
Low-Cost Run-time Diagnosis of Hard Delay Faults
in the Functional Units of a Microprocessor∗

Mahmut Yilmaz, Sule Ozev, Daniel J. Sorin
Dept. of Electrical and Computer Engineering

Duke University

Abstract

This paper addresses the run-time diagnosis of delay
faults in functional units of microprocessors. Despite the
popularity of the stuck-at fault model, it is no longer the
only relevant fault model. The delay fault model —- which
assumes that the faulty circuit element gets the correct value
but that this value arrives too late — encompasses many of
the actual in-field wearout faults in modern microproces-
sors. In-field wearout faults, such as time-dependent dielec-
tric breakdown and electromigration, cause signal propa-
gation delays which may be missed during production test
time. These defects progress exponentially over time, po-
tentially causing a catastrophic failure. Our goal is to di-
agnose hard delay faults (i.e., identify them as hard faults,
not transients) during run-time before they lead to catas-
trophic chip failures. Results show that we can diagnose all
injected delay faults and that prior diagnosis mechanisms,
which target only stuck-at faults, miss the majority of them.

1 Introduction

The vast majority of microprocessor fault tolerance
mechanisms have targeted stuck-at faults. The stuck-at fault
model assumes that a faulty circuit element (e.g., a wire or
the output of a gate) is stuck at either zero or one. This fault
model applies to both transient and permanent faults. The
stuck-at model is popular because it is easy to use and it
has, at least historically, represented a large class of actual
physical defects (e.g., short or open circuits). This model
assumes that the fault will manifest itself in the same way
when the same input is applied.

Despite the popularity of the stuck-at fault model, it is
no longer the only relevant fault model. The delay fault
model assumes that the faulty circuit element gets the cor-
rect value but that this value arrives too late. The delay fault
model covers many physical phenomena that are becom-
ing more prevalent in modern microprocessors, including

∗This material is based upon work supported by the National Sci-
ence Foundation under Grants No. CCF-0444516, CCR-0309164, CCF-
0545456, CCF-0540994, and EIA-9972879, the National Aeronautics and
Space Administration under grant NNG04GQ06G, an equipment donation
from Intel Corporation, and a Duke Warren Faculty Scholarship.

the effects of temperature, process variability, and the onset
of physical wear-out [5, 10, 15]. For instance, at the be-
ginning of wearout, the only impact is an increase in delay
[4, 10], which will eventually cause a delay fault. Delay
faults on any circuit path, not just critical paths, can cause
an error since the delay amount can easily exceed the timing
slack on even short paths [24]. In addition to the effects of
normal wearout, the circuit may contain innate defects that
manifest as delay faults. While there is extensive research
in production testing for delay faults, production test cover-
age is still low, particularly when these defects cause only
small delays, the effects of which get masked at nominal
clock frequencies [1, 27].

We want to diagnose a hard delay fault (i.e. identify it
as a hard fault) during run-time before its underlying cause,
the beginning of physical wearout, becomes catastrophic.
If undiagnosed, wear-out can lead to oxide breakdown or
other failures that can also ruin nearby circuitry [10] and
lead to chip failures.

The majority of fault tolerance techniques for commod-
ity microprocessors have focused on the detection of and
recovery from transient faults [2, 16, 19, 20]. Most of these
techniques are based on instruction replay and rely on the
already existing recovery mechanisms originally designed
for speculative execution. These techniques do not diagnose
the fault location or the type of the fault and thus cannot
reconfigure or gracefully shut down to avoid catastrophic
failure. A limited number of approaches aim at diagnosing
the hard faults [8, 9, 25]. Most of these techniques target
stuck-at faults and rely on the fault manifesting itself in the
same way when the same input is applied. Blome et. al.
[6] target delay faults, but they focus on faults at the end of
the bathtub curve and paths that are critical or near critical.
Thus, their technique misses innate defects and faults that
are not on the critical path.

Our contribution with respect to this previous work is a
run-time diagnosis mechanism for delay faults occurring in
the functional units (FUs) of a microprocessor. To deter-
mine if an error was due to a hard delay fault, we must be
able to reconstruct the circuit switching sequence that led to
the error. Thus, we keep a very short history of recent inputs
at FUs and use them to determine if the error repeats itself.

1



Consistent manifestation of the error indicates a hard delay
fault and requires system reconfiguration to take the faulty
component out of circulation. Our mechanism can diagnose
all injected delay faults (that are not masked), whereas the
vast majority of delay faults cannot be diagnosed by previ-
ous methods.

2 Related Work

Prior work has explored hard fault diagnosis, timing
speculation, and delay fault testing. None of this work,
however, diagnoses hard delay faults at run-time.

Hard Fault Diagnosis Reliable servers, such as IBM
mainframes [23], detect and diagnose hard faults by us-
ing vast amounts of redundancy. For example, in a server
with triple modular redundancy (TMR) at the FU-level, a
fault in one FU can be diagnosed when the other two FUs
repeatedly out-vote it. SRAS [8] uses much less hardware
than TMR to diagnose hard stuck-at faults in a microproces-
sor’s array structures (e.g., reorder buffer, load/store queue).
DIVA [2] is a lightweight redundancy based technique orig-
inally intended for transient errors. DIVA uses simple in-
order processors to check for errors in the execution of a
complex out-of-order core. While DIVA is designed for er-
ror detection only, it could diagnose hard stuck-at faults (but
not hard delay faults) if it assumed after repeated error de-
tections that the checkers are correct and that the aggressive
core is faulty (i.e., there is no third party to break the tie).
We do not believe that this assumption is viable, even if
the checkers are implemented with more robust technology.
Bower et al. [9] diagnose hard stuck-at faults in micropro-
cessor components, including FUs. For every instruction
that is determined to be erroneous (detected by DIVA), they
increment error counters for every component that instruc-
tion used. If, despite periodic zeroing of the error counters,
a particular counter reaches its threshold, then that compo-
nent is considered to have a hard fault. Their approach only
applies to hard stuck-at faults, since it cannot replicate the
input sequences necessary to diagnose delay faults, as we
will show in Section 4. Blome et al. [6] propose to detect
the onset of wearout in a microprocessor by sampling and
averaging line delays over time. Once the sampled delay
of a circuit reaches a critical limit, a wearout detection unit
predicts a catastrophic failure. This method has the abil-
ity the diagnose delay faults on critical lines when the cir-
cuit approaches the end of its lifetime. Thus, this method is
not suitable for faults due to production defects, early onset
wearout, or faults that lie on a non-critical path.

Timing Speculation Razor [12] cleverly enables timing
speculation, and it might appear that Razor could be used
to also diagnose delay faults (even though that is not what

it was intended for). Razor flip-flops enable timing spec-
ulation (e.g., potentially unsafe dynamic voltage scaling)
by combining a normal latch with a shadow latch that is
clocked on the next half cycle. Regular flip-flops are re-
placed with the more expensive Razor flip-flops for those
critical and near-critical circuits that could potentially be
clocked too fast for certain cases. If the two latches hold
different states, then there was a timing mis-speculation and
they recover. Razor could diagnose a delay fault after re-
peated mis-speculations. The key difference between tim-
ing mis-speculation and delay faults is that a delay fault can
occur on any path at any time. Using Razor to tolerate de-
lay faults would require replacing all flip-flops with Razor
flip-flops. However, Razor flip-flops cannot be used when
multiple paths intersect in which any one path might be less
than half of a clock period [12]. Moreover, Razor would
not be capable of detecting delay faults that cause delays
of more than half of a clock cycle (it is common for faults
to cause gross delays that are nearly as long as the system
clock cycle [24]).

Testing for Delay Faults Delay faults have been exten-
sively researched in the context of VLSI testing. Stud-
ies show that delay faults are an appreciable percentage of
failures and require at-speed or faster-than-at-speed testing
[21]. Most prior work on delay fault testing (e.g., [11, 17])
has focused on test pattern generation and detection tech-
niques for off-line manufacturing testing. Our work differs
in that it detects and diagnoses delay faults at run-time. We
enable diagnosis by repeating the input conditions that re-
sult in an error. In off-line test, one has to come up with
all the sequences that potentially lead to the manifestation
of fault as an error. In our case, the error has already mani-
fested itself, so repeating the input conditions (including the
transition conditions) enables diagnosis.

3 Error Detection and Recovery

In this section, we describe error detection and recov-
ery mechanisms. First, we discuss what we expect from
a checker (Section 3.1). Then, we list the available error
detection mechanisms that can be used with our diagno-
sis scheme (Sections 3.2). Last, we discuss how to recover
from errors (Section 3.3).

3.1 Required Aspects for Detection

Our diagnosis mechanism requires an error detection
mechanism for FUs of the microprocessor. We can either
use redundant units or specialized checkers, which may
complete zero or more cycles after the functional unit com-
pletes. If the design constraints require very low area and
power overheads, a smaller checker can be implemented
at the expense of increased checker latency. The selected

2



Figure 1. The recovery mechanism using the microprocessor’s branch misprediction mechanism

checker does not change the way our diagnosis mecha-
nism works. However, selecting a self-checking checker de-
creases the probability of marking a non-faulty FU as faulty.

Independent of the selected checker and the FU, we re-
quire that each FU makes its results immediately available
upon completion, before the checker completes. Instruction
completion is often on the critical path, since an instruc-
tion’s result is often the input to one or more subsequent
instructions. However, we commit the FU results only after
the checker finishes. Instruction commit is only critical if
the reorder buffer (ROB) or load-store queue (LSQ) fills up.

3.2 Options for Error Detection

Error detection for microprocessors and functional units
is an extensively researched area. Since we do not require
that error detection is instantaneous (i.e., within the same
clock cycle), there are many error detection options we
can use. Simple replication of FUs enables error detection,
since a mismatch in the results of the FUs reveals an error.
In this case, the check operation will be completed in the
next clock cycle after the FU completion. This is because
the comparison of results will take one more clock cycle.

There are light-weight approaches for checking most of
the microprocessor pipeline including the FUs. One of them
is to use redundant threads [16, 19, 26]. Another one is
DIVA [2], which detects errors by checking an aggressive
out-of-order core with simple in-order checker cores that sit
right before the aggressive core’s commit stage. If the result

of the aggressive core does not match that of the checker,
an error is detected and the aggressive core is flushed and
replays from the last uncommitted instruction.

There are also efficient implementations of specialized
FU checkers. Vasudevan et al. [25] detect errors in carry
select adders by checking partial results and the carry state.
The authors report 16% area overhead for a 32-bit adder.
This scheme includes a totally self-checking, 2-rail checker
which can detect all faults except the ones in the primary
inputs and primary outputs. Yilmaz et al. [28] detect er-
rors in a recursive multiplier by using a modulo-3 checker.
The authors report 26% area overhead and almost 99% fault
coverage for this scheme. Self diagnosis for the checker is
enabled by swapping the inputs of the checker after diag-
nosing a hard fault. The same scheme can also be applied
to a Booth-encoded multiplier, which is more common in
industrial applications [14, 18].

3.3 Recovery

If the result of the FU does not match that of the checker,
the recovery process is started. We rely on the the micropro-
cessor’s branch-misprediction recovery mechanism to re-
cover from errors. The recovery mechanism that we use is
illustrated in Figure 1. Before the checker triggers a pipeline
flush, we let all the instructions which are older than the of-
fending instruction (i.e., the instruction that led to the error)
commit. Thus, after the flush, the first instruction to enter
the ROB will be the one that failed its check.

3



Figure 2. Block diagram of Diagnosis for Functional Units

4 Run-time Diagnosis of Hard Delay Faults

In this section, we describe our diagnosis mechanism in
more detail. Although we discuss only integer adders and
multipliers, the diagnosis aspect of our research applies just
as easily to any other FU. If the fault is hard, we must di-
agnose it (Section 4.1). After diagnosis, we may choose to
perform some limited reconfiguration (Section 4.2).

4.1 Diagnosing Hard Delay Faults (and
Stuck-At Faults)

We now explain how we diagnose hard faults — both
hard stuck-at and hard delay faults. Our explanation focuses
on the diagnosis of hard delay faults, since that is a new
contribution, but our scheme also diagnoses hard stuck-at
faults at the same time.

Intuition A delay fault, unlike a stuck-at fault, is activated
by an input transition rather than by a specific input. Thus,
diagnosing a delay fault for an FU requires replaying a spe-
cific transition from one set of inputs to another set of in-
puts. We can replay an input transition by recording the last
inputs to the FU and, when an error is detected, applying
these inputs to the FU before re-trying the inputs that trig-
gered the error. If the error re-occurs after replaying the
input transition, we have an indication of a possible hard
fault — replaying the input transition is sufficient for exer-
cising both a delay fault or a stuck-at fault (we only need the
second input for stuck-at faults, but we need both for delay
faults).

When an error is encountered, it may be either due to a
transient fault or due to a hard fault. Upon the detection of
an error, we first try flushing the pipeline and recovering to
the instruction that triggered the error. We also increment a
2-bit saturating error counter associated with that FU. This

counter is reset upon any successful execution of that FU.
Before restarting the pipeline, we restore the state of the FU
by applying its previous inputs. If the error is caused by a
transient fault, there will be a successful re-execution before
the counter is saturated, and the instruction execution will
continue. If the counter saturates, we conclude that the error
is due to a hard fault.

Implementation and Operation Figure 2 shows a high
level block diagram of our fault diagnosis scheme. Each
FU keeps a history of its recent inputs in its own FIFO Input
History Buffer (IHB). The IHB should keep the most recent
L+1 inputs that have been sent to the checker. L is equal to
the number of clock cycles in which the checker completes
an instruction check. For example, if an adder checker com-
pletes a check in 3 clock cycles (2 cycles for the addition
and one cycle for the comparison to the result of the pri-
mary adder), the size of the IHB should be 4. In this case,
the IHB keeps the input sets of the last three unchecked ad-
ditions, as well as the input set of the last checked addition.
Each entry of the IHB keeps the two inputs of the adder.
When an addition is checked, its input set is pushed to the
end of the IHB and marked as the last good input set. The
flow of events is shown in Table 1.

Furthermore, each checker must buffer the old results
produced by the primary FU if the checker is slower than the
primary FU. Using the same example, if the adder checker
takes 2 clock cycles for the addition operation, there is a
delay of one clock cycle between the adder checker and the
primary adder, as shown in Table 1. The primary adder re-
sults arrive at the checker’s comparator in the cycle after the
primary adder finishes execution. As a result, the adder re-
sult buffer needs to keep only one result at a time. If the
checker works as fast as the primary FU, buffering the old
results is not necessary.

4



Table 1. Execution of Adder with Diagnosis
Primary Adder Adder Checker

cycle input output adder inputs adder output comparator inputs checked last good inputs
0 A0+B0 - A0+B0 - - - -
1 A1+B1 S0 A1+B1 - - - -
2 A2+B2 S1 A2+B2 S0’ S0 and S0’ - -
3 A3+B3 S2 A3+B3 S1’ S1 and S1’ A0+B0=S0 A0 and B0
4 A4+B4 S3 A4+B4 S2’ S2 and S2’ A1+B1=S1 A1 and B1
5 A5+B5 S4 A5+B5 S3’ S3 and S3’ A2+B2=S2 A2 and B2

If the comparison check is not successful, we first start
the recovery mechanism as described in Section 3.3. Sec-
ond, we apply the last good input set to the primary FU be-
fore any other input can be applied. We do not increment or
clear the error counters during this FU operation. Replay-
ing the last good input set puts the primary FU back in the
state that led to a potential delay error. Then, the scheduler
sends the offending instruction (the instruction that caused
the error) to the FU. We add a small amount of logic to en-
able the scheduler to choose an FU based on feedback from
an FU checker. If no error is detected this time, we clear the
error counter and execution proceeds normally. If an error
is detected, we increment the error counter and re-try the
process again, starting with the pipeline flush and applying
the last good input set to the primary FU.

If there is a hard fault in a primary FU or in its checker
- either a delay fault or stuck-at fault - the error counter for
that FU will saturate.

4.2 Post-Diagnosis Reconfiguration

Once we have diagnosed that there is a hard fault within
an FU combination (a primary FU and its checker), we have
a few options for dealing with it. The simplest solution is to
deconfigure the FU — we mark it as permanently busy in
the scheduler and prevent it from being used again. How-
ever, particularly for singleton units, such as the multiplier,
it may be preferable to determine whether the primary FU or
the checker is faulty, and continue executing without being
checked. Implementing a self-checking checker [25, 28] is
sufficient in this case.

5 Evalution

We have two goals for this experimental evaluation.
First, we want to show that our scheme diagnoses injected
delay faults and that it is indeed necessary for diagnosing
delay faults; that is, without it, many of them would go un-
diagnosed and potentially lead to catastrophic chip failure.
Second, we want to evaluate the hardware and power costs
of our proposed mechanisms.

5.1 Experimental Methodology

To evaluate our design, we used a modified version of
a cycle-accurate architectural simulator, SimpleScalar [3].
Table 2 shows the details of our configuration, which was
chosen to be similar to that of the Intel Pentium4 [7, 13].

For benchmarks, we use the complete SPEC2000 bench-
mark suite with the reference input set. To reduce simula-
tion time, we used SimPoint analysis [22] to sample from
the execution of each benchmark.

5.2 Selected Functional Units

To evaluate our mechanism, we implemented a 32-bit
CLA adder and a pipelined 32-bit Booth Encoded Multi-
plier in both Verilog and HSpice (using 0.18µm process pa-
rameters). The operational latencies of the functional units
are 1 clock cycle and 4 clock cycles, respectively. We in-
serted 2x1 multiplexors in front of the functional units to
enable them to select inputs either from the scheduler or
from the IHB. There is also a ”Set Select” logic, which sim-
ply changes the select signal of the multiplexors depending
on the checker result.

The added multiplexors cause around 2% delay overhead
per cycle for the multiplier and 2.7% delay for the adder,
and this extra delay may require increasing the clock period
by up to this amount.

5.3 Diagnosability of Delay Faults

In this experiment, we inject delay faults and show that
our mechanism diagnoses them. We also determine how
many delay faults would not be diagnosed in a system that
did not have our mechanism. We focus on the adder, since
we need to be able to simulate it at the transistor level of
detail, and this is overly time-consuming for the multiplier.
Since the results of our experiment depend on the functional
input transitions of the adder, we use the benchmark behav-
ior as the basis for our analysis.

First, for each SPEC benchmark, we use SimpleScalar
to collect traces of additions performed at each of the three
adders in the microprocessor. The total number of additions
across all three traces is 50,000. These additions include

5



Table 2. Parameters of the Target System
Feature Details
pipeline stages 20
width: fetch/issue/commit/check 3/6/3/3
branch predictor 2-level G-Share, 4K entries
instruction fetch queue 64 entries
reservation stations 32 entries
reorder buffer 128 entries
load/store queue 48 entries
integer ALU 3 units, 1-cycle
integer multiply/divide 1 unit, 14-cycle mult, 60-cycle div
floating point ALU 2 units, 1-cycle
floating point multiply/divide 1 unit, 1-cycle mult, 16-cycle div
L1 I-Cache 16KB, 8-way, 64-byte blocks, 2-cycles
L1 D-Cache 16KB, 8-way, 64-byte blocks, 2-cycles
L2 (unified) 1MB, 8-way, 128-byte blocks, 7-cycles

those performed for add instructions as well as for other
instructions, such as computing an address to be loaded.
For each of the 50,000 additions, the trace records the input
operands and the time (cycle count) at which that addition
occurred.

Then, in each of 50 separate experiments, we injected
a single delay fault in a randomly-chosen gate within the
adder in the Verilog implementation. The delay fault causes
an extra delay that is always long enough to exceed the tim-
ing constraints, but it could still be masked (e.g., if the delay
fault affects a gate that is on a path that is not switching).
We simulated the operation of each faulty adder executing
the three traces, and these simulations were performed with
a Verilog simulator at the gate level, using gate timing val-
ues produced by HSpice simulation.

For each addition that is erroneous due to a delay fault,
we explore the behavior of both our diagnosis mechanism
as well as a system without our diagnosis mechanism. With
our diagnosis mechanism, we can always restore the prior
state of the adder since we directly read this state from the
IHB. Having restored the prior input state, we replay the
transition for which the delay fault caused an error. Thus,
our mechanism diagnoses all un-masked delay faults. With-
out our mechanism, the diagnosis of the delay fault is not
guaranteed since it depends on what state the adder input
was left at the time of error detection. Our experiment can
be explained by a simple example: Assume an instruction
order as given in Table 1. Assume that there is an error in
the addition for input operands A1+B1. Thus, there is a
fault that manifests itself when the adder inputs transition
from A0+B0 to A1+B1. Also assume that the error due to
this fault is detected at cycle 4 (i.e., the checker has a 3-cycle
latency). Based on this scenario, just before the error is de-
tected, operands A4+B4 are at the input of the adder. With

our diagnosis mechanism, we first set the adder inputs to
A0+B0 before replaying the error-causing instruction, en-
suring that the inputs transition from A0+B0 to A1+B1, thus
re-generating the same input transition that caused the error.
Without our diagnosis mechanism, the inputs will transi-
tion from A4+B4 to A1+B1. While this transition may also
result in the delay fault manifestation, this outcome is not
guaranteed. In order to determine how often the delay fault
is not diagnosed, for every addition in the trace, we first set
the input signals of the adder to the pattern at the time of er-
ror detection and then re-play the erroneous addition. If this
addition executes correctly during replay, the injected delay
fault cannot be diagnosed without our mechanism. In Fig-
ure 3, we show the results of this experiment, averaged over
all three adders in the microprocessor. We observe that, for
all benchmarks, the vast majority of delay faults would not
be diagnosed without our mechanism.

5.4 Hardware and Power Costs

In this section, we evaluate the hardware and power costs
of our delay fault diagnosis mechanism. Because we can-
not possibly simulate every possible input transition for the
adder and multiplier and because HSpice simulations take
so long, our power results are based on 3000 simulations
with different random input transitions. The power results
are averaged across all of the time for all of the simulations
for each FU, and they include dynamic and static (leakage)
power.

Since we assume that there is a built-in error detection
mechanism, we do not consider the cost of the checker. The
cost of our mechanism consists of the IHB, a small con-
trol logic, the multiplexors, and the ”Set Select” logic. The
major cost factor is the IHB. The area and power overhead
of the IHB depends on the operational latency of the FU,

6



Figure 3. How often our diagnosis mechanism is needed

the latency of the checker (L), and the input operand width
(e.g., 32-bit, 64-bit).

Table 3 summarizes the overhead results for our imple-
mentation of the 32-bit integer adder and the 32-bit multi-
plier. The overheads for other functional units can be esti-
mated considering the relative size of the FU to the adder
or the multiplier. We approximate the area of a module in
terms of the number of transistors. We assumed that we use
A-phase 10-transistor latches for our IHB while calculating
these numbers.

As can be seen in Table 3, the size of the IHB compared
to the primary adder increases with increasing L. The total
area overhead is around 80% for L=3, and 62% for L=2.
In order to keep the area and power overhead of the IHB
low, a checker which can run at least as fast as the primary
adder can be selected. For the multiplier, the area overhead
is lower because of the larger size of the multiplier com-
pared to the adder. The IHB for the multiplier has more en-
tries because the primary multiplier has a latency of 4 cycles
(L=5). The total area overhead for the multiplier is 12.6%.
We could reduce the amount of buffering, if we were will-
ing to change the design such that the scheduler provided
the last inputs. However, we decided against that design,
because it would increase the complexity of the scheduler
and require us to add a new wiring path between the sched-
uler and each FU. The power overhead results correspond
closely to the area overhead results.

6 Conclusions

We have developed a low-cost mechanism for diagnos-
ing hard delay faults in functional units of a microprocessor.
Our scheme uses already existing error detection mecha-
nisms and leverages the built-in recovery mechanism in the
microprocessor. Our diagnosis mechanism requires just a
small amount of hardware to buffer previous functional unit
state in order to re-create the switching sequence that led
to the error. We showed that our diagnosis mechanism can
diagnose all injected delay faults and that previous diagno-
sis schemes, which target stuck-at faults, miss the majority
of delay faults. We believe that the low cost — in terms of
hardware, power, and performance — makes our approach
viable for this important problem.

References

[1] N. Ahmed, M. Tehranipoor, and V. Jayaram. Timing-based
Delay Test for Screening Small Delay Defects. In Proc. of
IEEE DAC, pages 320–325, Jul 2006.

[2] T. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In Proc. of IEEE/ACM MICRO,
pages 196–207, Nov 1999.

[3] T. Austin, E.Larson, and D.Ernst. SimpleScalar: An Infras-
tructure for Computer System Modeling. IEEE Computer,
35(2):59–67, Feb 2002.

[4] A. Avellan and W. Krautschneider. Impact of Soft and Hard
Breakdown on Analog and Digital Circuits. IEEE Tran. on
Device and Materials Reliability, 4(4):676–680, Dec 2004.

7



Table 3. Hardware and Power Overheads for Adder and Multiplier
Module Size (# of tran.) % of primary FU Power(mW) % of primary FU

Primary Adder 3488 100 1.56 100
IHB (L=2 / L=3) 1922/2562 55/73 0.9/1.2 57/77
Muxes and select logic 258 7.4 <0.001 negligible

Primary Multiplier 32633 100 27.6 100
IHB 3842 11.8 1.9 6.9
Muxes and select logic 258 0.8 <0.001 negligible

[5] M. Azimane and A. Majhi. New Test Methodology for
Resistive Open Defect Detection in Memory Address De-
coders. In Proc. of IEEE VTS, pages 123–128, Apr 2004.

[6] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Online Timing
Analysis for Wearout Detection. In Workshop on Architec-
tural Reliability, Nov 2006.

[7] D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller,
P. Roussel, R. Singhal, B. Toll, and K. Venkatraman. The
Microarchitecture of the Intel Pentium 4 Processor on 90nm
Technology. Intel Technology Journal, 8(1), Feb 2004.

[8] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tol-
erating Hard Faults in Microprocessor Array Structures. In
Proc. of IEEE Int. Conf. on Dependable Systems and Net-
works, pages 51–60, Jun 2004.

[9] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for On-
line Diagnosis of Hard Faults in Microprocessors. In Proc.
of IEEE/ACM MICRO, pages 197–208, Nov 2005.

[10] J. R. Carter, S. Ozev, and D. J. Sorin. Circuit-Level Mod-
eling for Concurrent Testing of Operational Defects due to
Gate Oxide Breakdown. In Proc. of IEEE DATE, pages 300–
305, Mar 2005.

[11] K. Y. Chung and S. Gupta. Low-Cost Scan-Based Delay
Testing of Latch-Based Circuits with Time Borrowing. In
Proc. of IEEE VTS, pages 8–15, Apr 2006.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: A Low-Power Pipeline Based on Circuit-Level Tim-
ing Speculation. In Proc. of IEEE/ACM MICRO, pages 7–
18, Dec 2003.

[13] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the Intel
Pentium 4 Processor. Intel Technology Journal, Feb 2001.

[14] R. Kaivola and N. Narasimhan. Formal Verification of the
Pentium4 Floating-Point Multiplier. In Proc. of IEEE DATE,
pages 20–27, May 2002.

[15] J. Li, C.-W. Tseng, and E. McCluskey. Testing for Resistive
Opens and Stuck Opens. In Proc. of IEEE ITC, pages 1049–
1058, Oct 2001.

[16] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
Design and Implementation of Redundant Multithreading
Alternatives. In Proc. of IEEE ISCA, pages 99–110, May
2002.

[17] S. Natarajan, S. Patil, and S. Chakravarty. Path Delay Fault
Simulation on Large Industrial Designs. In Proc. of IEEE
VTS, pages 16–23, Apr 2006.

[18] S. Oberman. Floating Point Division and Square Root Algo-
rithms and Implementation in the AMD-K7TM Micropro-
cessor. In Proc. of IEEE Symposium on Computer Arith-
metic, pages 106–115, Apr 1999.

[19] S. Reinhardt and S. Mukherjee. Transient Fault Detection
via Simultaneous Multithreading. In Proc. of IEEE ISCA,
pages 25–36, Jun 2000.

[20] E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. In Proc. of IEEE FTCS,
pages 84–91, Jun 1999.

[21] J. Saxena, K. Butler, J. Gatt, R. Raghuraman, S. Kumar,
S. Basu, D. Campbell, and J. J. Berech. Scan-Based Transi-
tion Fault Testing - Implementation and Low Cost Test Chal-
lenges. In Proc. of IEEE ITC, pages 1120–1129, Oct 2002.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically Characterizing Large Scale Program Behavior.
In Proc. of Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, Oct 2002.

[23] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective. IBM
Journal of Research and Development, 43(5/6), Sep 1999.

[24] N. Tendolkar, R. Molyneaux, C. Pyron, and R. Raina. At-
speed Testing of Delay Faults for Motorola’s MPC7400, A
PowerPC microprocessor. In Proc. of IEEE VTS, pages 3–8,
2000.

[25] D. P. Vasudevan and P. Lala. A Technique for Modular De-
sign of Self-checking Carry-Select Adder. In Proc. of IEEE
DFT, pages 325–333, Oct 2005.

[26] T. Vijaykumar, I.Pomeranz, and K. Chung. Transient Fault
Recovery Using Simultaneous Multithreading. In Proc. of
IEEE ISCA, pages 87–98, May 2002.

[27] S. Wang and S. Chakradhar. A Scalable Scan-path Test Point
Insertion Technique to Enhance Delay Fault Coverage for
Standard Scan Designs. IEEE Tran. on CAD, 25(8):1555–
1564, Aug 2006.

[28] M. Yilmaz, D. Hower, S. Ozev, and D. J. Sorin. Self-
Checking and Self-Diagnosing 32-bit Microprocessor Mul-
tiplier. In Proc. of IEEE ITC, Oct 2006.

8


