
..

THE IMPACT OF DYNAMICALLY
HETEROGENEOUS MULTICORE

PROCESSORS ON THREAD SCHEDULING
..

ALTHOUGH MOST CURRENT MULTICORE PROCESSORS ARE HOMOGENEOUS,

MICROARCHITECTS ARE NOW PROPOSING HETEROGENEOUS CORE IMPLEMENTATIONS,

INCLUDING SYSTEMS IN WHICH HETEROGENEITY IS INTRODUCED AT RUNTIME. THIS

ARTICLE SHOWS THAT OPERATING SYSTEM SCHEDULERS MUST CONSIDER DYNAMIC

HETEROGENEITY OR SUFFER SIGNIFICANT POWER-EFFICIENCY AND PERFORMANCE LOSSES.

......Moore’s law provides computer
architects with more transistors than they
can effectively use to extract instruction-
level parallelism (ILP) in a single core.
Thus, all current and future high-perfor-
mance processor chips are multicore pro-
cessors, also known as chip multiprocessors
(CMPs). These multicore processors in-
clude the Cell Broadband Engine,1 Intel’s
Core Duo and Quad-Core Xeon, AMD’s
Dual-Core Opteron, Sun Microsystems’
Niagara,2 and IBM’s Power5.3 These pro-
cessors have between two and eight cores in
a single chip package, with the expectation
of greater numbers of cores in future
generations.

At first glance, scheduling a multicore
processor might not appear to present a
substantially new problem for operating
systems. There is a long history of OS
scheduling for multithreaded microproces-
sors and traditional multichip multiproces-
sors. There has even been recent research
into one aspect of scheduling that is unique
to multicores, which is that processors often
share L2 caches.4,5 Aside from this issue of

cache sharing, it might at first appear that
scheduling of multicore processors would be
a straightforward extension of existing
scheduling techniques—except that future
multicore processors are unlikely to consist
of homogeneous cores.6,7 With core special-
ization, runtime fault handling, and power
management, it is likely that multicore
processors will feature heterogeneous cores.
Furthermore, this heterogeneity is likely to
be both static (as an intentional design
feature that does not change) and dynam-
ic (as a response to runtime events such
as physical faults or power management).
In this article, we focus on dynami-
cally heterogeneous multicore processors
(DHMPs), because they will present a
greater challenge to future operating sys-
tems.

In a DHMP, the OS scheduler has a
significant impact on power efficiency and
performance. The scheduler must decide
which threads (or portions of threads)
should run on which cores. A good schedule
will match each thread with a core that can
provide it with sufficient performance at an

Fred A. Bower

IBM and Duke

University

Daniel J. Sorin

Landon P. Cox

Duke University

0272-1732/08/$20.00 G 2008 IEEE Published by the IEEE Computer Society

..

17

acceptable power cost. A poor schedule will
match each thread with a core that either
cannot run it at an acceptable performance
(for example, due to faults in that core) or
that needlessly wastes power running it. A
poor schedule can lead to shorter battery life
for a laptop, slower response time for a
gaming console, greater power costs for
small business computing, or less computa-
tional throughput for a server farm. Sched-
uling a DHMP is a fundamentally different
and more difficult problem than scheduling
homogeneous systems. Through two simple
experiments, we frame the issues related to
scheduling these systems; we also discuss the
limited research that has been done in this
area.

Multicore trends and impact
With the increasing transistor budgets

afforded by Moore’s law, architects have
sought power-efficient ways to use all of the
transistors they are allocated. Until recently,
architects dedicated their transistor budget
to extracting ILP out of single-threaded
code. However, dedicating current transis-
tor budgets strictly to ILP is not power
efficient, and thus architects have sought to
use transistors to also exploit thread-level
parallelism. An initial approach was simul-
taneous multithreading (SMT),8 such as in
the Pentium 4, in which multiple threads
share a single core’s resources. Unfortunate-
ly, a single SMT processor is also limited by

how many transistors it can use power
efficiently. As a result, the industry has
begun placing multiple independent cores
on each chip. Each of these cores might
itself be multithreaded, providing a multi-
plicative number of schedulable contexts.

Homogeneous multicore processors con-
sist of identical cores that provide a
consistent computing capability for each
schedulable context. Homogeneity simpli-
fies the scheduler’s job and enables the use
of existing scheduling algorithms for mul-
tiprocessor systems. These algorithms might
factor cache warmth and cache sharing into
scheduling decisions, but they generally do
not discriminate among cores, viewing all
cores as equally capable of performing
computations.

Sources of heterogeneity
The primary problem with homogeneous

multicore processors is that naive replication
of state-of-the-art single-core designs in a
single package (or chip package) stresses the
power and cooling limits for the chip. There
is a fixed amount of power that a chip can
consume before it becomes impossible to
cool it (through air cooling). Given this
power budget, a chip cannot contain dozens
of Pentium 4-like processors, even if each
one is itself power efficient. Nevertheless,
for high-priority tasks, the single-threaded
performance provided by current high-
performance cores is still desirable. Thus,
architects believe that (statically) heteroge-
neous multicore designs, such as the Cell
processor,1 will be prevalent in coming
generations.6,7 As Figure 1 shows, a multi-
core design might consist of a few high-
power and high-performance cores, coupled
with several simpler, low-power cores.
These low-power cores will be tailored to
execute the throughput-oriented tasks for
which a user might tolerate greater latency.

In addition to static heterogeneity, we also
expect dynamic heterogeneity because of at
least three technological issues. Figure 2
summarizes these sources of heterogeneity:
process variability, physical faults, and dy-
namic voltage and frequency scaling.

Process variability. Fabrication process var-
iability is increasing,9 and it is highly likely

Figure 1. Statically heterogeneous multicore design: A few high-power,

high-performance cores handle latency-sensitive tasks; several simpler,

low-power cores execute throughput-oriented tasks.

...

ARCHITECTURE-OS INTERACTION

...

18 IEEE MICRO

that the cores will have different perfor-
mance characteristics. Thus, it will be
preferable for each core to have a different
maximum frequency rather than derate the
entire chip to the lowest-common maxi-
mum frequency, particularly as core counts
continue to increase. This form of hetero-
geneity is dynamic, in that it is not known
at design time, but it is fixed once the chip
has been fabricated and tested. (The
performance heterogeneity introduced by
process variability is a function of temper-
ature, and thus there might be an additional
dynamic aspect to it that we will not pursue
here.)

By decreasing the maximum frequency of
a given core, we impose a performance
degradation on it that is fairly uniform, in
terms of affecting all benchmarks similarly.
When decreasing frequency, the only non-
uniformity in performance degradation is
due to the relative decrease in memory
access latency. As a result, instructions per
cycle (IPC) could increase slightly and lead
to an overall slowdown that is less than
linear as a function of frequency.

Physical faults. As CMOS trends continue
to lead toward smaller device and wire
dimensions, the probability of hard (per-
manent) faults in microprocessors increases.
These faults can be introduced during chip
fabrication or in the field. Well-known
physical phenomena that lead to operational
hard faults are gate oxide breakdown,
electromigration, and thermal cycling. Mi-
croprocessors become more susceptible to
all of these phenomena as device dimensions
shrink,10 and the semiconductor industry’s

roadmap has identified hard faults as critical
challenges (http://www.itrs.net). Blome et
al.11 recently analyzed the MTTF (mean
time to failure) of the OpenRISC 1200 core
in 90-nm technology,12 and they discovered
that hard faults are likely to occur during
the core’s lifetime. In the near future, with
even smaller CMOS technologies, it might
no longer be a cost-effective strategy to
discard a core with one or more hard faults,
which is what commonly occurs today.

Our prior research has explored how to
detect and diagnose permanent faults in a
single superscalar core.13,14 In response to
these faults, part of the core might be
deconfigured, resulting in the core moving
to a lower-performing state, but still
providing useful work to the system. (If
the fault is in a singleton unit, such as a
core’s only floating-point divider, then the
core might not be salvageable. However,
most of a core’s components are not
singletons, and we can thus tolerate decon-
figuring them.) The performance degrada-
tion is nonuniform across benchmarks,
because benchmarks are more or less
sensitive to various core features. For
example, a benchmark that is memory
bound might not incur much performance
penalty if it runs on a core that has a fault in
one of its three ALUs.

Deconfiguration due to hard faults is a
fairly rare event, and it can occur either at
manufacturing time (to address fabrication
defects) or during the part’s lifetime (to
address wearout faults). If we apply this
approach or a similar technique to a multi-
core chip, even one that is designed to be
homogeneous, it will lead to a DHMP.

Figure 2. Sources of heterogeneity: We characterize sources of heterogeneity by how

frequently they affect the processing capability of the core. Fully static designs have a fixed

set of core capabilities that can be advertised via specification. At the fully dynamic end of

the spectrum, core capabilities can change every scheduling quantum, requiring scheduler

adaptability to effectively exploit the heterogeneity.

..

MAY–JUNE 2008 19

Dynamic voltage and frequency scaling.
Each core is likely to incorporate its own
dynamic voltage and frequency scaling.
DVFS techniques are in use today, but are
constrained to chip-wide changes in voltage
or frequency. Recent work seeks to relax this
constraint, moving the granularity of scaling
to the individual core.15–17 We expect
processors in which each core can have its
voltage and frequency adjusted indepen-
dently. This form of heterogeneity is
dynamic and will change frequently during
execution.

Impact of heterogeneity
Here, we use two simple experiments to

demonstrate that smart OS scheduling of
DHMPs can provide a great advantage—in
terms of performance and energy-efficien-
cy—over a scheduler that is unaware of the
heterogeneity.

Experiment 1. The dynamic heterogeneity
we consider in this experiment is due to
faults that disable parts of cores. In this
experiment, which we presented in our
previous work on fault diagnosis,14 we
deconfigured portions of a single-core,
SMT-enabled processor, similar to the Intel
Pentium 4.18 Our hypothesis was that
deconfiguration of one out of multiple
units present in a core would result in a
tolerable performance loss, making it favor-
able to seek a design that supports fault
diagnosis and deconfiguration at a fine
granularity. Figure 3 shows data collected
for that work. Indeed, we showed that the
loss of a single instance of a replicated unit
results in a small (less than 10 percent) loss
in performance for a single-threaded SPEC
CPU 2000 workload.

Figure 4 shows per-benchmark results for
a subset of the data presented in Figure 3.
In this figure, we observe that certain
benchmarks are more sensitive to the loss
of a particular unit—an arithmetic logic
unit (ALU) or floating-point unit (FPU) in
this experiment. If we consider this data in
the context of a DHMP, it shows that an
intelligent scheduler could adapt to this
heterogeneity to provide performance nearly
equal to the fault-free scenario. Consider a
two-core processor in which core 1 has a

Figure 3. Performance (runtime) impact of a fault causing the loss of a

component in a single-core processor with simultaneous

multithreading (SMT).

Figure 4. Performance (runtime) impact of a fault causing the loss of an

ALU or FPU for selected SPEC 2000 benchmarks.

...

ARCHITECTURE-OS INTERACTION

...

20 IEEE MICRO

faulty ALU and core 2 has a faulty FPU. If
the scheduler knows to schedule mgrid on
core 1 and bzip2 on core 2, the runtime
would be close to the fault-free case.
However, if the scheduler obliviously sched-
ules them the other way, then the runtime
will suffer greatly. Even if the performance
impact is not visible to the user, the energy
impact is still significant. When a program
takes longer to run, it consumes more
processor energy and can reduce opportu-
nities for energy-saving optimizations such
as disk spin-downs.

Experiment 2. In this experiment, we
consider dynamic heterogeneity due to core
frequency scaling. In Figure 5, we show the
results of scaling the frequency while running
four benchmarks. As with the previous
experiment, in this one we observe a wide
range of sensitivity across the benchmarks.
For example, when the core’s clock is scaled
down to 55 percent of its maximum
frequency, swim’s runtime increases by 20
percent (with respect to a core at maximum
frequency) while crafty and perl incur
runtime increases in excess of 80 percent.

Although we show only a subset of the
SPEC CPU2000 benchmarks in Figure 5,
the data shows that benchmarks fall into
three clusters in terms of their performance
sensitivity to clock frequency. Benchmarks
in the high-sensitivity cluster, which in-
cludes crafty and perlbmk, are nearly linear
in their sensitivity to clock frequency
scaling. The low-sensitivity cluster, which
includes swim and mcf, shows sublinear
performance degradation as frequency is
decreased. The sublinearity arises because
decreasing the frequency reduces the mem-
ory latency (in terms of number of cycles),
and these benchmarks obtain an IPC
benefit from this effect. The medium-
sensitivity cluster falls between the first
two clusters. When we classified data from
our experiments into these three clusters, we
found that the high-sensitivity cluster is
largest, with roughly 56 percent of the
benchmarks falling into this category.
Somewhat to our surprise, the low-sensitiv-
ity cluster included 28 percent of the
benchmarks. The remaining 16 percent of
the benchmarks fell into the medium-
sensitivity cluster. This data suggests an

Figure 5. Performance (runtime) impact of dynamic frequency scaling.

..

MAY–JUNE 2008 21

opportunity for an intelligent scheduler to
be able to make better power-performance
decisions.

Consider a two-core chip in which the
scheduler must reduce the frequency of one
core to avoid exceeding its power budget.
Assume the chip wishes to run swim and
crafty and that they have equal priorities.
An oblivious scheduler could place crafty on
the slower core, which would provide far
worse performance than if swim were placed
on the slower core. Once again, an
intelligent scheduler could improve perfor-
mance and save energy.

Conclusion. These two simple experiments
show that we want a scheduler that can
dynamically migrate workloads to the cores
that can support them best. The question is,
how do we achieve this goal?

Challenges for OS and architecture
There are three fundamentally new chal-

lenges for efficiently scheduling DHMPs.
First, the OS must discover the dynamic
status of each core to know how much
computational capability each core can
currently supply. Second, the OS must
discover the dynamic resource demand of
each thread. Third, given the knowledge
about core ‘‘supply’’ and thread ‘‘demand,’’
the OS must match threads and cores as
efficiently as possible.

Core supply
In any heterogeneous multicore processor

(static or dynamic), the OS scheduler will
require basic information about the opera-
tional state of the present cores. For
example, core 1 might be at its maximum
supply (fully functional and at its highest
voltage and frequency), core 2 might have a
faulty ALU, and core 3 might be at a lower
frequency to save power. As we saw in our
experiments, an OS that was not aware of
heterogeneity in core supply might not
schedule nearly as well as an OS with that
knowledge.

For processors that rely on static sched-
uling of instructions, such as the Intel
Itanium, the problems posed by dynamic
heterogeneity are exacerbated. The compiler
decides how to schedule the instructions on

the basis of its (static) knowledge of the
core’s supply. If the core’s supply changes,
then this schedule might be obsolete and
lead to degradations in power efficiency and
performance. Moreover, for statically sched-
uled cores with little or no hardware to
adjust to runtime conditions, such as
Transmeta’s Crusoe,19 a change in the core
supply can actually lead to incorrect
execution. For multicore processors with
cores like the Crusoe, we would want the
OS to learn of supply changes in case
recompilation is preferable to moving the
thread to a core with the expected supply.

Communicating core supply information
to the OS will require support from the
hardware. Architects will need to provide
this information in the form of hardware
performance counters, operational state
descriptors, or explicit signals to the OS.
Whatever the form of information ex-
change, it should be abstract enough to be
uniform across a range of processor imple-
mentations.

Concretely, we expect each core to export
a subset of the following information to the
OS, along with perhaps other core supply
metrics:

N maximum and current frequency,
N current voltage, and
N effective pipeline width for both

integer and floating-point operations.

Thread demand
In a homogeneous multicore processor,

differences in thread behavior generally do
not matter to the scheduler. Some schedul-
ers4,5 consider a thread’s cache usage—
whether the thread has warmed up its cache
or is competing with another thread for a
shared L2 cache—but they generally do not
consider other aspects of the thread’s
behavior (such as whether it is memory
bound, floating-point intensive, and so on).
However, if cores are heterogeneous, the
scheduler should be aware of these differ-
ences in thread behavior. Our simple
experiments show the importance of know-
ing the different resource demands of
different applications.

Moreover, each thread’s behavior changes
as it passes through phases of execution.

...

ARCHITECTURE-OS INTERACTION

...

22 IEEE MICRO

Sherwood et al. have studied programmatic
phase behavior extensively, showing that
demands on the underlying hardware
change for periods on the order of ten
million to hundreds of millions of instruc-
tions.20 Intuitively, in a DHMP, it will be
desirable for a scheduler to react appropri-
ately to changes in phase that negatively
impact the performance of a given thread
on a particular core.

Communicating thread demand to the
OS could be performed by either the
hardware, the compiler, or some combina-
tion of the two. Hardware performance
counters or metadata from the compiler can
provide thread demand characteristics, but
we need to determine what information is
needed and when to deliver it. If feasible,
the scheduler should have the most amount
of information at the greatest frequency.
However, providing a rich and highly
dynamic set of demand data could be
costly—in terms of hardware, performance,
and power—and it could also overburden
the scheduler that tries to assimilate all of
this information.

In practice, we expect thread demand
data to encompass a subset of the following
metrics:

N available integer and floating-point
ILP, and whether the thread is com-
puting bound;

N memory demand and whether the
thread is bound by L1 data cache
bandwidth;

N the thread’s sensitivity to L2 cache
latency; and

N whether the thread is fetch bound.

Scheduling
Once the OS and architecture commu-

nities define an interface for communicating
supply and demand between the cores and
the OS, the OS community must then
develop scheduling algorithms that incor-
porate this information. Furthermore, these
scheduling algorithms must also consider
existing issues that are not related to
dynamic heterogeneity, such as fairness,
priority, and real-time requirements.

The design space for such scheduling
algorithms is immense, and it is not even

clear what the most appropriate metrics for
evaluating such algorithms are. We are
currently in the early stages of developing
scheduling algorithms, and this process
requires us to iterate with the development
of supply and demand interfaces. We are
also trying to exploit aspects of the vast
amount of prior work in load balancing for
traditional multichip multiprocessors and
distributed systems.

Current state of the art
There has been some preliminary work in

scheduling for heterogeneous multicore
processors, but it is far from solving all of
the issues posed by dynamic heterogeneity.
Ghiasi et al.15 and Kumar et al.21 con-
strained the heterogeneity to static config-
urations, such that the scheduler has a fixed,
processor-dependent knowledge of the un-
derlying hardware capability. DeVuyst et
al.22 use a sampling interval to set schedul-
ing policy for a fixed epoch of time. This
algorithm will not scale well as the number
of cores continues to increase. Further, it
fails to recognize phase changes when they
occur, which may lead to performance loss.
Much of this prior work was developed by
architects who needed a functional, but not
necessarily efficient, scheduler for purposes
of evaluating their architectural ideas. These
designs have been ad hoc in nature, and
there is significant opportunity for the OS
community to apply their accumulated
knowledge and experience to this problem.

Some other recent work has explored
how heterogeneity impacts the OS. Balak-
rishnan et al.6 observe that an OS scheduler
that is aware of (static) core heterogeneity
can, in some cases, overcome performance
unpredictability caused by heterogeneity.
Wells et al.23 use a hypervisor-like layer to
tolerate intermittent hardware faults by
mapping multiple virtual cores to a single
fault-free physical core.

For homogeneous multicore processors,
Fedorova et al.4,5 have developed novel
schedulers that consider the impact of L2
cache sharing among threads on the chip.
This type of L2 sharing is unique to
multicore chips, but it is orthogonal to the
issue of dynamic heterogeneity.

..

MAY–JUNE 2008 23

We hope this article will serve as a call
to action for research in scheduling

DHMPs. Scheduling of tasks on DHMPs is
a new problem, and we believe that the OS
community must develop schedulers that
can handle DHMPs. Such schedulers will
require dynamic knowledge of core status
and thread demand. We will need to
develop an interface between the hardware
and the OS that enables the communication
of this information. Because of these require-
ments, we expect that collaboration between
the OS and architecture communities will be
vital to achieving this goal. MICRO

..

References
1. M. Gschwind et al., ‘‘Synergistic Processing

in Cell’s Multicore Architecture,’’ IEEE Micro,

vol. 26, no. 2, Mar.-Apr. 2006, pp. 10-24.

2. P. Kongetira, K. Aingaran, and K. Olukotun,

‘‘Niagara: A 32-way Multithreaded SPARC

Processor,’’ IEEE Micro, vol. 25, no. 2,

Mar.-Apr. 2005, pp. 21-29.

3. R. Kalla, B. Sinharoy, and J.M. Tendler,

‘‘IBM POWER5 Chip: A Dual-Core Multi-

threaded Processor,’’ IEEE Micro, vol. 24,

no. 2, Mar.-Apr. 2004, pp. 40-47.

4. A. Fedorova et al., ‘‘Performance of Multi-

threaded Chip Multiprocessors and Impli-

cations for Operating System Design,’’

Proc. Usenix 2005 Ann. Technical Conf.,

Usenix Assoc, 2005, p. 26.

5. A. Fedorova, M. Seltzer, and M.D. Smith,

‘‘Improving Performance Isolation on Chip

Multiprocessors via an Operating System

Scheduler,’’ Proc. Int’l Conf. Parallel Archi-

tectures and Compilation Techniques

(PACT 07), 2007, pp. 25-38.

6. S. Balakrishnan et al., ‘‘The Impact of

Performance Asymmetry in Emerging Mul-

ticore Architectures,’’ Proc. 32nd Ann. Int’l

Symp. Computer Architecture (ISCA 05),

IEEE CS Press, 2005, pp. 506-517.

7. R. Kumar et al., ‘‘Heterogeneous Chip

Multiprocessors,’’ Computer, vol. 38, no. 11,

Nov. 2005, pp. 32-38.

8. D.M. Tullsen et al., ‘‘Exploiting Choice:

Instruction Fetch and Issue on an Imple-

mentable Simultaneous Multithreading Pro-

cessor,’’ Proc. 23rd Ann. Int’l Symp.

Computer Architecture (ISCA 96), IEEE

CS Press, 1996, pp. 191-202.

9. S. Borkar, ‘‘Designing Reliable Systems

from Unreliable Components: The Chal-

lenges of Transistor Variability and Degra-

dation,’’ IEEE Micro, vol. 25, no. 6, Nov.-

Dec. 2005, pp. 10-16.

10. J. Srinivasan et al., ‘‘The Impact of Tech-

nology Scaling on Lifetime Reliability,’’

Proc. Int’l Conf. Dependable Systems and

Networks (DSN 04), IEEE CS Press, 2004,

p. 177.

11. J. Blome et al., ‘‘Self-Calibrating Online

Wearout Detection,’’ Proc. 40th Ann. IEEE/

ACM Int’l Symp. Microarchitecture (Micro

07), IEEE CS Press, 2007, pp. 109-122.

12. D. Lampret, OpenRISC 1200 IP Core

Specification, Rev. 0.7 2001http://www.

opencores.org.

13. F.A. Bower, S. Ozev, and D.J. Sorin,

‘‘Autonomic Microprocessor Execution via

Self-Repairing Arrays,’’ IEEE Trans. De-

pendable and Secure Computing, vol. 2,

no. 4, Oct-Dec. 2005, pp. 297-310.

14. F.A. Bower, D.J. Sorin, and S. Ozev, ‘‘A

Mechanism for Online Diagnosis of Hard

Faults in Microprocessors,’’ Proc. 38th

Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture (Micro 05), IEEE CS Press, 2005,

pp. 197-208.

15. S. Ghiasi, T. Keller, and F. Rawson,

‘‘Scheduling for Heterogeneous Proces-

sors in Server Systems,’’ Proc. 2nd Conf.

Computing Frontiers (CF 05), ACM Press,

2005, pp. 199-210.

16. C. Isci et al., ‘‘An Analysis of Efficient Multi-

core Global Power Management Policies:

Maximizing Performance for a Given Pow-

er Budget,’’ Proc. 39th Ann. IEEE/ACM Int’l

Symp. Microarchitecture (Micro 06), IEEE

CS Press, 2006, pp. 347-358.

17. J. Sartori and R. Kumar, Proactive Peak

Power Management for Many-Core Archi-

tectures, tech. report CRHC-07-04, Center

for Reliable and High-Performance Com-

puting, Univ. of Illinois at Urbana-Cham-

paign, 2007.

18. D. Boggs et al., ‘‘The Microarchitecture of

the Intel Pentium 4 Processor on 90 nm

Technology,’’ Intel Tech. J., vol. 8, no. 1,

Feb. 2004, pp. 1-18.

19. J.C. Dehnert et al., ‘‘The Transmeta Code

Morphing Software: Using Speculation,

Recovery, and Adaptive Retranslation to

Address Real-Life Challenges,’’ Proc. Int’l

...

ARCHITECTURE-OS INTERACTION

...

24 IEEE MICRO

Symp. Code Generation and Optimization

(CGO 03), IEEE CS Press, 2003, pp. 15-24.

20. T. Sherwood et al., ‘‘Automatically Charac-

terizing Large Scale Program Behavior,’’

Proc. 10th Int’l Conf. Architectural Support

for Programming Languages and Operating

Systems (ASPLOS 02), ACM Press, 2002,

pp. 45-57.

21. R. Kumar, D.M. Tullsen, and N.P. Jouppi,

‘‘Core Architecture Optimization for Het-

erogeneous Chip Multiprocessors,’’ Proc.

Int’l Conf. Parallel Architectures and Com-

pilation Techniques (PACT 06), ACM Press,

2006, pp. 23-32.

22. M. DeVuyst, R. Kumar, and D.M. Tullsen,

‘‘Exploiting Unbalanced Thread Scheduling

for Energy and Performance on a CMP of

SMT Processors,’’ Proc. IEEE Int’l Parallel

and Distributed Processing Symposium

(IPDPS 06), 2006, p. 117.

23. P.M. Wells, K. Chakraborty, and G.S. Sohi,

‘‘Adapting to Intermittent Faults in Multi-

core Systems,’’ Proc. 13th Int’l Conf.

Architectural Support for Programming

Languages and Operating Systems (AS-

PLOS 08), ACM Press, 2008, pp. 255-264.

Fred A. Bower is a senior engineer in the
Systems and Technology Group at IBM,
and is pursuing his PhD in computer
science at Duke University. His research
interests focus on processor microarchitec-
ture and the exposed interface to system
software. He has a BS in mechanical

engineering and computer science from
Oregon State University and an MS in
computer science and engineering from the
Oregon Graduate Institute.

Daniel J. Sorin is an assistant professor of
electrical and computer engineering and of
computer science at Duke University. His
research interests are centered on computer
architecture, with a focus on dependability
and verification. He has a BSE in electrical
engineering from Duke University, and an
MS and a PhD in electrical and computer
engineering from the University of Wiscon-
sin.

Landon P. Cox is an assistant professor in
the Computer Science Department at Duke
University. His research interests include
distributed systems and operating systems.
He has a BS in computer science from
Duke University, and an MS and a PhD in
computer science and engineering from the
University of Michigan.

Direct questions and comments about
this article to Daniel J. Sorin, PO Box
90291, Durham, NC 27708; sorin@ee.
duke.edu.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

csdl.

..

MAY–JUNE 2008 25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

