Appears in the proceedings of the
8th Annual International Symposium on High-Performance Computer Architecture (HPCA-8)
Cambridge, MA, February 2-6, 2002

Bandwidth Adaptive Snooping

Milo M. K. Martin, Daniel J. Sorin,

Mark D. Hill, and David A. Wood

Computer Sciences Department
University of Wisconsin-Madison
{milo, sorin, markhill, david}@cs.wisc.edu
http://www.cs.wisc.edu/multifacet/

Abstract

This paper advocates that cache coherence protocols use
a bandwidth adaptive approach to adjust to varied system
configurations (e.g., number of processors) and workload
behaviors. We proposéBandwidth Adaptive Snooping
Hybrid (BASH), a hybrid protocol that ranges from behav-
ing like snooping (by broadcasting requests) when excess
bandwidth is available to behaving like a directory protocol
(by unicasting requests) when bandwidth is limitBASH
adapts dynamically by probabilistically deciding to broad-
cast or unicast on a per request basis using a local estimate
of recent interconnection network utilization. Simulations of
a microbenchmark and commercial and scientific workloads
show thaBASH robustly performs as well or better than the
best of snooping and directory protocols as available band-
width is varied. By mixing broadcasts and unica®2$SH
outperforms both snooping and directory protocols in the
mid-range where a static choice of either is inefficient.

1 Introduction
Snooping and directory protocols are the two dominant

1.0
0.8+
3
= 0.6 —
s ! Ll
o]
% 0.4
e | g e Snooping
BASH
0.2+ ——— Directory
0.0 H——rrrrr——rrr——
100 1000 10000

endpoint bandwidth available (M B/second)

Figure 1. Performance vs. available bandwidth for a
microbenchmark on 64 processors

Martin et al. [23] showed that snooping can outperform
directories on a medium size (16 processor) system running
commercial workloads, at the cost of additional bandwidth.
In Figure 1, we plot performance versus available intercon-
nection network bandwidth for a simple locking micro-

classes of cache coherence protocols for hardware sharedoenchmark on 64 processors (described in Section 4). This
memory multiprocessors. In a snooping system, a processor graph reinforces the intuition that the relative performances
broadcasts a request for a block to all nodes in the system to of snooping and directories depend on available bandwidth.
find the owner (which could be memory) directly. In a direc- The point at which increasing bandwidth does not improve
tory protocol, a processor unicasts a request to the home performance occurs at a bandwidth much greater (by a factor
directory for the block, the directory forwards the request to of 5) for snooping than for directories.

the owner (trivial when the directory is the owner), and the ~ Designing a single protocol to provide high performance
owner responds to the requestor. Thus, snooping protocols for many system configurations and workloads is difficult.
can achieve lower latencies than directory protocols on shar- Hennessy writes [14], “[W]e don't have a coherency scheme
ing misses (a.k.a., cache-to-cache transfers or dirty misses)that does well under all these situations: from small to large

by avoiding the indirections incurred by directories.

By broadcasting to avoid indirections for sharing misses,
shooping can outperform directories when bandwidth is
plentiful, but directories outperform snooping when band-
width is limited. In today’s commercial workloads, sharing
misses comprise a significant fraction of level two cache
misses and correspondingly impact performance [3, 18].

This work is supported in part by the National Science Foundation with
grants EIA-9971256, CDA-9623632, and CCR-0105721, an IBM Graduate
Fellowship (Martin), an Intel Graduate Fellowship (Sorin), two Wisconsin

Romnes Fellowships (Hill and Wood), and donations from Compagq Com-
puter Corporation, IBM, Intel, and Sun Microsystems.

processor counts, different levels of [software] optimization,
and differing cache sizes.” We advocate an adaptive
approach to address this challenge.

There are two reasons why an adaptive scheme is desir-
able. First, due to the trend towards integrating the coherence
protocol logic and the processor on the same die [7, 12, 30],
a single protocol must suffice for multiple hardware configu-
rations (processor counts, cache sizes, and interconnection
networks). If the microprocessor is to be used in a scalable
system, the protocol must also be scalable. For example,
since Alpha 21364 [12] systems can scale to hundreds of

processors, a directory protocol is currently the only option.
However, many scalable system designs are used for smaller
systems that could be better served by a snooping protocol.
Even the vast majority of scalable systems sold are systems
of moderate size. For example, a recent essay [24] estimated
that, of the 30,000 Origin 200/2000 [20] systems shipped,
less than 10 systems contained 256 or more processors
(~0.03%), and less than 250 of the systems had 128 proces-
sors or more (~1%).

Second, statically choosing between a directory protocol
and a snooping protocol is not desirable due to the varying
behaviors of different workloads and the time-varying
behavior within a workload. Our results show that for a given
system size and configuration, some workloads perform bet-
ter with snooping while other workloads are better served by
a directory protocol. Further, a given workload’s demand on
system bandwidth varies dynamically over time. For exam-
ple, different phases of behavior for a multiprocessor data-
base workload have been observed with periods on the order
of minutes [25]. During a phase of high cache miss rate, a
broadcast request in a snooping protocol could further con-
gest the system.

For these two reasons, an adaptive hybrid protocol that
provides robust performance is preferable to a static choice
of either snooping or directories. Our contribution is an
adaptive mechanism (Section2) and a hybrid protocol
(Section 3) that leverages this mechanism to perform like
snhooping (by broadcasting requests) if bandwidth is plentiful
and perform like a directory protocol (by unicasting
requests) if bandwidth is limited. Our protocddandwidth
adaptive snooping hybrid (BASH)dapts dynamically to the
available bandwidth to provide robust performance. Using a
microbenchmark (shown in Figure 1 and further explored in
Section 4) and commercial workloads (Section 5), we show
that the performance dBASHtracks that of the directory
protocol in the limited bandwidth case and tracks that of
snooping in the plentiful bandwidth case. Moreover, in the
mid-range where the performances of snooping and directo-
ries are similalBASHoutperforms both protocols.

2 A Bandwidth Adaptive Mechanism

In this section, we describe the mechanism each processor
uses to decide dynamically whether a request should be
broadcast or unicast.

2.1 Goal and Approach

BASHSs goal is to minimize average miss latency. Given
infinite bandwidth, broadcasting all requests would achieve
this goal by avoiding all indirections for sharing misses.
However, the finite bandwidth of interconnection networks
can lead to congestion and queuing delays that outweigh the
benefit of avoiding indirection. Nevertheless, mean queuing
delay only dominates when the interconnect is highly uti-
lized. Figure 2 illustrates this trade-off with a simple queuing

14__ queuing model
12 -
%\ 4
g 10
> _
g 8+ Z ~ exp(varies)
T _
S 6-
%’) S~ exp(l)
P O
8 J
2 —
1 knee
0 T T T T |
0 20 40 60 80 100

percent utilization
Figure 2. Average queuing delay vs. utilization for a sim-

network. Above the “knee” in the curve, increasing utiliza-
tion dramatically increases response time.

The mechanism we propose fBASHuses feedback to
keep the interconnect utilization below this critical level and
thus mitigate queuing delays. Our mechanism uses a proces-
sor-local estimate of interconnect utilization to keep utiliza-
tion below a pre-specified threshold by dynamically
adjusting the probability of broadcasting. Feedback control
theory suggests that the mechanism should adapt to changes
in interconnect congestion, but not so quickly that it over-
shoots and leads to oscillation [19]. As described in
Section 2.2, our mechanism avoids oscillation by adapting
relatively slowly and using a probabilistic mechanism to
decide whether or not to broadcast. In initial experiments, we
tried a simpler mechanism that switched between always and
never broadcasting, and we observed unstable behavior due
to oscillation between these two extremes.

2.2 Implementation

Our bandwidth adaptive implementation uses a simple
mechanism to estimate the interconnect utilization and adjust
the rate of broadcast. The mechanism consists of three parts:
(1) estimating interconnect utilization, (2) adjusting the
probability of broadcasting, and (3) determining whether or
not to broadcast a specific request.

First, a processor uses the utilization of its link to the
interconnection network as a local estimate of global inter-
connect utilization. While this local information does not
capture certain global effects, it is easy to obtain and corre-
lates strongly with global interconnect utilization due, in
part, to the broadcast nature of the requests that are most
likely to cause contention. Each processor uses a simple,
signed, saturatingtilization counterto calculate if the link
utilization is above or below a static threshold. Figure 3
illustrates the counter’s operation assuming a target link uti-
lization of 75%. For each cycle, the mechanism increments
the counter by one if the link is utilized, and decrements it by

3 A Bandwidth Adaptive Snooping Protocol

BASH our bandwidth adaptive snooping hybrid protocol,
incorporates features of both snooping and directory proto-
3 cols. While there are different ways to combine these two
types of protocols to synthesize a hybrid, we choose to form
BASHfrom an aggressive snooping protocol and a recently-
published directory protocol. These two protocols have some

busy
idle

utilization|~ g + (surprisingly) common features that we exploit in creating
counter — +
s -3 . our hybrid protocol.
€ _1|—3 First, in Sections 3.1 and 3.2, we describe the two proto-

cols used as the foundation of our hybrid. They will also
serve as the base cases against which we will conpagH

for its evaluation in Sections 4 and 5. Second, in Section 3.3,
] . _we describe our synthesis of these two protocols. A key issue
three otherwise. When the counter is sampled, a positive i, this synthesis is reconciling the differences between the
value means that the link was used more than the threshold, ethods used by snooping and directories to enforce order-
and a negative value means that the link was used less thanjng hetween racing transactions. For each protocol described
the threshold. The counter is reset to zero after each sample.j, this section, Figure 4 illustrates the operation of two typi-
Since the link in Figure 3 was used 4 out of the previous 7 .| protocol transactions, so as to highlight the similarities
cycles (57%), the counter would be, as expected, negative 4 differences between the protocols. Third, in Section 3.4,

-6 T
Figure 3. Example operation of the utilization counter

(401 + -333 = -5).
Second, an unsigned, saturatipglicy counteraverages
the utilization information and determines the fraction of

we discuss several issues relating®@aSH including live-
lock/deadlock, scalability, complexity, and verification.
All three protocols are write-invalidate, use the MOSI

requests that should be broadcast. Our mechanism samplessiates [29], allow processors to silently downgrade from S to

the utilization counter evemy cycles (the sampling interval),

I, support several transactions (e.g., get an S copy, get an M

and it increments/decrements the policy counter by one if the copy, writeback an M or O copy), and interact with the pro-
utilization was greater/less than the threshold. Thus, a larger -essors to support a consistency model. Our results assume
value of the policy counter corresponds to a lower probabil- sequential consistency.

ity of broadcast.

Finally, a given request is unicast or broadcast with a 3.1 A Snooping Protocol
probability proportional to the policy counter. For example, Traditional snooping protocols rely on a totally ordered
an 8-bit policy counter with the value of 100 implies that a delivery of coherence requests to (1) enable processors and
request should be unicast with probability of 100/255 or memories to agree on the next owner and (2) obviate the
39%. For each out-going request, the processor compares theneed for explicitly acknowledging invalidations of shared
policy counter to a randomly generated integer the same size blocks. Since racing transactions are totally ordered, a
as the policy counter. The processor unicasts if the policy snooping cache controller can make a strictly local decision
counter is smaller than the random number, and it broadcastson each transaction and infer that other nodes will make
otherwise. Pseudo-random numbers can be generated easiljcompatible decisions. We bas®ASH on an aggressive
by a linear feedback shift register [11]. Our mechanism gen- MOSI snooping protocol (which we refer to &nooping
erates random numbers and performs the comparison to thethat is loosely based on the Sun UE10000 [6].
policy counter off the critical path, allowing the mechanism We assume that our snooping protocol uses separate vir-
to have negligible impact on miss latency. tual networks for requests and responses. The request net-

Through experimentation, we selected a utilization thresh- work must enforce a total order, but it need not ensure
old of 75%, a sampling interval of 512 cycles, and a policy synchronous broadcast [23]. Modern snooping systems use
counter size of 8 bits. A smaller sampling interval and policy address-interleaved hierarchical switches to achieve high
counter size would enable the mechanism to respond more throughput for ordered broadcasts [6]. The response network
rapidly to different workload phases, but they would make has no ordering requirements and can use any unordered
the mechanism more susceptible to oscillation. With these switched interconnection network.
parameters, our adaptive mechanism can change from 100% A processor broadcasts its requests to all other nodes on
unicast to 0% unicast (or vice versa) in 51255 = ~130,000 the request network, and all processors snoop all requests.
cycles in which the measured utilization is above/below the The owner (potentially memory) sends data directly to the
threshold. Since the uncontended round-trip latency for an requestor over the response network. A requestor must also
L2 cache misses is around 125 cycles (for our target system), snoop its own request, which serves amarkerto indicate
the mechanism can adapt over its entire range in ~1000 its place in the total order.
cache misses.

Snoopingam BASHbroadcast Directory BASHuncast
o Request Invalid Invalid Requesto Invalid
<
8 Invalid Invalid Invalid
oL datal marker
T 1
25 0
g =
S @ Invalid Home Mo Invalid
S Owner: memory Owner: memory
Sharers: none Sharers: none
(b) (©)
Requestg, =~ Owner
Q J;a Sharers: {B}
8 L Invalid
o
4
T C
O @
g o)
g Home @ Shared
Owner: non-memory Owner: R
Sharers: {B} Sharers: {B}
(d) (e) (f)

Figure 4. Example operation forSnooping Directory, and BASH with four processors (R-P3) and memory module (V).
(a)-(c) illustrate a request by B for exclusive access to a block that is satisfied by memory (a memory-to-cache transfer).
(d)-(f) illustrate a similar request by Pg where P, is the owner and R is a sharer (a cache-to-cache transfer with an inval-
idation). Totally ordered messages are drawn with solid lines and unordered messages are drawn with dashed lines.

A memory controller behaves much like it does in a tradi-
tional snooping protocol, except for keeping one bit of state
per block to indicate if it is the owner, similar to what was
done in the Synapse N+1 [9]. This bit of state eliminates the
need for a global owned snoop response. If memory is the
owner, it responds with data.

3.2 A Directory Protocol

Traditional directory protocols rely on unordered or, at
most, point-to-point ordered interconnection networks.
While the lack of ordering facilitates building scalable inter-
connects, it requires the protocols to use explicit acknowl-

about each block for which it is the home, including the
owner and a superset of the sharers. Like all directory proto-
cols, the memory controller responds directly when it has
sufficient permissions and forwards the request when it does
not. On a direct response, the memory controller sends the
data on the unordered response network and a marker mes-
sage on the forwarded request network. The latter indicates
the request’s place in the total order. Forwarded requests are
sent via the totally ordered multicast network to the owner,
sharers, and requestor. The marker sent to the requestor
allows it to infer where the forwarded request occurs in the

between racing transactions.

A recent directory protocol, implemented in the AlphaSer-
ver GS320 [10], uses a totally ordered multicast interconnect
to optimize the protocol and eliminate explicit acknowledg-
ments. Like Snooping the GS320 uses a marker on the
ordered network to indicate a request’s place in the total
order. Below we describe a protocol (which we refer to as
Directory) modeled after the GS320.

Directory uses three virtual networks: an unordered
request network, a totally ordered network for requests for-
warded by the directory to processors, and an unordered net-
work for responses from processors and directories. The
totally ordered forwarded request network supports multi-
casting and, as i8noopingeliminates the need for acknowl-
edgment messages. In the GS320, this totally ordered
interconnect is implemented as an 8-way crossbar that con-
nects to 4-processor nodes, supporting up to 32 processors.

Processors unicast all requests to the directory at memory.
The memory controller maintains a directory with state

order obviates the need for explicit acknowledgement mes-
sages: Racing request messages are ordered at the directory,
and they are either processed locally or forwarded on the
ordered multicast network.

When a processor responds to a request that is forwarded
to it by the directory, it does not need to send an explicit
acknowledgment, since the forwarded request network is
totally ordered. Processors also monitor the forwarded
request network for the marker messages that indicate their
request’s place in the total order.

3.3 An Adaptive Hybrid Protocol

In this section, we describe how our hybrid protocol inte-
gratesSnoopingand Directory, and we then discuss a num-
ber of issues that arise from the integration. The integration
is possible because both protocols use a totally ordered net-

1. Along with the total order, the GS320 protocol guarantees that all for-
warded requests can be processed at the target node, which is also necessary
to eliminate explicit acknowledgments.

work to eliminate the need for explicit acknowledgments and Directory, with two important differences. First, it does not
preserve order between racing transactions. However, we update the directory state, because the request is not yet sat-
must resolve a key discrepancy in how these protocols order isfied. Second, instead of forwarding the request on a sepa-
racing transactions. lisnooping racing request messages rate forwarded request network, rittries the request as a
are ordered entirely by the request networkDirectory, the multicast on the totally ordered request network. The multi-
order of racing messages is determined by the order in which cast set for the retried request includes the memory control-
they are processed by the directory controller; the ordered ler in addition to the owner, sharers, and requestor.
multicast network simply preserves this order for forwarded Assuming no racing transactions, the owner will satisfy the
requests. Resolving this difference requires subtle, but rela- retried request.
tively simple, hardware. Our adaptive protocol handles these More complex cases occur when broadcasts, unicasts, and
races similarly to Multicast Snooping [4, 28], aBASHcan multicast retries race for the same block. The memory con-
be considered a special case of this more general protocol. troller has a “window of vulnerability” between when the

Our hybrid protocol uses two virtual networks. Requests original and retried requests are ordered on the request net-
use a totally ordered multicast request network, but no work. If a broadcast request for the same block is ordered
restrictions are placed upon its topology or synchrony. As in during that window, the retried request’s multicast set may
Snooping the total order of requests—necessary for correct be insufficient, forcing the request to be retried again. Since
coherence protocol behavior and enforcing a memory con- any non-broadcast request may require retries, there exist
sistency model—is determined by their ordering on the livelock and deadlock issues, discussed in Section 3.4.
request network. Responses travel on an unordered point-to-])
point data network. 3.4 Discussion

From the requestor’s point of vielBASHbehaves simi- With BASH as for any coherence protocol, one must
larly to Snooping except that the cache controller must address the issues of livelock/deadlock, scalability, complex-
choose whether to broadcast or unicast each request. Ourity, and verification.
policy for deciding between broadcast and unicast was Livelock and deadlock.Retrying requests presents the twin
explained in Section 2.2. Writeback requests are always uni- problems of livelock and deadlock. Livelock could occur, for

cast. Since the request network is the ordering paiBASH example, if a non-broadcast is competing with broadcasts for
“unicast” request is actually a dualcast sent to both the home g heavily contended block; no matter how many times the
node and back to the requestor. Similar Soooping the memory controller retries a non-broadcast request, there is

return of the request acts as the marker and informs the no guarantee that it will ever succe®hSHavoids livelock
requestor of the transaction’s place in the total order. Proces- by broadcasting—which is guaranteed to succeed—on its

sors respond to incoming requests asSimooping except third retry.
processors must detect and ignore retried requests as dis- Most multiprocessor systems avoid interconnection net-
cussed below. work deadlocks (in part) by accessing virtual networks in a

Like Directory, BASHS memory controller maintains the strict order to avoid cyclic dependences. By retrying requests
owner and a superset of the sharers for each block for which on the same virtual networkBASH introduces a circular
it is the home. The memory controller's basic operation is to dependence—and thus potential deadlock—because it may
compare the owner/sharer information from the directory use the request network mu|tip|e times to process a sing|e
against the set of nodes that received the request message t9equest. Rather than avoiding deadlo®ASH detects a
determine if the request was sent to a sufficient set of n@des. potential deadlock and resolves it by sending a negative
If the request was sent to the owner and all necessary sharersacknowledgment (nack) to the original requestor. Specifi-
the memory controller updates the directory state and cally, if the memory controller cannot allocate a network
responds with data as necessary. For broadcast requests, @uffer for the retry, it sends a nack to the requestor on the
BASHmemory controller behaves as 8nooping with the data response network. The requestor can then reissue its

addition of updating the directory state as needed. For uni- request as a broadcast, which is guaranteed to succeed.
cast requests that find data at the home, the memory control-

ler behaves as iDirectory, immediately updating the state) g .
. . iy because it does not require all requests to be broadcast, yet it
and responding with data. Unlikirectory, BASHneed not . .
is less scalable than directory protocols that do not rely on a

sgnq a marker message, since this was already sent with thetotally ordered interconnect [20, 21]. Fortunately, hierarchi-
original request.

When a processor issues a unicast for a block that is cal switches can be used to make high-bandwidth totally

. . .~ ordered interconnects. Removing the broadcast-always
owned in a third node, the memory controller behaves as in . . .
behavior of snooping may allow the design of a well-bal-

anced system of significantly larger size than would be pos-
2. If a processor is the owner, it also tracks the sharer set and determines if sible with broadcast snooping. Examples of real systems

the request was sufficient, so as to make a decision consistent with that of |, : ; .
the memory controller. with a large number of processors and an ordered intercon

Scalability. BASHis more scalable than snooping protocols

nect include the AlphaServer GS320 [10], Sun’s UE10000 Table 1. States. events. and transitions f@BASH

[6], and Fujitsu’s PRIMEPOWER 2000 [15], and these sys- Snooping,and Directory
tems support 32, 64, and 128 processors, respectively. In ’
addition, Martin et al. [23] recently proposed an approach for Total Cache Merm/Dir

an ordered interconnect with no central bottleneck. This
approach allows for more general, and perhaps more scal- | Protocol
able, interconnect topologies that still maintain a total order.

Complexity. As a hybrid of two protocolsBASHis more
complex than either protocol on which it is based, and the | BASH 2
difficulty of verification is directly related to the complexity.
However, complexity does not grow as much as one might |Snhoopingl 19 13 64 17 9 6L 3
expect because of the strong similarities between the under-
lying protocols. For exampldBASHprocessors react identi-

cally to requests, regardless of whether they are unicasts,

multicasts, or broadcasts. In fact, a broadcast in this system 4 Microb h K Perf Evaluati
appears as though the directory simply specified an overly Icrobenchmark Performance Evaluation

generous set of sharers to invalidate. Before presenting performance results for commercial
As a rough measure of the complexity of each protocol workloads using full-system simulation, we present results

Table 1 displays the numbers of states (both stable and tran-for & simple locking microbenchmark. The microbenchmark
sient), events, and state transitions for each controller. Com- IS €asy to understand and allows us to explore the effects of
pared to Snoopingand Directory, we find BASH has a system scaling and workload intensity. We start by describ-

comparable number of states, but about 50% more events INg our microbenchmark and simulation methods. We then
and double the number of transitions. While not all €Xplore the performance &ASHover a range of available

state/event combinations are equally difficult to verify, and Pandwidths, utilization thresholds, system sizes, and work-
the numbers of states and events depend somewhat on how0ad intensities.

one chooses to express a protocol, implemenf#fgSH
should be less difficult than including both a snooping and

States
Events
Trans
States
Events
Trans
States
Events
Trans

/

o
N
w
[ERN
-
N
AR
©
D
[de)
N
(@)

7

=

P
e~
~

Directory| 21| 13| 751 17 9 6} 4 4 14

4.1 Microbenchmark
In the microbenchmark, each processor acquires and

directory protocol in the same system.

Verification. To gain confidence in the correctnesB#SH
we have used both random testing and formal methods. All
three protocols-Snooping Directory, and BASH—were

releases locks that are generally uncontended. After the
release of one lock, a processor immediately attempts to
acquire another lock. Each processor can have at most one
outstanding request. Since we choose the number of locks to

tested using a stand-alone random tester. This tester usesye approximately the number of lines per cache, the micro-
false sharing, random action/check (store/load) pairs [33], penchmark incurs sharing misses almost exclusively. While
and widely variable message latencies to force each protocol thjs js near the worst-case performance scenario for directory
through a myriad of corner cases. We ran the tester through protocols, smaller fractions of sharing misses do not qualita-

millions of coherence operations and uncovered numerous
subtle race conditions. In the end, our tool reported full cov-
erage for all state transitions with no detected errors.

In our experience, random testing is excellent at finding
protocol errors even for complex protocols, but it is little
help for finding deadlock, livelock, and memory consistency
model errors. We have explored more formal methods,
including model checking and Lamport clocks [26], to

tively change our conclusions, as shown in Section 5.

4.2 Simulation Methods

Before discussing our microbenchmark results, we
describe our memory system simulator and timing assump-
tions. Our memory hierarchy simulator captures timing races
and all state transitions (including transient states) of the
coherence protocols in cache and memory controllers. We

address these issues. A technical report [28] describes ourconsider integrated processor/memory nodes connected via a

experience verifying an enhanced version of the Multicast
Snooping protocol [4}. Since BASH is based upon this
enhanced protocol, this proof carries over directiBAGH

3. The original Multicast Snooping protocol described in Bilir et al. [4]
must nack insufficient requests. Sorin et al. [28] describe the important opti-
mization of retries at the directory. This optimization allows an insufficient
unicast inBASHto have the same latency as a request that must be for-
warded by the directory.

single link to an interconnection network. Sin@&ASH
SnoopingandDirectory all require a total order of requests,

but do not require a specific interconnection network topol-
ogy, we abstract the details of the interconnect design by
modeling a fixed latency crossbar with limited bandwidth
and contention at the endpoints. All request, forwarded
request, and retried request messages are 8 bytes, and data
responses are 72 bytes (64 byte data block with an 8 byte
header).

100 —-----mmmm e - 1.0 5 e
- = .
ro=—" - : 3 :
L 1.U - .
o N o 80 \ 0 0.8 -
é \\', 2) 75%
. p= .
=) o]
S , \\ 8 60— % 0.6 -
g_] \\ E e | Ai----
- = <] J
§ 0.5 2 40— T 0.4 R Snooping
T 1 . £ 2 BASH: 55%
E 1 PR Snooping 2 — —— BASH: 75%
5] SASH g 20 : N 0.2+ BASH: 95%
] — —— Directory -g — —— Directory \\\ — — — - Directory
0.0 s ———rr—— o1 00T
100 1000 10000 100 1000 10000 100 1000 10000
endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second) endpoint bandwidth available (M B/second)
Figure 5. Normalized performance Figure 6. Utilization vs. available Figure 7. Sensitivity to utilization
vs. available bandwidth for a micro- bandwidth for a microbenchmark threshold value for a microbench-
benchmark on 64 processors on 64 processors mark on 64 processors

To approximate the published latencies of systems like the cessor systemBASHperforms likeDirectory in the limited
Alpha 21364 [12], we selected 50 ns for each interconnec- bandwidth case and likBnoopingn the plentiful bandwidth
tion network traversal (which includes wire propagation, case. At extremely low available bandwidtirectory out-
synchronization, and routing) and 80 ns for memory DRAM performs both other protocol8ASHis ~10% worse than
access time. When a protocol request arrives at a processorDirectory due to additional marker messages (shown in
or memory, it takes 25 ns or 80 ns, respectively, to provide Figure 4(f)). In the middle range (near where tBrooping
data to the interconnect. These assumed latencies result in aandDirectory curves intersectBASHoutperforms both pro-
180 ns latency to obtain a block from memory in all three tocols by up to 25%. As the available bandwidth increases,
protocols, a 125 ns latency for a cache-to-cache transfer for SnoopingoutperformsBASH becausdBASHconservatively
both aSnoopingand a broadcaB8ASHrequest, and a 255 ns reduces its rate of broadcast. As bandwidth becomes even
latency for a cache-to-cache transfer fobaectory and a more plentiful, BASHalways broadcasts requests, and thus
unicastBASHrequest. the performances &ASHandSnoopingconverge.

For Snoopingand successfBASHrequests, the cache-t0- yterconnection network utilization. To further explain

cachoe transfer latency is §maller than the memory latency {hese performance results, we plot interconnection network
(~70% of memory latency: 125 ns vs. 180 ns). We assume gnqngint utilization versus available bandwidth in Figure 6.

that this scenario is carefully optimized, as is the case for the Snoopinguses large amounts of bandwidth and thus over-uti-
IBM NorthStar (RS64-11) SMPs [5], where a cache-to-cache i eg the network in the case of limited bandwidth, while
transfer latency is ~55% of main memory latency [17]. The ' pjrectory under-utilizes the network when bandwidth is
cache-to-cache transfer latency irectory requests and heniiful. BASH achieves the desired 75% utilization
for BASHrequests that need to be retried is significantly (qenoted by the horizontal line) until bandwidth is so plenti-
higher than a fetch from memory, due to the indirection ¢, that even by always broadcasting it does not reach 75%
through the directory (memory controller). An indirected jjization. Figure 5 shows that this is also the point at which
request incurs the latencies of a DRAM directory access, the performances &ASHandSnoopingconverge.

supplying the data from the cache, and three interconnect

traversals. An SRAM directory or directory cache would Utilization threshold selection.In Figure 7, we plot perfor-
mitigate the latency of accessing directory state. However mance versus available bandwidth for three threshold values,

due to a third traversal of the interconnect,Directory and we observe that performance is not overly sensitive to
cache-to-cache transfer would still have a greater latency (€ exact threshold value selected. Even for thresholds as
than that of a broadcast request. high as 95% or as low as 55%, the qualitative performance of
BASHremains similar. While we choose 75% for our experi-
4.3 Microbenchmark Results ments, we do not claim that 75% is the optimal threshold for
We compare the microbenchmark performance (|n units of this or any other workload. In practice, it has achieved gOOd
normalized lock acquires per nanosecondBa&fSHagainst performance.

Snoopingand Directory. Figure 5 presents the same data as Adaptation to system sizeTo explore the potential benefits
shoyvn in Figure 1, except in Figure 5 performance is nor- of BASHover a range of system sizes, we plot performance
malized to that oBASH The graph shows that, for a 64-pro- per processowersus available bandwidth for a range of pro-

1.0 400
08 2
@ 0.8 O
& 30
= >
; 0.6 . =
S 04 . 8
£ ---e-- Snooping g
S —e— BASH g 1004 ... Snooping
g 0.2 —_——— DirectOI'y ¢ . 2 BASH

L] .
——— Directory
00————T——7T—71T 71T 1 Ot——7T 7T 71 71 1
4 8 16 32 64 128 256 0 200 400 600 800 1000
processors think time (cycles)
Figure 8. Impact of system size for a microbenchmark Figure 9. Average miss latency vs. think time for a micro-

with 1600 MB/second endpoint bandwidth per processor benchmark on 64 processors with 1600 MB/second end-
point bandwidth per processor

cessor counts in Figure 8. Endpoint link bandwidth per pro- results with more than 16 processors. To approximate
cessor is fixed at 1600 MB/second, and the processor count BASHs performance on larger systems, we also present sim-
is plotted logarithmically on the x-axis. We observe that the ulation results for a 16 processor system in which the band-
line for Directory is nearly flat, signifying near-perfect scal- width cost of broadcasting is four times greater than normal.
ability. BASHperforms as well asSnoopingfor small sys-

tems and as well aBirectory for large systems. In the mid- 9.1 Benchmarks

range BASHoutperforms both other protocols. For this spe- ~ Table 2 describes our benchmarks. We concentrate on
cific design point,Directory far outperformsSnoopingfor commercial workloads, such as database and web servers,
processor counts above 64. Higher link bandwidth would but we also include one scientific application for compari-
help Snoopingbut the figure illustrates why directory proto- ~ son. We run all of the commercial workloads for a warm-up
cols are attractive for large-scale systems and why an adap-Period to bring the system to a steady state before measure-
tive scheme is desirable in general. ment. To simplify the simulations of our commercial work-

. . . . loads, the client does not model think time between requests,
Adaptation to workload intensity. To explore the impact of . i
and the client and server are collocated on the same simu-

workload behavior on performance, we adjust the intensity lated machine

of the microbenchmark’s memory traffic. The memory traf- '

fic's intensity is adjusted by addinglink time(i.e., the time 5.2 Target System Assumptions

between when a processor releases one lock and acquires \ye evaluate 16-node SPARC systems running unmodified
another). Figure 9 plots average miss latency (lower is bet- gq|aris 8. Each node contains a processor core, level one
ter) versus think time. Increasing think time corresponds to caches, a unified level two cache (4 MB, 4-way set associa-
decreasing workload intensity. Our results show that, for a tive, 64-byte blocks), a cache controller, and a memory con-
fixed system configuration (64 processors and 1600 MB/sec- y|ier for part of the globally shared memory (2 GB total).
ond endpoint link bandwidth), the choice between snooping \yg assume that a processor and level one caches would com-
and directories depends on workload intensity (i.e., think 5jate four billion instructions per second if the memory sys-
time or miss rate). tem beyond the level one caches was perfect. This could be
accomplished, for example, with a 2 GHz processor that has

5 Workload Performance Evaluation a perfect-L2-cache IPC (instructions per cycle) of 2.

While microbenchmarks can provide insight into behavior
and allow exploration of the design spa&ASHs perfor- 5.3 Simulation Methods
mance on commercial workloads matters most. This section \ve simulate our target systems with the Simics full-sys-
describes our benchmarks, target system assumptions, andem multiprocessor simulator [22], and we extend Simics
simulation techniques for evaluating the performance of \ith a memory hierarchy simulator (described in
bandwidth adaptive snooping. We comp@ASHagainst section 4.2) to compute execution times. Simics is a system-
Snoopingand Directory using full-system simulation of & |evel architectural simulator developed by Virtutech AB that
16-processor SPARC system running four commercial work- is capable of booting unmodified commercial operating sys-
loads and one scientific benchmark. Unfortunately, due t0 tems and running unmodified applications. We use
the complexities of full-system simulation and commercial = sjmics/sun4u, which simulates Sun Microsystems’ SPARC
workload setup and tuning, we are currently unable to obtain g platform architecture (e.g., used for Sun E6000s). Simics

Table 2. Benchmark descriptions

On-Line Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models the database activity
wholesale supplier, with many concurrent users performing read/write transactions against the database. Our OLTP workload i
the TPC-C v3.0 benchmark using IBM's DB2 v7.2 EEE database management system and an IBM benchmark kit to build the dat
model users. Our experiments use a 1 GB 10-warehouse database stored on five raw disks and an additional dedicated datab
There are 128 simulated users (8 per processor). The database was warmed up for 10,000 transactions before taking measurem
results are based on runs of 1000 transactions.

of a

5 based on
abase and
ase log disk.
ents, and ou

Static Web Content Serving: Apache with SURGEWeb servers such as Apache have become an important enterprise server g

pplica-

tion. We use Apache 1.3.19 for SPARC/Solaris 8 configured to use pthread locks and minimal logging as the web server, and SURGE [2] to

generate web requests. Our experiments used a repository of 2000 files (totalling ~50 MB). There are 160 simulated users (10
sor). The system was warmed up for ~80,000 transactions, and our results are based on runs of 2,500 requests.

per proces-

Java Server Workload: SPECjbb.SPECjbb2000 is a server-side java benchmark that models a 3-tier system, focusing on the “
ware” server business logic and object manipulation. We used Sun’s HotSpot 1.4.0 Server JVM. The benchmark includes driver
generate transactions. Our experiments used 24 threads and 24 warehouses (with a data size of approximately ~500MB). The
warmed up for 100,000 transactions, and our results are based on runs of 100,000 transactions.

middle-
threads to
system was

Dynamic Web Content Serving: Slashcodeur Slashcode benchmark is based on an open-source dynamic web message postin
used by slashdot.org. We use Slashcode 2.0, Apache 1.3.20, and Apaothgded 1.25 module for the web server, and MySQL 3.23,
as the database engine. A multithreaded user emulation program is used to simulate user browsing and posting behavior. The d
snapshot of the slashcode.org site, and it contains ~3000 messages. There are 48 simulated users (3 per processor). The systen
up for 240 transactions before taking measurements, and our results are based on runs of 50 transactions.

) system

39

atabase is a
was warme

Scientific application: Barnes-Hut from SPLASH-2.We selected one application from the SPLASH-2 benchmark suitelja2jes-hut

with 64K bodies. The benchmark was compiled with Sun’s WorkShop C compiler and uses the PARMACS shared-memory macrgs used by

Artiaga et al. [1]. The macro library was modified to enable user-level synchronization through test-and-set locks rather than POS
library calls. We began measurement at the start of the parallel phase to avoid measuring thread forking.

IX-thread

is a functional simulator only, and it assumes that each the results of our microbenchmark to allow for direct com-
instruction takes one simulated cycle to execute (although parison. Our results show that, for a 16 processor system and

I/O may take longer), but it provides an interface to support a range of bandwidthssnoopingand BASH perform sim

our detailed memory hierarchy simulation. We use Simics to larly, and both outperfonDirectory. The macrobenchmark
generate blocking requests to a unified single level cache. results look qualitatively similar to the microbenchmark, but
We use this simple processor model to enable tractable simu- the performance difference betweBnoopingandDirectory

lation times for full-system, multiprocessor simulation of
commercial workloads.

Since full-system simulation captures kernel behavior and
inter-processor timing, small changes in system timing can
lead to significant variations in execution time. For example,
we find that our operating system intensive workloads
(OLTP, Slashcode, and Apache) exhibit more variation than

is smaller for some of the benchmarks. This is due to a lower
cache miss rate (Barnes and Slashcode) or a smaller fraction
of sharing misses (SPECjbb).

To approximateBASHs performance on a larger system,
we increase the cost of broadcast by quadrupling the inter-
connect bandwidth used by any broadcast request. Figure 11
presents these results and shows that, for a range of band-

workloads that are less operating system intensive (SPECjbb widths,BASHperforms as well or better than ba@mooping

and Barnes-Hut). To overcome observed instabilities, we cal-
culate the arithmetic mean and standard deviation of multi-
ple simulations to estimate experimental uncertainty. We plot
the mean and, if the coefficient of variation is greater than
1%, error bars at plus/minus one standard deviation for all
data points. To gather multiple data points, we perturb our
otherwise deterministic simulations by adding a small ran-
dom delay to each request.

5.4 Results
We now present results for the workloads described in
Table 2. Figure 10 illustrates the performances of the proto-

and Directory. We did not perform any macrobenchmark
simulations with less than 600 MB/second endpoint band-
width due to excessive simulation times. However, we expect
the performance odBASHto closely track that oDirectory,

as was the case for the microbenchmark on 64 processors
(shown in Figure 1).

While these results show thBASHcan adapt to system
configuration, one oBASHSs strengths is adaptation to vary-
ing behaviors between workloads. In Figure 12, we plot the
1600 MB/second data excerpted from Figure 11 normalized
to the performance dBASH For this configurationSnoop-
ing outperformdDirectory for Barnes-Hut and OLTP, but the

cols over a range of bandwidths for 16 processors. For each reverse is true for SPECjbb. The performances of Slashcode

benchmark, we plot performance—normalized to that of
Snoopingwith unbounded bandwidth—as a function of
available interconnect endpoint bandwidth. We also include

and Apache are similar f@noopingandDirectory. For this
configuration,BASHmatches or exceeds the performances
of both other protocols for all five workloads.

Microbenchmark

Q
Q
8
IS
8
g ------ Snooping
0.2 H BASH
——— Directory
0.0 —+——+m T T
1000 10000

Barnes-Hut

1.0+
0.8_ /.&—’k-’_’_*‘_—.—‘_——'
(0]
Q
Al & 0.6
T EFTEE *+——3 £
= «%M—
---e-- Snooping ---e-- Snooping
0.2+ —e— BASH 0.2+ —e— BASH
— -»-— Directory —-»-— Directory
0.0 —rr . ——rry 0.0 Ly . ——rry
1000 10000 1000 10000

endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second)

OLTP
1.0+
0.8 —
8
é 0.6 —
S Pz EF—F
---e-- Snooping
0.2+ —— BASH
—--— Directory
0.0 —+——+m r —
1000 10000

Slashcode

SPECjbb

1.0+ FE.E-F--
0.8 I I S
@© =7 @©
Q Q
& 0.6 - 8
£ £
«%M— %
---e-- Snooping ---e-- Snooping
0.2+ —— BASH 0.2+ —e— BASH
— -»-— Directory — -»-— Directory
0.0 — r — 0.0 —+——+m T]
1000 10000 1000 10000

endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second)
Figure 10. Performance vs. available bandwidth for 16 processors

Microbenchmark

©
o
&
I
S
g So00i
------ ooping
0.2 H BASH
——— Directory
0.0 ——— T
1000 10000

Apache
g @ Xl
f 8 .
e A S éOIG
o £ 0.4
o ---e-- Snooping = ---e-- Snooping
2 & —e— BASH . —e— BASH
—--— Directory —--— Directory
0.0 L——r—————— 0.0 L——r——————
1000 10000 1000 10000

endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second)

OLTP
1.0 - i a—
-
0.8 —
3
5 0.6 ;
= > —=
S h S5 I R el
£ 0.4 FEE
e . ---e-- Snooping
024 =« —— BASH
= — - — Directory
0.0 Ly]
1000 10000

performance

Slashcode SPECjbb
(0]
(8]
, ©
; E
04- % =
- ---e-- Snooping = o ---e-- Snooping
m —— BASH a1 ¢ —— BASH
—--— Directory —--— Directory
0.0 —— T 0.0 —— T
1000 10000 1000 10000

endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second) endpoint bandwidth available (MB/second)
Figure 11. Performance vs. available bandwidth for 16 processors with 4x broadcast cost

10

1.0

H

0.8 1

0.6

0.4

normalized performance

to adjust network usage to avoid performance degradation
due to hot spots in memory access patterns. This work differs
from bandwidth adaptive snooping in that it seeks to throttle
requests from being issued, wher&sSHchooses between
issuing a unicast or a broadcast.

Thottethodi et al. [31] have developed a scheme for using
global network information to throttle requests before they
can congest the network. At the cost of an additional net-
work sideband for communication of contention effects, this
scheme can adapt more accurately than a scheme that relies
solely on local information. This work complements band-

width adaptive snooping in that it could be used to estimate
network utilization, and future work may adapt these tech-
nigues to improve our detection of network congestion.
0.0 Other research has also explored techniques for estimating

T2z TPz ZP2 522 %P2 . . .
<388 228 <&l 2 58 2 59 interconnect traffic (refer to the related work in [31]).
588 388 358 538 588

nd & & Ha &ho 7 Conclusions and Future Work

Apache Barnes-Hut OLTP Slashcode SPECjbb We have developed a hybrid shared memory cache coher-
ence protocol, and we have demonstrated the benefits pro-
vided by adaptivity. Moreover, the trend towards integration

Though increasing the relative cost of broadcasting does of the coherence protocol logic and the processor on the
not capture other effects of increasing system sizes such assame die suggests a unified adaptive design. An adaptive
lock contention and changes to sharing patterns, we believe approach allows a single highly integrated microprocessor
these results show that bandwidth adaptive coherence in gen-design to be used in many system configurations (e.g., num-
eral, andBASHin particular, enables robust system perfor- ber of processors). Also, adaptivity allows the system to
mance for a wide range of system configurations and adjust to various workloads, including future workloads
workloads. whose behaviors are unknown at hardware design time.

One area of future work is the exploration of additional

6 Related Work mechanisms for deciding whether to unicast or broadcast.

Prior related research falls roughly into the two categories Particularly in the middle range of bandwidth where a deci-
of protocols and networks. sion based on available bandwidth is less obvious, it might
Protocols. There is a great deal of research in protocols that P€ preferable to predict based on sharing patterns. There are
adapt towards sharing patterns rather than network usage.many instances where the decision would be easy, such as
Multicast Snooping protocols [4, 28] allow processors to the choice to unicast requests for misses due to instruction
multicast requests to those nodes that are suspected to needétches. Moreover, integrating bandwidth adaptivity with
to observe the request, and the multicast mask is predicted Multicast snooping [4]—rather than simply unicasting or
based on observed sharing patterns. This differs from band- broadcasting—might be worthwhile. Additionally, more
width adaptive snooping in thaASH only predicts two sophisticated adaptive mechanisms, perhaps using global
types of masks (unicast or broadcast) and chooses its multi- estimates of interconnection network utilization [31], could
cast mask based on available bandwidth. Competitive b€ émployed.
snoopy caching adapts between an invalidate and an update
protocol [16] to limit the overhead to within a factor of two ~ ACKnowledgments
of optimal. Additional research has pursued the idea of adap-
tive protocols, but none of which we are aware consider
interconnection network utilization. Another class of adap-
tive protocols includes the COMA [9, 13] and R-NUMA [8]
protocols. These protocols migrate data to where it is used
adaptively reducing communication and network traffic.

Figure 12. Adapting to workload intensity

We thank Virtutech AB for their support of Simics and the
Condor group and Remzi Arpaci-Dusseau for providing
additional computing resources. Alaa Alameldeen, Pacia
Harper, and Min Xu contributed to the setup and tuning of
" our workloads. We also thank Adam Butts, Kourosh

Gharachorloo, Anders Landin, Alvin Lebeck, Ravi Rajwar,
Networks. Scott and Sohi [27] proposed using network Amir Roth, Craig Zilles and the Wisconsin Computer
feedback to adaptively avoid tree saturation in multistage Architecture Affiliates for their comments on this work.
interconnection networks. They use feedback control theory

11

References
[1] E.Artiaga, N.Navarro, X.Martorell, and Y. Becerra.
Implementing PARMACS Macros for Shared Memory
Multiprocessor Environments. Technical report, Polytechnic
University of Catalunya, Department of Computer
Architecture Technical Report UPC-DAC-1997-07, Jan. 1997.

P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
In Proceedings of the 1998 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systgrages 151—
160, June 1998.

L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory

System Characterization of Commercial Workloads. In
Proceedings of the 25th Annual International Symposium on
Computer Architecturgpages 3-14, June 1998.

E. E. Bilir, R. M. Dickson, Y.Hu, M. Plakal, D.J. Sorin,
M. D. Hill, and D. A. Wood. Multicast Snooping: A New
Coherence Method Using a Multicast Address Network. In
Proceedings of the 26th Annual International Symposium on
Computer Architecturgpages 294-304, May 1999.

J. Borkenhagen and S. Storino. 4th Generation 64-hbit
PowerPC-Compatible Commercial Processor Design. IBM
Server Group Whitepaper, Jan. 1999.

A. Charlesworth. Starfire: Extending the SMP Enveldji#=E
Micro, 18(1):39-49, Jan/Feb 1998.

A. Charlesworth. The Sun Fireplane
Proceedings of SC200MNov. 2001.

B. Falsafi and D. A. Wood. Reactive NUMA: A Design for
Unifying S-COMA and CC-NUMA. InProceedings of the
24th Annual International Symposium on Computer
Architecture pages 229-240, June 1997.

S.J. Frank. Tightly Coupled Multiprocessor System Speeds
Memory-access TimesElectronics 57(1):164-169, Jan.
1984.

K. Gharachorloo, M. Sharma, S. Steely, and S.V. Doren.
Architecture and Design of AlphaServer GS320. In
Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and
Operating System#&lov. 2000.

[11] S. W. Golumb.Shift Register Sequencesegean Park Press,
revised edition, 1982.

[12] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck.
Microprocessor ReporOct. 1998.

[13] E. Hagersten, A. Landin, and S. Haridi. DDM—A Cache-Only
Memory Architecture.|EEE Computer 25(9):44-54, Sept.
1992.

[14] J. Hennessy. The Future of Systems ResearffEE
Computer 32(8):27-33, Aug. 1999.

[15] N. lzuta, T. Watabe, T. Shimizu, and T. Ichihashi. Overview
of PRIMEPOWER 2000/1000/800 HardwareFujitsu
Scientific & Technical JournaB6(2):121-127, Dec. 2000.

[16] A.R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator.
Competitive Snoopy CachingAlgorithmica 3(1):79-119,
1988.

[17] S. Kunkel. Personal Communication, Apr. 2000.

[18] S. Kunkel, B. Armstrong, and P. Vitale. System Optimization
for OLTP Workloads.IEEE Micro, pages 56—64, May/June
1999.

(2]

(3]

[4]

5]

[6]
[7]
(8]

Interconnect. In

9]

[10]

12

[19] B. C. Kuo.Automatic Control SystemBrentice Hall, seventh
edition, 1995.

[20] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. IfProceedings of the 24th Annual
International Symposium on Computer Architectupages
241-251, June 1997.

D. Lenoski, J.Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J.Hennessy, M. Horowitz, and M.Lam. The
Stanford DASH MultiprocessolEEE Computer 25(3):63—
79, Mar. 1992.

P. S. Magnusson et al. SimICS/sun4m: A Virtual Workstation.
In Proceedings of Usenix Annual Technical Conferedcme
1998.

M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. Alameldeen,
R. M. Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D.
Hill, and D. A. Wood. Timestamp Snooping: An Approach for
Extending SMPs. IrProceedings of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systemages 25-36, Nov. 2000.

J.R. Mashey. NUMAflex Modular Design Approach: A
Revolution in Evolution. Posted on comp.arch news group,
Aug. 2000.

A.Nanda, K.-K. Mak, K.Sugavanam, R.K. Sahoo,
V. Soundararajan, and T.B. Smith. MemorlES: A
Programmable, Real-Time Hardware Emulation Tool for
Multiprocessor Server Design. IRroceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systéyios. 2000.

M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lamport
Clocks: Verifying a Directory Cache-Coherence Protocol. In
Proceedings of the Tenth ACM Symposium on Parallel
Algorithms and Architecturepages 67-76, June 1998.

S. Scott and G. Sohi. The Use of Feedback in Multiprocessors
and its Application to Tree Saturation ControlEEE
Transactions on Parallel and Distributed Systerh@&):385—
398, Oct. 1990.

D.J. Sorin, M. Plakal, M.D. Hill, A.E. Condon, M. M.
Martin, and D.A. Wood. Specifying and Verifying a
Broadcast and a Multicast Snooping Cache Coherence
Protocol. Technical Report 1412, Computer Sciences
Department, University of Wisconsin—Madison, Mar. 2000.

P. Sweazey and A. J. Smith. A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE
Futurebus. InProceedings of the 13th Annual International
Symposium on Computer Architectupages 414-423, June
1986.

J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Server Group
Whitepaper, Oct. 2001.

M. Thottethodi, A. R. Lebeck, and S.S. Mukherjee. Self-
Tuned Congestion Control for Multiprocessor Networks. In
Proceedings of the Seventh IEEE Symposium on High-
Performance Computer Architectyrdan. 2001.

S. C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architectupages
24-37, June 1995.

D. A. Wood, G. A. Gibson, and R.H. Katz. Verifying a
Multiprocessor Cache Controller Using Random Test
GenerationlEEE Design and Test of Computefgig. 1990.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

	Abstract
	1 Introduction
	Figure 1. Performance vs. available bandwidth for a microbenchmark on 64 processors

	2 A Bandwidth Adaptive Mechanism
	2.1 Goal and Approach
	Figure 2. Average queuing delay vs. utilization for a simple queuing network

	2.2 Implementation
	Figure 3. Example operation of the utilization counter

	3 A Bandwidth Adaptive Snooping Protocol
	3.1 A Snooping Protocol
	3.2 A Directory Protocol
	Figure 4. Example operation for Snooping, Directory, and BASH with four processors (P0-P3) and me...

	3.3 An Adaptive Hybrid Protocol
	3.4 Discussion
	Livelock and deadlock
	Scalability
	Complexity
	Verification

	4 Microbenchmark Performance Evaluation
	4.1 Microbenchmark
	Table 1. States, events, and transitions for BASH, Snooping, and Directory

	4.2 Simulation Methods
	4.3 Microbenchmark Results
	Figure 5. Normalized performance vs. available bandwidth for a microbenchmark on 64 processors
	Figure 6. Utilization vs. available bandwidth for a microbenchmark on 64 processors
	Figure 7. Sensitivity to utilization threshold value for a microbenchmark on 64 processors
	Interconnection network utilization
	Utilization threshold selection
	Adaptation to system size
	Figure 8. Impact of system size for a microbenchmark with 1600 MB/second endpoint bandwidth per p...
	Figure 9. Average miss latency vs. think time for a microbenchmark on 64 processors with 1600 MB/...

	Adaptation to workload intensity

	5 Workload Performance Evaluation
	5.1 Benchmarks
	Table 2. Benchmark descriptions
	On-Line Transaction Processing (OLTP): DB2 with a TPC-C-like workload.
	Static Web Content Serving: Apache with SURGE
	Java Server Workload: SPECjbb
	Dynamic Web Content Serving: Slashcode
	Scientific application: Barnes-Hut from SPLASH-2

	5.2 Target System Assumptions
	5.3 Simulation Methods
	Figure 10. Performance vs. available bandwidth for 16 processors
	Figure 11. Performance vs. available bandwidth for 16 processors with 4x broadcast cost

	5.4 Results
	Figure 12. Adapting to workload intensity

	6 Related Work
	Protocols
	Networks

	7 Conclusions and Future Work
	Acknowledgments
	References

	Bandwidth Adaptive Snooping
	Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood
	Computer Sciences Department University of Wisconsin-Madison {milo, sorin, markhill, david}@cs.wi...

