anaturalextensionof theseparameters
for non-homogeneousapplications,but for simplicity in the
modelexpositionwe usethegivenparametersandvalidate
againsthomogeneousapplicationsin Section5.

The parameter6 is the averagetime betweenrequests
generatedby the processorto the (main) memorysubsys-
tem,not includingthetimethattheprocessoris stalledor is
spin-waiting on a synchronizationeventsuchasa lock re-
lease,flag, or barriercompletion.We alsomeasuretheco-
efficientof variationof 6 , 798;: . 6 is well-definedfor simple
processorsthat block on eachload andstore,whereasthe
notionthata complex modernprocessoris stalledhassev-
eralpossibledefinitions.For therobustparameter6 that is
neededfor themodel,theprocessoris definedto bestalled
when it is completely stalled; that is, the functionalunits
arecompletelyidle, nofurtherinstructionscanberetiredor
issueduntil datareturnsfrom memory, andall outstanding
cacherequestsarewaitingfor datafrom mainmemory. The
fractionof time a processoris completelystalledis oneof
the performancemetricsestimatedby the analyticmodel.
Theparameter6 doesnot includethis time.

The < %.=?>@5 
BAC� ) 4 /�,
parameteris the fraction of write re-

queststhat aresynchronous;that is, they aregeneratedby
a read-modify-writerequestor they coalescewith at least
onelaterreadmiss.Thesignificanceof this parameterwill
bediscussedin Section5. Readmissesthat coalescewith
earlierreadrequestsarecompletelyinvisible to the model
becausethey do not generateany memorysystemtraffic
and they do not causeany new blocking behavior. Thus,
a parameterfor the frequency of read-readcoalescingis
not needed.Likewise for writes that coalescewith previ-
oustransactions.

Thesetof parameters<BDFE 	HGJI
, measuredfor a num-

berof MSHRslarger thanthemaximumvaluethatwill be
evaluatedwith themodel,arethefractions of processor stall
periods that have

	
MSHRs occupiedwith readmisses.

Notethatif areadmissoccursfor aline thathasapriorwrite
missoutstanding,thenthe miss is countedasa readmiss
whenmeasuring

	
. Also notethatmisspeculatedreadsare

countedin
	

. The <BD parametersareuniqueto a system
with non-blockingloads.
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Parameter Description6 Averagetimebetweenread,write, or upgraderequeststo memory, notcountingthetimewhen
theprocessoris completelystalledor is spin-waitingonasynchronizationevent798 : Coefficientof Variationof 6< %�=?>@5 
BAC� ) 4 /�,
Fractionof write requeststhataregeneratedby atomicread-modify-writeinstructionsor that
coalescewith at leastonelaterread< D Fractionof processorstallsthatfind

	
MSHRswith outstandingreadrequestsK )3,.1?* E KL� ) 4 /�, E K #
M?2�)(1?*�,

Probabilitythata memoryrequestis a read,write, or upgradeKL� !
Probabilitythata reador write requestcausesawritebackof a cacheblockKLN�O P
Probabilitydirectoryis local for a type Q transaction;Q =read,write, upgrade,writebackK D O P ' =
Probabilityhomememorycansupplythedatafor a type Q"ESR request;Q =read,write; R =localhome,remotehomeKLT 
VU M O PVW > U / A +X,�+ U )(=
Probabilitythata requestof type Q to a remotehomeis forwardedto a cacheata third node;Q =read,writeY
Averagenumberof network switchestraversedby apacketZ
Averagenumberof invalidatescausedby awrite or upgradeto a cleanline

Table 2. Application Parameter s

We have verified that the applicationinput parameters
arerelatively insensitive to changes in the architectural pa-
rameters thatcanbevariedin themodel(e.g.,thenumber
of MSHRs, the speedof the bus and interconnectionnet-
work switches,mainmemoryconfiguration,etc.).However6 , <BD , and < %.=?>@5 
BAC� ) 4 /�,

aresensitiveto variousparameters
of theprocessorandcachesubsystem,suchasthe instruc-
tion window size.This is akey motivationfor investigating
fastparameterestimationmethods,asdiscussednext.

3.1 Quickly Estimating Application Parameters

Applicationparametersotherthan 6 , 798 : , <BD , andthe
part of < %.=?>@5 
BAC� ) 4 /�,

that is due to writes coalescingwith
latermemoryreadrequests,do not dependdirectly on ILP
featuresandcanthusbemeasuredusingcurrentfastsimula-
torsfor multiprocessorswith simplesingle-issueprocessors
(e.g.,[28]).

The remainderof this sectionprovidesan overview of
FastILP, a fasthigh-level simulatorfor quickly estimating
the ILP parameters6 , 798 : , <BD , and < %�=
>@5 
BAC� ) 4 /�,

. Since
FastILPdoesnot needto measuretheexactcycle countfor
anexecution,it canachieve very high performanceby ab-
stractingboth the ILP processorand the memorysystem,
and modelingonly enoughstateto generatethe required
ILP parameters.FastILP differs from conventionalcycle
by cycle ILP-basedmultiprocessorsimulatorsin threekey
ways.

First,FastILPspeedsupprocessorsimulationusingtech-
niquesfrom DirectRSIM,a simulatordesignedfor speed-
ing up accuratetiming simulationof ILP-basedmultipro-
cessors[6]. Eachinstructionin FastILPsetsthetimestamp
of its destinationregisterbasedon thecompletiontime for
that instruction.For non-memoryinstructions,thecomple-

tion time is determinedby the timestampsof the source
registersof the instructionand the availability of the ap-
propriatefunctionalunit. For memoryinstructions,thepro-
cessorkeepsenoughstateinformationto simulatememory
disambiguation.Thecompletiontimestampcalculationfor
amemoryrequestis uniqueto FastILP, asdescribedbelow.

Second,FastILPspeedsup memorysystemsimulation
by takingadvantageof two observations: the ILP parame-
tersarenotverysensitiveto theexactlatenciesorconfigura-
tion of thememorysystem,andL2 cachemisseshave high
latenciesthatcanbeoverlappedeffectively only with other
memorymisses[21]. Using theseobservations,FastILP
doesnot explicitly simulateany partof thememorysystem
beyondthecachehierarchy. FastILPdividessimulatedtime
into distinct “eras,” which start when one or more mem-
ory repliesunblocktheprocessorandendwhentheproces-
sorblocksagainwaiting for a memoryreply. No memory
repliesreturnduring anera.Oneor morerepliesreturnto-
getherat thebeginningof eachera,dependingon whether
the processorhasenoughwork to completelyoverlapthe
timebetweenincomingreplies.For simplicity, in theexper-
imentsin Section5.2,we assumefor a 64-elementinstruc-
tion window thatmemoryresponsesreturnin theorderthat
the respective requestsweregenerated,oneat a time. For
a128-elementinstructionwindow weassumethatall mem-
ory requestsoutstandingat theendof anerareturntogether
at thestartof thenext era(i.e., computationfully overlaps
thetimebetweentheseresponsesin therealsystem).

The useof erasallows FastILPto computetimestamps
for loadandstoreinstructions,with eachtimestampinclud-
ing both the era in which the datareturns,alongwith the
cycle within theera.Theparameters6 and 798[: arecalcu-
latedaccordingto thepointswithin eacheraatwhichmisses
occur; <@D is measuredby countingthe readrequestsout-
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standingat the end of eachera. In this fashion,FastILP
canprocessall instructionsin-order, while still simulating
anout-of-orderprocessor.

Third, FastILPfurtherspeedsup simulationtime by us-
ing trace-driven (as opposedto execution-driven) simula-
tion and by simulating the trace of only one processor.
The useof trace-drivensimulationis possiblebecausepa-
rametersareestimatedfor homogeneousapplicationsand
synchronizationspin time is not measuredin 6 . Further,
FastILPmakesan approximationthat mispredictedexecu-
tion pathsdo not have a significantimpacton the ILP pa-
rameters;this assumptionis valid for the applicationsval-
idatedin Section5.2. FastILPassumeshomogeneousap-
plications,allowing it to usethetraceof only a singlepro-
cessor, wherethetraceprovidesinformationaboutmemory
accessesknown to becommunicationmisses.As commu-
nication missesgenerallystemfrom applicationand data
set characteristicsratherthan processormicroarchitecture
or systemlatencies,suchtracescan be quickly generated
by an appropriatelyinstrumentedfastsimulatorfor multi-
processorswith simple processorsor by a multiprocessor
trace-generationutility.

Usingtheaboveoptimizations,FastILPachievestwo or-
dersof magnitudespeedupover RSIM, andmorethanan
orderof magnitudespeedupoverDirectRSIM.

4 The Analytic Model

Theprincipaloutputmeasurecomputedby themodelis
thesystemthroughput,measuredin instructionsretiredper
cycle (IPC). This throughputis computedasa function of
theinput parametersthatcharacterizetheworkloadandthe
memoryarchitecture.

Thebaselinemodeldefinedin this sectionassumesthat
thedirectoryis implementedin DRAM andthat thedirec-
tory lookup is coupledwith memoryaccess,so a single
servicetime appliesto the parallelmemoryanddirectory
lookup. Variationson this directoryorganizationaremod-
eledin Section6.

4.1 Model Overview

We usethe term synchronous for readrequests(andfor
read-modify-writerequests)becausethe datamust return
beforea load (or read-modify-write)instructionis retired
from the instructionwindow. Other requests(writes, up-
grades,writebacks,invalidates,andacknowledgments)are
asynchronous.

A key questionin developingtheanalyticmodelis how
to computethroughputas a function of the dynamically
changingnumberof outstandingmemoryrequeststhatcan
be issuedbeforethe processormuststall waiting for data
to returnfrom memory. We addressthis issueby iterating

betweenthefollowing two submodelsfor eachvalueof
	

,I]\^	`_a	 
V�
:� the synchronous blocking submodel (SB) that com-

putesthefractionof time theprocessoris stalleddue
to loador read-modify-writeinstructionsthatcannot
beretireduntil thedatareturnsfrom memory,� the MSHR blocking submodel (MB) that computes
theadditionalfractionof time theprocessoris stalled
purelydueto theMSHRsbeingfull.

For
	 b`	c
V�

, we computethroughputfrom a modi-
fied versionof theMSHR-blockingsubmodelalone,asex-
plainedbelow. Oncethesethroughputsarecomputed,we
computetheweighted sum of thethroughputs,weightedby
the frequency of eachthroughputvaluethat would be ob-
served for the numberof MSHRsin the system.This fre-
quency canin turn be computedfrom the modelinput pa-
rameters,<@D . Theremainderof thissectiongivesthemost
pertinentdetailsof thetwo submodelsaswell ashow slow-
down dueto synchronizationdelaysis computed;the full
setof equationsfor thesubmodelsis givenin [25].

Eachof the two submodels(SB andMB) containsthe
samesetof customizedMVA equations[26] to computethe
delayfor a transactionin thememorysubsystem(seeSec-
tion 4.2). In the SB submodel,the numberof customers
perprocessoris equalto themaximumnumberof readre-
queststhat canbe issuedbeforethe processorblocks(i.e.,
oneof the observedvaluesof

	
). The processor(andits

associatedcachesubsystem)is a FCFSqueuethat initially
hasmeanservicetime equalto 6 . Note that this queueis
only idle when

	
memoryreadrequestsareoutstanding;

otherwiseit is generatingmemoryrequestsat rate
Ied 6 . If

therequestis a write miss,thecustomeris routedimmedi-
atelybackto theprocessorwhile simultaneouslyforking an
asynchronousmemorywrite or upgradetransaction,using
thetechniqueproposedby HeidelbergerandTrivedi [10].

In theMB submodel,thenumberof customersperpro-
cessoris equalto the numberof MSHRs,

	c
V�
. MSHRs

canbeoccupiedby read,write, or upgraderequests;how-
ever, for architectureswith non-blockingstoresandin-order
retirementof loadsandfor

	f_g	 
V�
, all of theblocking

time whenMSHRscontainboth readandwrite requestsis
accountedfor in the SB submodel.In this case,the addi-
tional blockingtime thatneedsto becomputedby theMB
modelis for thecasethatall MSHRsareoccupiedby write
or upgradememorytransactions(or writebacks,if they oc-
cupy MSHRsin thearchitectureof interest).Thecustomers
in the MB modelthusrepresentthe behavior of write and
upgradememory transactions. When readmissesoccur,
thesecustomersareimmediatelyroutedbackto theproces-
sor (sincetheprocessorcannotstall on readmissesin this
submodel)while simultaneouslyforking a readtransaction
to thememorysystem,againusingthetechniquein [10].

5



Themeantime thateachcustomeroccupiestheproces-
sorin theMB modelis equalto 6 adjustedto reflectthefrac-
tion of timethattheprocessoris stalleddueto loador read-
modify-write instructionsthatcannotberetired(computed
from theSB model).Thatis, 6 Dih b :jlkVm , where npo h de-
notesthefractionof time theprocessoris not stalledin the
SB model. Oncethemeasuresarecomputedfrom theMB
model, the SB model is solved againusing 6 o h b :jlq m .
Thealternatingsolutionof thesubmodelsis repeateduntil
theestimatedthroughputsconverge.Thisapproachis simi-
lar to themethodof complementarydelays[9, 13].

The SB andMB submodelsareeachsimilar to Willick
andEager’s model[27] exceptthat: (1) transactionrouting
is accordingto thecachecoherenceprotocol,(2) theswitch-
ing network is configuredasa two-dimensionalmeshand
thedelayperswitchis modeledasanaveragequantitymea-
sureddirectly in thesystemor by simulatingoveranumber
of applications,(3) contentionfor thememorybusandnet-
work interfaceismodeled,(4) theservicetimeattheproces-
sornodeis inflatedto accountfor thestall timeestimatedby
theothersubmodel,and(5) weuseanapproximationto ac-
countfor high measuredcoefficientof variationin 6 , 798 : ,
which is discussedin Section5.

For thecasethat
	rbs	 

�

, all processorstallscanbe
attributedto full MSHRs.In this case,we solve a modified
MB modelin whichthereare

	 
V�
customersperprocessor

and thesecustomersrepresentthe behavior of read,write
andupgradememorysystemtransactions.For any of these
memoryrequests,the customerleaves the processorand
visits the appropriatememorysystemresources.(Write-
backsareforked asynchronouslyfor the basearchitecture
in RSIM).

Oncethroughputis computedfrom the weightedaver-
age of the value at each

	
, synchronizationeffects are

accountedfor asfollows. If thereareany locks that have
significantcontention,a separatesimplequeueingmodelis
usedto estimatemeandelay for eachlock, using (1) the
numberof processorsthatcompetefor thelock, (2) a mea-
suredaveragenumberof instructionsbetweenaccessesto
the lock, and (3) the averagelock holding time (in num-
berof instructions).Finally, the throughputslowdown due
to barriers[3] is computedfrom theaveragenumberof in-
structionsandlock delaysbetweeneachbarrier(for load-
balancedbarriers)or the numberof suchinstructionsand
lock delaysfor eachprocessorparticipatingin the barrier
(unbalancedbarriers),in additionto the estimatedtime to
executeaperfectlyload-balancedbarrieronthegivenmem-
ory architecture.Calculationof throughputslowdown due
to pairwisesynchronizationis beyondthescopeof this pa-
per.

4.2 Model Equations

As mentionedabove, the SB andMB submodelsusea
setof customizedMVA (CMVA) equationsto computethe
meandelayfor customersat theprocessor, localandremote
memorybuses,directories(and associatedmemorymod-
ules), and network interfaces. Fixed delaysare assumed
for resourcesthathavenegligiblecontention(e.g.,cachetag
checks)andfor theapproximateaveragedelayat eachnet-
work switch (observed during measurementor simulation
of severalapplications).t TheCMVA equations,explained
in detailin [25], arebriefly outlinedbelow.

The total averageround-triptime in eithersubmodelis
the sumof the customer’s meanresidencetime at eachof
theresourcesthatit visits. Thus,theaverageround-triptime
for customersin theSB submodelhastheform:u o h bvu M
) U 5�,.%w% U )�x u %�=?>y5 
�-� U #z/ x u %�=?>@5 
>y,�/ ��U )�{

x u %�=
>@5 
�-� 4 > x u %�=
>@5 
!�#&% x u %.=?>@5 
* 4 ) A 1�>@* A +-,.+ x�| E
where

u %�=?>@5 
} is thetotal averageresidencetime for a read
transactionata(setof) memorysystemresource(s)~ , and

|
is thetotalfixeddelayfor areadrequest.A similarequation
holdsfor the averageround-triptime for customersin the
MB submodel.Furthermore,systemthroughput,measured
in numberof readtransactionsretiredperunit time,is equal
to

	vd&u o h .
To illustrate the calculationof

u %�=?>@5 
} , we show howu %�=?>@5 
�-� U #V/
is computed,where

�F�y�e�C�
denotesthequeuesthat

areusedto transmita messageinto theswitchingnetwork.u %�=?>@5 
�-� U #V/ is thesumoverall suchqueuesof thetotalmeande-
lay for eachtype of synchronoustransactionthat canvisit
thequeueaseitherashort(request,� ) or long(data,� ) mes-
sage:u %�=?>@5 
�-� U #V/ b�� =l� u %�=?>y5 
�-� U #z/�� ����� � � �3� � x u %�=?>y5 
�-� U #z/�� ����� � � �3� �&�

x � �s��I � � =l� u %�=?>y5 
�-� U #z/ �����"������� �3� � x u %�=?>@5 
��� U #z/����$�"������� �3� � �
The

���aI
factorin theremotetermsrepresentsthe

����I
remoteNIs for any particularprocessor’s transactions.The
memorytransactions,R , aredefinedin Tables4 and5.

To compute
u %�=
>@5 
�-� U #z/ � ����� � � ��� � , we multiply the average

numberof visits that a synchronoustype Q messagefrom
atype R transactionmakesto thelocalNI, by thesumof the
averagewaitingandservicetimesat thequeue:u %.=?>@5 
�-� U #z/�� ����� � � �3� � b

�
Notethat themodelis validatedin Section5 againstdetailedsimula-

tion of thecontentionat thenetwork switchesfor eachapplication,includ-
ing applicationsthatwerenotusedto estimateaverageswitchdelay.
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K = 8 %�=
>@5 
�-� U #V/�� ���$� � � �3� � ��� �-� U #z/�� ����� �Cx�� �-� U #z/�' P �
The utilization of the local outgoingNI queueby typeQ messagesof a type R transactionis equalto the average

total numberof visits for thesemessages(perroundtrip in
theSB model)timestheir servicetime (

� �-� U #z/�' P
), divided

by theaverageroundtrip time of thetransactionsin theSB
model(

u o h ):

n9��-� U #z/�� ����� �3� � b �
� �� � 8���-�3� � ����� ��� � �0�-� U #z/�' P
Notethatin theaboveequation,� denoteseitherthesyn-

chronous(
�

) or the asynchronous( � ) part of the type R
transaction.Thisequationandthenext two equationsillus-
tratehow theinterferenceby theasynchronoustransactions
is accountedfor in theSBmodel.

Theaveragewaiting timeat theoutgoinglocalNI queue
dueto traffic from remotenodesis equalto the sumover
all transactiontypesof thesynchronousandasynchronous
traffic generatedremotelythatis seenat thequeue:� )(,�+ U /�,�-� U #z/�� ����� � b�� =l��� )(,�+ U /�,(' = k�-� U #z/�� ����� � x � )(,.+ U /�,(' =
 �-� U #V/�� ���¡�
Thecontribution to thewaiting time at queue¢ of thelocal
NI by remotetraffic of type R that is eithersynchronousor
asynchronous(dependingon � ) is equalto thesumoverall
messagetypes Q of the total numberof remotecustomers
timesthe waiting time that their type R transactions(syn-
chronousor asynchronous)causeon local queue ¢ . This
waitingtimeis equalto thetimethatacustomerwouldwait
for thosecustomersin thequeueplusthetime thatthecus-
tomerwould wait for thecustomerin service.Theresidual
life,

o@£¥¤�¦ � �§ , assumesadeterministicservicetimeat theNI.

� )3,�+ U /�,(' =
¨�-� U #z/�� ����� � b � P � ����I � 	ª©
� � ¨ £¥¤ ����� �����"������� �3� �� � n]��-� U #V/ ���$�"���«�.� �3� � � � �-� U #z/�' P
x � n]��-��� ���$�"������� �3� � � � o £¥¤ ������� �§ � ¬

5 Model Validations

In thissectionwepresenttheresultsof validationexper-
imentsthatassesstheaccuracy of theanalyticmodelandof
theFastILPparameterestimates.Thevalidationswereper-
formedagainstthe RSIM execution-drivensimulator[20].
Section5.1presentstheapplicationsusedin thevalidations
andthemodelinputparametersfor thoseapplicationsmea-
suredby RSIM. Section5.2comparestheinputsgenerated
by FastILP to thoseobtainedby RSIM, and Section5.3
presentstheresultsof theanalyticmodelvalidations.

5.1 Applications Usedin Model Validations

The validation experimentsinclude the following ap-
plications: FFT, LU, and Radix from the SPLASH-2
suites[29], Water from the SPLASH suite [24], and Er-
lebacherfrom the Rice parallel compilergroup [2].

§
We

alsouseversionsof LU andof FFT (denotedby
�3­[�

) that
areoptimizedfor ILP systemsby applyingloopinterchange
to schedulereadmissesclosertogether, thusbetteroverlap-
ping their latencies[21]. The optimizationin FFTopt has
thesideeffect thatall readrequestsoverlappedatany given
time from a singleprocessorgo to thesamememorybank.
This causesthe effective numberof memorymodulesper
nodeto beequalto one. Additionally, bothversionsof LU
aremodifiedto achieve betterload balanceby usingpair-
wise synchronization(implementedwith flags) insteadof
globalbarriers.

TheRSIM-measuredvaluesof thefirst five modelinput
parametersfor eachof theapplications,for varioussystem
configurations(i.e., numberof processors,n, and instruc-
tion window size, w), are shown in Table 3.

T
The input

sizesfor FFT andRadixaregreaterthanor equalto those
specifiedin theSPLASH/SPLASH2distributions. The in-
putsizesfor LU andWaterareslightly smallerthanrecom-
mendeddue to the long time for running the RSIM sim-
ulations; however, the numberof processorsis appropri-
ately scaleddown to ensurea reasonablespeedup. The< %�=?>y5 
&A¥� ) 4 /�,

parameteris omitted from the tablesinceit
is verysmallexceptasnotedbelow.

Tables4 and5 providetheRSIM-measuredprobabilities
of the variouslocationswherereadmisses,write misses,
upgrades,andwritebacksareservicedin the memorysys-
tem,for asystemwith a64entrywindow size.Thestatsare
nearly identical for the 128 entry window sizeconfigura-
tion. Theseprobabilitiesarecomputedin a straightforward
way from thebasicapplicationmemoryrequestparameters
(seeTable 2). Note that the probabilities(not including
writebacks)sumto one. Writebacksare additionalasyn-
chronoustransactionsthat are forked off from readsand
writes.Collectively, theinputparametervaluesreflecta set
of applicationswith fairly diversecharacteristics.®

We alsoattemptedto validatethe analyticmodelagainstMP3D, but
we discoveredthat MP3D hasrelatively minor but still significantnon-
homogeneityin its memoryaccessbehavior, which led to approximatelya
20%error in throughputpredictedby the analyticmodel. Model modifi-
cationsfor non-homogeneousapplicationsarestraightforward but beyond
thescopeof thispaper. Wethereforeomit thoseresultsin theremainderof
thissection.¯

The baseline measuresfor the model input parametersused
the following processor/cachesubsystemconfiguration: maximum
fetch/decode/retirerate= 4, instructionwindow size= 64, L1/L2 cache
size= 16KB/64KB (scaledbasedon applicationinput sizes[29]), cache
line size= 64 bytes,L1/L2 associativity = 1/4, L1/L2 hit time = 1/13cy-
cles,L1/L2 ports= 2/1. The measureswith instructionwindow sizeof
128entriesalsodoubledtheotherprocessorresources(e.g.,decodewidth)
comparedto thebaseline.
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app input size configuration ° cVar(° ) ± � ± ® ± ¯ ±?² ±V³ ±?´ ±
µ ±
¶ ·¸±?¹�º�»"¼�½
Erle 64x64x64 n16,w64 39.0 10.9 .65 .17 .09 .08 0 .01 0 0 0

n16,w128 26.9 5.0 .64 .11 .10 .10 .02 .01 .01 .01 .01
FFTopt 64K n16,w64 64.9 12.8 .42 .17 .03 .04 .35 0 0 0 0

n16,w128 37.6 11.8 .12 .28 .18 .03 .03 .03 .03 .03 .25
FFT 64K n16,w64 63.9 12.8 .53 .47 0 0 0 0 0 0 0

n16,w128 37.0 12.0 .12 .48 .39 0 0 0 0 0 0
LUopt 256x256 n8,w64 120.8 6.3 .12 .07 .06 .06 .06 .06 .06 .06 .45
LU 256x256 n8,w64 108.1 8.1 .51 .49 0 0 0 0 0 0 0

n8,w128 74.0 3.6 .10 .19 .70 .01 0 0 0 0 0
Radix 512K n8,w64 80.9 2.0 .99 .01 0 0 0 0 0 0 0
Water 343 n8,w64 593.2 2.5 .73 .25 .01 0 0 0 0 0 0

n8,w128 487.7 2.5 .49 .48 .01 .01 0 0 0 0 0

Table 3. Application Input Parameter s

Reads Upgrades

localhome remotehome local remote
memory remote memory cache cacheat

app config cache athome non-home

Erle n16 .49 0 .09 .04 .01 .23 .01
FFTopt n16 .30 0 .19 .04 0 .14 0
FFT n16 .30 0 .20 .04 0 .14 0
LUopt n8 .16 0 .47 .01 .02 .08 .25
LU n8 .16 0 .48 .01 .02 .08 .25
Radix n8 .29 .01 0 .01 0 .01 0
Water n8 .02 .12 .02 .11 .28 .11 .31

Table 4. Read and Upgrade Transactions

Writes Writebacks

localhome remotehome local remote
memory remote memory cache cacheat

app config cache athome non-home

Erle n16 .13 0 0 0 0 .32 0
FFTopt n16 .32 0 0 0 0 .42 0
FFT n16 .32 0 0 0 0 .42 0
LUopt n8 0 0 .01 0 0 .08 .23
LU n8 0 0 0 0 0 .08 .23
Radix n8 .10 0 .58 0 0 .10 .57
Water n8 0 0 0 0 .03 0 0

Table 5. Write and Writebac k Transactions

application config ° ¾X¿ÁÀ ± � ± ® ± ¯ ± ² ± ³ ± ´ ± µ ± ¶ ·¸± ¹ º�»Â¼�½ % error
Erle n16,w64 42.1 10.7 .61 .18 .11 .08 0 .01 0 0 0 -1.1

n16,w128 23.2 9.6 .82 .02 0 .13 .02 0 0 .01 0 -0.5
FFTopt n16,w64 64.4 11.9 .42 .20 .03 .03 .33 0 0 0 0 0.7

n16,w128 31.2 12.6 .18 .43 .23 0 0 .08 0 0 .08 -6.2
FFT n16,w64 56.6 12.5 .50 .50 0 0 0 0 0 0 0 9.1

n16,w128 30.8 12.6 .14 .44 .43 0 0 0 0 0 0 -11.9
LUopt n8,w64 122.2 4.0 .12 .07 .06 .06 .06 .06 .06 .06 .47 -2.5
LU n8,w64 104.6 3.8 .53 .47 0 0 0 0 0 0 0 -0.1

n8,w128 78.6 3.4 .20 .06 .74 0 0 0 0 0 0 -8.6
Radix n8,w64 69.2 2.0 1.0 0 0 0 0 0 0 0 0 -6.8
Water n8,w64 418.8 3.1 .71 .26 .01 0 0 0 0 0 0 20.0

n8,w128 270.4 3.8 .05 .93 0 .01 0 0 0 0 0 59.5

Table 6. Accurac y of the FastILP Input Parameter s
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5.2 Accuracy of the FastILP Input Parameters

Table6 givestheinputparametersgeneratedby FastILP
andthepercentageerrorbetweenthethroughputscalculated
usingtheseparametersversustheparametersgeneratedby
RSIM. Theseresultsshow that for all configurationsstud-
ied andall applicationsexceptWaterÃ , FastILPcangener-
ateparametersthatleadto lessthan12%errorin throughput
relative to thosegeneratedby RSIM.

5.3 Accuracy of the Analytic Model

Theexperimentsin whichwecomparedtheperformance
predictedby theanalyticmodelagainsttheperformancere-
portedby RSIM quickly revealedtwo additionalbehaviors
thatneededto becapturedin themodel:� Sincethetimebetweenmemoryrequests( 6 ) hasrel-

atively high variance(seeTable3), the standardap-
proximateMVA equationestimatesthat a customer
arriving back to the processorwaits, on average,a
fairly longtimefor theresiduallife of acustomerthat
is alreadyin service.Ä However, sincetheaveragela-
tency for a memorytransactionin the modeledsys-
temis (in somecases,significantly)smallerthanthis
meanresiduallife, thecustomerarriving backto the
processoris notarrivingatarandompointin timerel-
ative to theservicetime at theprocessor. To produce
amoreaccurateestimateof processorresidencetime,
we approximatethe residuallife usingan interpola-
tion [7] between6 , which is the residuallife when
thememorytransactiontakeszerotime,andtheMVA
residuallife formulafor a randomarrival.Å� Water (and MP3D) has a non-negligible value for< %�=
>@5 
BAC� ) 4 /�,

, the fraction of write requeststhat are
generatedby read-modify-writeinstructionsor that
coalescewith at leastonelater readmiss. More de-
tailedmeasuresshow thatnearlyall of thesearedue
to read-modify-write instructions.Thus,the SB and
MB submodelsmustbe adjustedso that,with prob-
ability < %.=?>@5 
BAC� ) 4 /�,

, a write requestitself visits the
memorysystemratherthanforking a memorytrans-
action in the SB submodel. Analogously, and with
thesameprobability, thewrite requestforks a mem-
ory transactionin theMB submodelratherthancon-
tributingdirectly to processorstall time.² FastILPunderpredictsÆ for Waterbecauserollbacksof misspeculated

loads,triggeredby disambiguatingstores,arenot yetaccuratelymodeled.³ Theestimatedmeanresiduallife equalsthesecondmomentof service
timedividedby Ç3Æ [17].´ Notethatthestandardformulafor meanresiduallife is assumedatall
otherqueuesin the model. Sincethe variancein servicetime at the bus,
memorymodules,andothermemorysystemresourcesis low, thestandard
MVA approximationcanbeexpectedto performwell.

model RSIM %
benchmark config IPC IPC error
Erle n16,w64 1.38* 1.45 -4.8

n16,w128 1.95* 1.83 6.6
n16,w64,slbus 1.04* 1.08 -3.7
n16,w64,sldir 0.96* 0.94 2.1
n16,w64,1GHz 1.03* 0.92 12.0

FFTopt n16,w64 1.60 1.58 1.2
n16,w128 2.42 2.29 5.7
n16,w64,1GHz 1.16 1.07 8.4

FFT n16,w64 1.41 1.39 1.4
n16,w64,slbus 1.10 1.01 8.9
n16,w128 2.26 2.06 9.7

LUopt n8,w64 2.59* 2.41 7.4
LU n8,w64 1.90* 1.91 -0.5

n8,w64,slbus 1.62* 1.58 2.5
n8,w128 2.86* 2.93 -2.4

Radix n8,w64 1.75 1.64 6.7
n8,w64,sldir 1.41 1.43 -1.3

Water n8,w64 1.85 1.74 6.3
n8,w64,slbus 1.75 1.62 8.0
n8,w128 2.11 2.13 -0.9

Table 7. Model Accurac y for Homog eneous
Applications

Investigationsof furtherdiscrepanciesbetweenthepre-
dictedthroughputsfor RSIM andthe analyticmodelsug-
gestedtwo useful modificationsin the simulatedsystem:
(1) more efficient layout of the data structuresin Water
(andMP3D) to increasethe uniformity of memoryaccess
amongthe processors,and (2) a secondbus queuewas
addedto the processorso that requeststo the local direc-
tory areneverblockedbehindrequestsblockedona full NI
buffer. Thesecondmodificationensuresthatsystembehav-
ior is morecommensuratewith themodel(sincetheanalytic
modeldoesnotincludetheblockingbehavior of asinglebus
queue).

After makingthechangesto themodelandthesimulated
system,weobtainedthevalidationresultsshown in Table7.
Configurationsdenotedby slbus andsldir indicatethat the
occupancy of thebus(directory)is increasedby a factorof
three,in orderto produceadditionalcontentionto stressthe
model.For the1GHzconfiguration,thelatenciesfor theL2
cache,mainmemory, andnetwork areincreasedby a factor
of two, reflectinga fasterprocessor.

The resultsshow that the model estimatesthroughput
extremelywell for the diversesetof applications,predict-
ing applicationthroughputsthatrangefrom 0.88to 2.93in-
structionsretiredper cycle with under10% relative error.
Webelievethatthemodelis areasonablyaccuraterepresen-
tationof thesystemunderstudy, althoughtestingthemodel
on furtherapplicationsandfor moresystemconfigurations
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will alsoincreaseconfidencein its fidelity.
Theanalyticthroughputestimatesfor Erle,LU, andLU-

opt aremarked with an asteriskbecausethe estimatesin-
cludetheRSIM-measuredpair-wisesynchronizationdelay
(i.e.,flagspinningtime) in 6 , ratherthanexplicitly calculat-
ing thesynchronizationdelayin themodel. Extendingthe
modelto computepairwisesynchronizationdelayis beyond
thescopeof thepaper. Themodeldoesaccuratelycompute
the effectsof synchronizationdelay for locks and for the
globalbarriersin all of theapplications.

Note that, strictly speaking,when the SB submodelis
computedfor a given

	 bÉÈ
, a particularprocessorfor

which throughputis computedshould have
È

customers
while othernodesshouldperhapshaveatime-varyingnum-
berof customersdictatedby the <BD parameters.However,
thesimplerimplementationof theSB modelappearsto be
adequatefor theexperimentsreportedin thispaper. Wewill
explorethis issuefurtherin futurework.

6 Applications of the Model

Therearemany possibleapplicationsof the modelde-
velopedin this paper, rangingfrom gaininginsightinto ap-
plication behavior andcurrentcompiler technologyto ex-
aminingarchitecturaldesignissues.Below we illustratea
few of theseapplications.

6.1 Insights into Application Behavior

Insight into applicationbehavior can be gainedfrom
studyingthe transactionfrequenciesshown in tables3, 4,
and5. Looking at <BD , we observe that the ILP-optimized
versionsof LU andFFT (LUopt andFFTopt) have signifi-
cantlygreatermassat highervaluesof

	
thantheoriginal

versions. In contrast,the < D valuesfor Radix andWater
revealconsiderablylessability to exploit ILP hardwareto
overlapreadmemoryrequests.Erlebachershows moder-
ateability for overlap.Theseobservationswerealsonoted
in [21].

Regardingtheestimatedthroughput(IPC)of thebaseline
configuration(w64)for eachapplication,it appearsthatper-
formanceof Erlebacherandof eachversionof FFT is lim-
ited by frequentmisses(low 6 ), whereasthe performance
of eachversionof LU is limited by a high probability that
readmissesmustobtainthedatafrom remotememory. The
throughputfor Water is limited by a high fraction of read
missesthat requirea threehoptransaction,andtheperfor-
manceof Radix is limited by the lack of parallelismin the
memorysystemtransactions( < t�Ê I

). Theseobservations
maysuggestfutureimprovementsin applicationdesigns.

Themodelandapplicationparametervaluescanbeused
to guidethedesignof futuresystemsandapplications.For
example, high valuesof 798 : indicate a high degree of

0.0 2.0 4.0 6.0 8.0
number of MSHRsË0.5

1.0

1.5

2.0

IP
C

writebacks not in MSHRsÌ
writebacks in MSHRsÌ

Radix (N=8)

Figure 2. Varying Number of MSHRs (
	 
V�

)

burstiness,suggestingthat thesystemshouldprovide good
buffering capabilitiesfor varioustypesof memorysystem
transactions. The model can also be usedto determine
thedegreeto which throughputis sloweddown by MSHR
blocking. As anotherexample,poor performanceand an
unusuallyhighfractionof readsto remotememorysuggests
thatthedatastructuresarenot laid outefficiently; in fact,it
was this type of datathat led to the discovery of the load
imbalancesin WaterandMP3Dmentionedin Section5.

6.2 Varying the Number and Content of MSHRs

Modelsareuseful for predictingthe effectsof changes
in the systemhardwareconfiguration.As an example,we
evaluatethe impactof changingthe numberof MSHRsin
the system,and the impactof modifying the systemsuch
thatwritebacksoccupy MSHRs.Figure2 showstheimpact
of varying

	 
V�
for Radix,bothwith andwithout including

writebacksin theMSHRs. Radixwaschosenfor this eval-
uationbecauseit exhibits a significantpercentageof time
(25%) stalleddue to write and upgraderequestsoccupy-
ing all MSHRsandit hasa high probability of writeback
(70%). The resultsshow that performancedoesnot drop
significantlyuntil

	�

�
is decreasedbelow 4. The results

arequalitatively similar for LU (not shown), anapplication
which frequentlyusesall of its MSHRsfor readrequests.

If this is thecasefor mostapplicationsof interest,then
systemdesignerscouldconsidersmallersetsof MSHRsto
reduceboth cost and MSHR lookup latency. Similar re-
sults have beenobtainedby Farkas,et al. [8] and Pai, et
al. [21] usingextensivesimulation.Ouranalyticmodel(to-
getherwith FastILP)is capableof obtainingthesameresults
quickly overa widerangeof applications.

6.3 Alter nativeDir ectory Configurations

Thememoriesanddirectoriesateachnodein theshared
memoryarchitecturemaybecoupled or decoupled. In the
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decoupledcase,a transactionthatrequiresjustoneof these
two resourcesdoesnotoccupy both.

0.0 10.0Í 20.0Í 30.0Í 40.0Í 50.0Í 60.0Í 70.0Í 80.0Í
Smem (in CPU cycles)Î2.50

2.55

2.60

2.65

2.70

IP
CÏ

baseline coupled
Ð
decoupled, SRAM dir
Ñ
optimized coupledÒ

LU (N=8)

Figure 3. Impact of Director y Configuration

Figure3 shows therelative performanceof thebaseline
architecturewith a coupledmemoryanddirectoryagainst
two optimizedconfigurations:(1) a decouplednodearchi-
tecturewith an SRAM directory(8-cycle occupancy), and
(2) acoupleddirectory/memorywith afastpathto andfrom
theNI. Thelatteroptimizationallowsremotetransactionsto
bypassthememorybus. (TheSGI Origin 2000effectively
providessuchafastpath[16].) Weeasilyadaptedthemodel
to representthesedifferentarchitectures.

Theresultsareshown for LU, anapplicationwhoseread
missesareprimarily remote;resultsfor FFT (not shown)
arequalitatively similar althoughrequestsin FFT aremore
often local. As canbe seenin the figure, the coupledar-
chitecturewith a fast path betweenthe NI and the direc-
tory outperformstheothertwo architecturesuntil memory
latency becomesprohibitive for coupleddesigns.Theesti-
matedperformanceadvantage,for LU or otherapplications,
canbetradedoff againstcostconsiderations.

6.4 ProgrammableCoherenceControllers

Several recentcommercialandresearchmultiprocessor
systems[18, 15, 22] have employedprogrammablecoher-
encecontrollersto reducedesigntime and/orsupportmul-
tiple protocols.However, theflexibility andgeneralityof a
programmablecontroller leadsto slower coherenceproto-
col execution,which in turn increasescontrolleroccupancy
andmemorylatency [11]. Theextentto whichthisdegrades
applicationperformancehasbeenthesubjectof severalde-
tailedsimulationstudies [12, 23, 19]. Theanalyticmodel
can quickly assessthe impact of higher controller occu-
pancy.

We evaluatetheimpactof programmablecontrollersby
modelinga decouplednodearchitecturewith increaseddi-

0.0 50.0Ó 100.0Ó 150.0Ó 200.0Ó
network occupancyÔ�Õ1.0

1.2

1.4

1.6

1.8

2.0

IP
C

fft, baseline
Ö
fft, prog controller
Ö
water, baseline×
water, prog controller×

Figure 4. IPC vs Network Occupanc y

rectoryoccupancy (i.e., 80 cycles).Figure4 plotsthrough-
put (IPC) versusnetwork occupancy for two applications
(WaterandFFT), for this architectureaswell asfor a cou-
plednodearchitecturewith thebaselinememory/directory
occupancy (i.e.,40cycles).Theresultsshow thattheperfor-
mancedifferentialis only on theorderof 2-7%,depending
onnetwork occupancy, for thegivenapplications.

7 Conclusions

This paperdevelopsand validatesa tractableanalytic
modelwith a relatively simpleandrobust setof input pa-
rametersfor evaluatingvarioustypesof architecturalalter-
nativesfor shared-memorysystemswith processorsthatag-
gressively exploit instruction-level parallelism(ILP). The
analyticalmodelwascomparedwith detailedsimulationfor
a set of applicationsand systemconfigurationsthat have
diversevaluesof the model input parameters.The model
yields estimateswithin 12% of the simulatorestimatesin
seconds,ascomparedwith hoursfor eachsimulationresult.
Thestudyalsoshows thattheanalyticalmodelcanbeused
to gain insightsinto applicationperformanceandto evalu-
atearchitecturaldesigntrade-offs.

This paperalso presentsFastILP, a simulator for esti-
mating the key ILP input parametersof the model, two
ordersof magnitudefasterthan possiblewith a detailed
execution-drivensimulator. FastILPachievesthis speedup
by beingtrace-drivenandby abstractingout a largepartof
thecomplexity of boththememorysystemandtheproces-
sor. The input parametersgeneratedby FastILPyield cal-
culatedthroughputswithin 12%of thosecomputedwith in-
putsfrom a detailedexecution-drivensimulatorfor all con-
figurationsof all but oneapplicationstudied.

Ongoingresearchincludesextendingthemodelto han-
dle non-homogeneousapplications,non-uniformmemory
accessbehavior, andslowdownsdueto othertypesof syn-
chronizationsuchas the producer-consumerflags in LU.
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Oneof thekey conclusionsof our initial validationexperi-
mentsis thatmodelingnon-homogeneitymaybeimportant
for moreapplicationsthanpreviouslythought.EvenMP3D,
which appearson the surfaceto be a homogeneousappli-
cation,hassomenon-homogeneousbehavior that mustbe
capturedfor the modelto be highly accurate.We arealso
applyingtheanalyticmodelto new applicationsandarchi-
tecturalissues.Extendingthecapabilitiesof FastILPis also
animportanttopic for furtherresearch.
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