
0018-9162/03/$17.00 © 2003 IEEE2 Computer

Simulating a $2M
Commercial Server
on a $2K PC

T he Internet has made database manage-

ment systems and Web servers integral

parts of today’s business and communica-

tions infrastructure. These and other com-

mercial transaction-processing applica-

tions work with critical personal and business

data—storing it, providing access to it, and manip-

ulating it. As dependence on these applications

increases, so does the need for them to run reliably

and efficiently. Our group at the University of Wis-

consin (www.cs.wisc.edu/multifacet/) researches

innovative ways to improve the performance of the

multiprocessor servers that run these important

commercial applications.

Execution-driven simulation is a design evalua-

tion tool that models system hardware. These sim-

ulations capture actual program behavior and

detailed system interactions. They are more flexible

and less expensive than hardware prototypes, and

they model important system details more accurately

than analytic modeling does. However, the combi-

nation of large systems and demanding workloads

is difficult to simulate, especially on the inexpensive

machines available to most researchers. Commercial

workloads, unlike simpler workloads, rely heavily

on operating system services such as input/output,

process scheduling, and interprocess communica-

tion. To run commercial workloads correctly, sim-

ulators must model these services. In addition,

multiprocessor servers introduce the challenges of

interactions among processors, large main memo-

ries, and many disks.

To make effective use of limited simulation

resources, researchers must balance three goals:

• developing a representative approximation of

large workloads,

• achieving tractable simulation times, and

• simulating a sufficient level of timing detail.

We developed a simulation methodology to

achieve these goals. Our methodology uses multiple

simulations, pays careful attention to scaling effects

on workload behavior, and extends VirtutechAB’s

Simics full-system functional simulator1 with

detailed timing models.

WORKLOAD SCALING AND TUNING
Our workloads currently consist of four bench-

marks, described in the sidebar, “Wisconsin Com-

mercial Workload Suite.” These benchmarks approx-

imate four important commercial application classes:

online transaction processing (OLTP), Java middle-

ware, static Web serving, and dynamic Web serving.

We scaled the application workloads down in

both size and runtime, allowing our host machines

to simulate the much more powerful servers that

run commercial workloads. In our case, the hosts

were PCs, each having 1 Gbyte of RAM, a single

disk, and a 32-bit virtual address space.

To discover and remove performance bottle-

necks, we tuned all of our workload setups on a real

multiprocessor server. We found commercial work-

loads to be very sensitive to tuning. For example,

tuning our OLTP workload improved its perfor-

mance by a factor of 12.

The Wisconsin Commercial Workload Suite contains scaled and tuned
benchmarks for multiprocessor servers, enabling full-system simulations to
run on the PCs that are routinely available to researchers.

Alaa R.
Alameldeen
Milo M.K.
Martin
Carl J. Mauer
Kevin E.
Moore
Min Xu
Mark D. Hill
David A.
Wood
University of

Wisconsin-Madison

Daniel J.
Sorin
Duke University

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

OLTP case study
Online transaction-processing systems form the

core of the business computing infrastructure in

industries such as banking, airline reservations, and

online stores. In large businesses, OLTP systems

often process hundreds of thousands of transac-

tions per minute. The multiprocessor systems or

system clusters that support this high throughput

cost millions of dollars.

The primary benchmark to compare OLTP sys-

tem performance is the Transaction Processing

Performance Council’s TPC-C benchmark (www.

tpc.org/tpcc/). Published TPC-C results reveal the

large scale of many commercial workloads. For

example, a current noncluster TPC-C performance

leader is a database server with 128 processors

(with 8 Mbytes of cache each), 256 Gbytes of

RAM, and 29 Tbytes of disk storage on 1,627

disks. The clients emulate nearly 400,000 users

placing orders at about 40,000 warehouses. The

system completed over 100 million transactions

during the 25-minute warm-up and two-hour mea-

surement periods. Its total hardware and software

cost was more than $13 million.

Millions of dollars may be a reasonable price for

a computer system that runs a major company’s

core business application, but it is unrealistic for a

single research group. Our objective for OLTP was

January 2003 3

We developed the Wisconsin Commercial Workload Suite to

support full-system simulation of multimillion-dollar servers on

PCs. The current suite includes four benchmark applications.

OLTP: DB2 with a TPC-C workload
The TPC-C is a benchmark widely used to evaluate perfor-

mance for the online transaction-processing market. It specifies

the schema, scaling rules, transaction types, and mix—but not

the implementation—of an order-processing database. It mea-

sures performance by the number of “new order” transactions

performed per minute, subject to certain constraints.

Our OLTP workload is based on the TPC-C v3.0 benchmark.

We used IBM’s DB2 V7.2 EEE database management system with

an IBM benchmark kit to build the database and emulate users.

The database size is 800 Mbytes, partitioned over five raw

disks, with an additional dedicated database log disk. It repre-

sents data for 4,000 warehouses but scales down the warehouse

sizes specified in TPC-C from 10 sales districts per warehouse

to three, from 30,000 customers per district to 30, and from

100,000 items per warehouse to 100.

Each user randomly executes transactions according to the TPC-

C transaction mix specifications. User think times and keying times

are set to zero. Each user starts a different database thread. The

benchmark measures all completed transactions, even those that

do not satisfy timing constraints of the TPC-C specification.

Java server workload: SPECjbb
SPECjbb is a Java benchmark for emulating a three-tier sys-

tem with emphasis on the middle-tier server business logic.

SPECjbb does no disk or network I/O. It runs in a single Java

virtual machine in which threads represent warehouse termi-

nals. Each thread independently generates random input (tier-

1 emulation) before calling transaction-specific business logic.

The business logic operates on the data held in binary trees of

Java objects (tier-3 emulation).

We used Sun’s HotSpot 1.4.0 Server JVM and Solaris’s native

thread implementation. The benchmark includes driver threads

to generate transactions. We set the system heap size to 1.8

Gbytes and the new object heap size to 256 Mbytes to reduce

the frequency of garbage collection. Our experiments used 24

warehouses, with a data size of approximately 500 Mbytes.

Static Web content serving: Apache
Apache is a popular open source Web server employed in

many enterprise server applications. In a benchmark focused

on static Web content serving, we used Apache 2.0.39 for

Sparc/Solaris 8 and configured to use pthread locks and mini-

mal logging at the Web server.

For the client, we used the Scalable URL Request Generator.1

Surge generates a sequence of static URL requests that exhibit

representative distributions for document popularity, document

sizes, request sizes, temporal and spatial locality, and embed-

ded document count. We have a repository of 20,000 files, total-

ing about 500 Mbytes, and use clients with zero think time.

We compiled both Apache and Surge using Sun’s WorkShop

C 6.1 with aggressive optimization.

Dynamic Web content serving: Slashcode
Dynamic content serving has become increasingly important

for Web sites that serve large amounts of information. For exam-

ple, online stores, instant news feeds, and community message

boards all serve dynamic content.

Slashcode is an open-source dynamic Web message-posting

system used by the popular slashdot.org message board. We

implemented our benchmark using Slashcode 2.0, Apache

1.3.20, and Apache’s mod_perl module 1.25 (with Perl 5.6) on

the server side. MySQL 3.23.39 is the database engine. The

server content is a snapshot from the slashcode.com site, con-

taining approximately 3,000 messages with a total size of 5

Mbytes.

The benchmark application spends most of its runtime on

dynamic Web page generation. A multithreaded user-emulation

program models browsing and posting behavior. Each user inde-

pendently and randomly generates browsing and posting

requests to the server according to a transaction-mix specifica-

tion. We compiled both server and client programs using Sun’s

WorkShop C 6.1 with aggressive optimization.

Reference
1. P. Barford and M. Crovella, “Generating Representative Web Work-

loads for Network and Server Performance Evaluation,” Proc. 1998
ACM Sigmetrics Conf. Measurement and Modeling of Computer
Systems, ACM Press, 1998, pp. 151-160.

Wisconsin Commercial Workload Suite

4 Computer

to develop a workload that captures the important

characteristics of real-world OLTP systems, while

remaining small enough to use in our simulations.

We started with the TPC-C benchmark specifi-

cation, IBM’s DB2 database management system,

and an IBM TPC-C benchmark kit. We set up,

scaled down, and tuned the workload on an actual

multiprocessor—a Sun E5000 with 12 167-MHz

processors and 2 Gbytes of memory. Then we

moved exact disk images of the workload into our

simulation environment. Using a real machine

allows long measurement intervals, makes bench-

mark setup and tuning much faster compared with

simulation, and provides data that we can use to

validate simulation results.

Initial scaling. Ideally, we would like to evaluate mul-

tiprocessor systems with large numbers of disks and

large database sizes. However, we cannot simulate

such systems within our current infrastructure.

Therefore, we reduced the database size to 1 Gbyte

to reduce the amount of disk read traffic. This reduc-

tion also allowed the database to fit in the memory

of our real system and the simulation target machine.

Although this scaling could affect our results, it was

necessary to enable simulation on inexpensive PCs.

TPC-C models the database activity of a whole-

sale supplier with several geographically distrib-

uted sales districts and associated warehouses. The

TPC-C specifications state that database size should

be set by the number of warehouses, keeping the

relative sizes of the other tables the same. Since the

approximate size of all data associated with one

warehouse is 100 Mbytes, we created a 10-ware-

house database on a single disk (plus an additional

log disk). However, this setup measured a much

lower throughput in terms of transactions per

minute than expected from similar systems.

Raw device access and other parameter tuning. Next,

we tuned several kernel and database configura-

tion parameters, such as kernel limits on the num-

ber of shared-memory segments and semaphores

and database limits on the threads and locks. We

also reconstructed the database on a raw database-

managed disk, since using normal operating sys-

tem files for database tables increases database

overhead and results in data buffering in both the

operating system file cache and the database buffer

pool (effectively doubling memory usage).

Taken together, these changes improved perfor-

mance by 144 percent.

Multiple disks. Subsequent analysis using operat-

ing system profiling tools showed that the data-

base disk was now the likely bottleneck. Although

the data was sized to fit in the system’s main mem-

ory, the frequent updates in TPC-C caused sub-

stantial disk write traffic. To alleviate this problem,

we decided to partition the 1-Gbyte database

across five raw disks.

This change removed the I/O bottleneck, further

improving performance by 81 percent.

Table contention reduction. Although we had dra-

matically increased performance, the operating

system profiling tools still showed a large amount

of system idle time. We discovered that, due to the

small number of warehouses in the database, the

system was serializing transactions that read and

write the same entries in the “warehouse” table,

limiting system throughput.

To eliminate this bottleneck, we deviated from

the standard TPC-C scaling requirements by in-

creasing the number of warehouses without increas-

ing the total database size. This change resulted in

a database with 4,000 warehouses and improved

performance by another 111 percent.

Additional concurrency. Our initial setup used 24

client emulators, which meant that we had, on

average, two database threads running on each of

our 12 processors. Although we eliminated think

time and keying time for the emulated clients to

reduce client overheads, there was not enough con-

currency in the system to hide the computational

and I/O latency.

Increasing the number of emulated user threads

to eight per processor (96 total) provided an addi-

tional 29-percent improvement.

OLTP performance improvement
Figure 1 plots the normalized throughput of our

OLTP workload at each tuning stage. The remark-

able performance improvement shows that tuning

commercial workloads is essential for obtaining

representative workloads.

The throughput of our tuned OLTP workload is

close to published TPC-C results for similar hard-

ware. More importantly, the tuning makes our

workload far more representative of a real OLTP

system.

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (u

ni
ts

)

Initial Tuning,
raw disk

Multiple
disks

Reduced
contention

More
users

Figure 1. Trans-
action throughput
for each tuning step
in our OLTP workload
benchmark, normal-
ized to our initial
setup. The final con-
figuration has a
throughput 12 times
that of our original
setup.

WORKLOAD RUNTIME AND VARIABILITY
Simulation is orders of magnitude slower than

real system execution. However, benchmarking

commercial workloads often involves running long

warm-up and measurement intervals to avoid cold-

start and transient effects. The combination of these

two factors presents a challenge for commercial

workload simulation. For example, we observed a

slowdown factor of approximately 24,000 when

simulating a 16-processor system with our detailed

timing model. At this rate, simulating the two-hour

minimum measurement interval required for the

TPC-C benchmark would take more than five years,

and simulating even one minute would take weeks.

To make evaluating commercial workloads prac-

tical, we scaled down these long intervals and devel-

oped an economical methodology for dealing with

cold-start and transient effects. Our methodology

consists of three parts. First, we avoid the warm-

up overhead by starting from an already warm sys-

tem state. Second, we sample a small portion of the

workload by counting transactions. Third, we han-

dle the variability due to measuring short intervals

by averaging measurements from multiple runs.

Starting with warm workloads
To avoid the need to simulate the startup phases

of our commercial workloads, such as the creation

of database processes, we use Simics’s ability to save

a checkpoint (snapshot) of the simulated system’s

architected state. Checkpoints include the state of

all processors, memory, devices, and disks. Using this

methodology, we can simulate a reasonable warm-

up period and create a checkpoint that reflects a

warm system’s state. Starting our timing simulations

with a warm system reduces the simulation time

required and also mitigates cold-start effects.

Fixed-transaction-count
simulation methodology

Since we cannot simulate benchmarks from start

to finish, we must limit the length of our measure-

ment interval to keep simulation time reasonable.

A standard approach to measure performance on

partial benchmark runs for simpler workloads (for

example, the SPECcpu2000 benchmarks) is to

record the number of cycles required to execute a

fixed number of instructions. The resulting metric,

instructions per cycle, corresponds exactly to per-

formance for user-mode, single-threaded, uni-

processor simulations.

Unfortunately, IPC does not correspond to

throughput on multiprocessors. For example, if an

application spends more time waiting in the operat-

ing system’s idle loop or in a loop to acquire

a lock, the IPC can actually improve while

throughput decreases. Therefore, applying this

approach to multiprocessor commercial work-

loads is inappropriate and can lead to incor-

rect conclusions about workload performance.

Instead, we measure the time required to

finish a certain number of a benchmark’s

transactions.2 We use the number of cycles

per transaction as an inverse-throughput

metric to compare the throughput of differ-

ent configurations.

Since our commercial workloads are all

throughput-oriented, they included the trans-

action (or request) concept. We modified the

transaction generators for each workload,

using a special instruction with no side

effects, to alert the simulator whenever a

transaction completes. During simulation

measurement experiments, the simulator counts

the number of transactions completed and stops

when it reaches the desired count.

Variability of short simulations
Because we are practically limited to short sim-

ulation runs, the measured workload throughput

becomes more dependent on the workload’s exe-

cution path—the exact instruction sequence exe-

cuted during the simulation. Execution paths can

differ due to different orders of thread interleaving

caused by operating system scheduling decisions or

different orders of lock acquisition.

This dependency increases the effect of an impor-

tant phenomenon for short simulation runs,

namely variability in workload timing results.
Variability refers to the differences between multi-

ple estimates of a workload’s performance, and it

exists in both real and simulated systems.3

Researchers must account for variability when they

evaluate architectural innovations by comparing

the performance of enhanced designs relative to a

base configuration. Otherwise, they might attribute

a performance difference caused by workload vari-

ability to a real difference in the relative perfor-

mance of the enhanced and base systems.

Variability in many commercial workloads is large

enough to affect research conclusions. Figure 2

demonstrates this variability’s magnitude on our real

system. When the observation interval is short (one

second, or the equivalent of seven hours of simula-

tion), we observe significantly different throughputs

for different OLTP execution instances. Although

simulation experiments are deterministic and will

always follow the same execution path for the same

January 2003 5

To make evaluating
commercial

workloads practical,
we scaled down the

warm-up and
measurement
intervals and
developed a

methodology for
dealing with

cold-start and
transient effects.

6 Computer

workload and system configuration, we do not

know whether that deterministic path would pro-

vide an advantage or disadvantage for a particular

configuration. This effect makes multiple configu-

rations difficult to compare in simulation, since a

single execution path might not represent all possi-

ble executions.

To solve this problem, we obtain multiple per-

formance estimates by introducing an artificial

source of variability, adding a small random delay

to each memory access. The average memory

latency is the same for all simulations, but each sim-

ulation will follow a different execution path by

using different random seeds.

To illustrate the risk of using single simulation

runs, Figure 3 shows simulation results for two dif-

ferent system configurations: two-way versus four-

way set-associative L2 caches. Each run corresponds

to approximately 0.2 seconds on the target machine,

which is faster than the real system used in Figure 2.

Each data point represents the number of cycles per

transaction of one execution path.

Figure 3 demonstrates that different execution

paths happen even for the same workload and sys-

tem configuration. The average performance for all

20 runs confirms the intuitive conclusion that OLTP

performs better on the four-way set-associative L2

cache configuration. However, if we performed a

single experiment for each configuration, we might

conclude that the two-way set-associative configu-

ration performs better—for example, when com-

paring the minimum runtime of the two-way

configuration with the maximum of the four-way

configuration. If we randomly select one run from

each configuration, there is a 31-percent chance of

drawing the wrong conclusion.

This experiment shows that we cannot rely upon

a single short simulation run to obtain correct con-

clusions in comparison experiments. We handle

variability by using multiple simulations for each

configuration. We use the average simulated cycles
per transaction to represent the workload’s per-

formance, and we use the standard deviation to

establish confidence intervals.

This approach greatly reduces the probability of

reaching a wrong conclusion compared with sin-

gle-run experiments, at the expense of increased

total simulation runtime. However, if multiple sim-

ulation hosts are available, as at Wisconsin, run-

ning multiple short simulations in parallel is greatly

preferable to running one long simulation.

We also developed a more sophisticated statisti-

cal methodology that helps achieve reasonable sim-

ulation time limits while, at the same time, reducing

the probability of reaching a wrong research con-

clusion.3

TIMING SIMULATION OF
COMMERCIAL WORKLOADS

Simics is a functional simulator that can execute

unmodified operating systems, such as Solaris, but

it does not accurately model timing of any partic-

ular system. To evaluate the performance of sys-

tems that run commercial workloads, we extended

Simics with two timing models:

• a memory simulator that implements a two-

level cache hierarchy, a cache controller, an

interconnection network, and an optional

directory controller; and

• a detailed processor timing simulator that

implements an out-of-order processor execut-

ing the Sparc V9 instruction set

To reduce complexity, our timing models approx-

imate some details of target systems while still try-

ing to capture those aspects that significantly affect

system timing. For example, the memory system

simulator models the states and transitions for dif-

ferent cache coherence protocols as well as the var-

ious latencies and bandwidth limitations of caches,

memories, and interconnection network links.

However, it uses approximate models for DRAM,

disks, I/O timing, and references to memory-

mapped I/O registers.

The detailed processor timing simulator uses tim-
ing-first simulation,4 a decoupled technique imple-

mented in two simulators: a timing simulator

(b)(a)

200 400 600
Time (seconds)

0

2

4

6

Cy
cl

es
 p

er
 tr

an
sa

ct
io

n
(m

ill
io

ns
)

200 400 600
Time (seconds)

0

2

4

6

Cy
cl

es
 p

er
 tr

an
sa

ct
io

n
(m

ill
io

ns
)

Figure 2. Cycles per
transaction of five
OLTP runs for differ-
ent observation
intervals over 10
minutes total. (a) An
observation interval
of 1 second shows
large fluctuations in
throughput, even
though the bench-
mark completed
more than 350 trans-
actions per second
on average. (b) An
observation interval
of 1 minute greatly
diminishes the vari-
ability.

augmented to functionally execute the instructions

most important to performance, followed by a full-

system functional simulator to ensure correctness.

This approach allows the timing simulator to skip

instructions that are unimportant to timing fidelity

without introducing functional errors in the sys-

tem’s simulation. The timing simulator controls

when each processor in the functional simulator

can advance. When an instruction retires, the tim-

ing simulator steps the appropriate processor, then

verifies the results of its functional execution. By

advancing one processor before another, the tim-

ing simulator can determine the winner in a race to

memory, but it does not modify the functional sim-

ulator’s actual state.

While this approximation technique introduces

a timing error, it does not significantly affect over-

all system timing. The error is proportional to the

instructions that do not match between the timing

and functional simulators, which are only 0.003

percent of all instructions on average for our com-

mercial workloads.

These approximations increase the importance of

validating our simulation results by comparing them

with system measurements. Validation remains an

important but difficult component of our simulation

efforts—one that is far from complete at present.

However, even though a validated cycle-accurate

simulator is necessary for an absolute performance

prediction, it is not necessary for most architecture

studies. Validation efforts should focus on the

intended use of the workload and simulator, and we

think that our current models are sufficient for our

applications.

CASE STUDY: CACHE COHERENCE PROTOCOL
Computer architecture research frequently com-

pares performance between a base system and an

enhancement of it. However, a design decision that

increases performance for one benchmark may

have the opposite effect on another. This is why

computer architects should evaluate their ideas

with the most relevant workloads. Our work to

evaluate cache coherence protocols for commercial

workloads illustrates this point.

Multiprocessor server architects must choose a

cache coherence protocol to coordinate reads and

writes to a memory location. A tradeoff between

cache-miss latency and system-interconnect band-

width is at the heart of this decision.

There are two major categories of cache coher-

ence protocols: directory-based and snooping.

Systems that use directory-based protocols suffer

from long latencies for cache-to-cache transfers

between processors’ caches, since each data request

goes first to the directory, which then forwards it to

a processor that can provide data. Systems based on

snooping protocols reduce the latency of cache-to-

cache transfers, since each processor broadcasts all

its requests to all processors, which allows requests

to find the data provider directly. Unfortunately,

broadcasting generates significant traffic on the sys-

tem interconnect, especially for systems with a large

number of processors.

Our workload characterizations, as well as oth-

ers,5 show that cache-to-cache transfers are promi-

nent in commercial workloads and have a significant

adverse effect on performance. We explored the per-

formance of both protocol categories on the four

commercial workloads and on a scientific bench-

mark. Experiments with 16 processors and a mod-

erate amount of system interconnection bandwidth

showed that a directory protocol outperforms a

snooping protocol for some workloads, but the con-

verse is true for others.

Motivated by this result, we developed a hybrid

protocol, called Bandwidth Adaptive Snooping

Hybrid.6 BASH acts like a snooping protocol if suf-

ficient bandwidth is available, but gracefully

degrades to act like a bandwidth-efficient directory

protocol when bandwidth is scarce. The system

monitors the interconnect utilization and adjusts the

rate of broadcast requests accordingly. It decreases

the broadcast rate if the interconnect utilization is

too high (to avoid congestion delays) and increases

it if utilization is too low (to reduce latency by broad-

casting).

January 2003 7

4.2

4.4

4.6

4.8

5.0

Two-way set Four-way set

L2 cache configurations

Cy
cl

es
 p

er
 tr

an
sa

ct
io

n
(m

ill
io

ns
)

Figure 3. Cycles per
transaction for 20
OLTP simulations of
200 transactions on
two 16-processor
systems that differ
only in L2 cache
associativities (two-
way versus four-
way). Each run cor-
responds to
approximately 0.2
seconds on the tar-
get machine. Each
data point
represents the num-
ber of cycles per
transaction of one
execution path.

8 Computer

Figure 4 compares results from using snooping,

directory, and our hybrid protocol. It shows that

BASH performs equally well or outperforms the bet-

ter of snooping or directory systems for all our work-

loads. The benefit is significantly greater for our

commercial workloads, compared with the Barnes-

Hut scientific benchmark from the SPLASH-2

benchmark suite7 because of their higher frequency

of cache-to-cache transfers. Although BASH per-

forms well for Barnes-Hut, the difference is not com-

pelling. On the other hand, the substantial per-

formance improvements for commercial workloads

makes BASH an attractive alternative for future mul-

tiprocessor server designs.

A s the BASH case study shows, the outcome of

computer architecture experiments depends

greatly on the workloads used for evaluation.

The Wisconsin Commercial Workload Suite suc-

cessfully approximates the behavior of commercial

server workloads in a PC environment, thus sup-

porting further research in multiprocessor servers in

a university research setting. We plan to continue

expanding the workload suite by developing addi-

tional middle-tier benchmarks. We are working with

Virtutech AB to make simulation checkpoints of our

workloads available to the research community. �

Acknowledgments
This work is supported in part by the US

National Science Foundation (EIA-9971256, EIA-

0205286, CDA-9623632, and CCR-0105721), an

Intel Graduate Fellowship (Sorin), an IBM

Graduate Fellowship (Martin), a Norm Koo/Sun

Microsystems Fellowship (Martin), two Wisconsin

Romnes Fellowships (Hill and Wood), Spanish

Universidad Poltecnia de Catalunya y Secretaría

Español de Estado de Educación y Universidades

(Hill sabbatical), and donations from Compaq

Computer Corp., Intel Corp., IBM, and Sun Micro-

systems.

References
1. P.S. Magnusson et al., “Simics: A Full System Simu-

lation Platform,” Computer, Feb. 2002, pp. 50-58.

2. A.R. Alameldeen et al., “Evaluating Nondeterminis-

tic Multithreaded Commercial Workloads, Proc.
Fifth Workshop Computer Architecture Evaluation
Using Commercial Workloads, Int’l Symp. High-Per-

formance Computer Architecture, 2002; www. hpca-

conf.org/hpca8/caecw02.pdf.

3. A.R. Alameldeen and D.A. Wood, “Variability in

Architectural Simulations of Multithreaded Work-

loads,” to appear in Proc. 9th IEEE Symp. High-Per-
formance Computer Architecture, IEEE CS Press,

2003.

4. C.J. Mauer, M.D. Hill, and D.A. Wood, “Full-Sys-

tem Timing-First Simulation,” Proc. 2002 ACM Sig-
metrics Conf. Measurement and Modeling of
Computer Systems, ACM Press, 2002, pp. 108-116.

5. L.A. Barroso, K. Gharachorloo, and E. Bugnion,

“Memory System Characterization of Commercial

Workloads,” Proc. 25th Ann. Int’l Symp. Computer
Architecture, IEEE CS Press, 1998, pp. 3-14.

6. M.M.K. Martin et al., “Bandwidth Adaptive Snoop-

ing,” Proc. 8th IEEE Symp. High-Performance Com-
puter Architecture, IEEE Computer Society, 2002,

pp. 251-262.

7. S.C. Woo et al., “The SPLASH-2 Programs: Charac-

terization and Methodological Considerations,”

Proc. 22nd Ann. Int’l Symp. Computer Architecture,

ACM Press, 1995, pp. 24-37.

Alaa R. Alameldeen is a graduate student in the
Computer Sciences Department at the University
of Wisconsin-Madison. His research interests
include multiprocessor system and memory design
and performance evaluation of multithreaded
workloads. Alameldeen received an MS from
Alexandria University, Egypt, and an MS from the
University of Wisconsin-Madison, both in com-
puter science. He is a student member of the IEEE
and the ACM. Contact him at alaa@cs.wisc.edu.

Milo M.K. Martin is a PhD candidate and an IBM
Graduate Fellow in the Computer Sciences Depart-
ment at the University of Wisconsin-Madison. His
research interests include memory system perfor-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Sn
oo

pi
ng

D
ire

ct
or

y

BA
SH

Apache

Sn
oo

pi
ng

D
ire

ct
or

y

BA
SH

Slashcode

Sn
oo

pi
ng

D
ire

ct
or

y

BA
SH

OLTP

Sn
oo

pi
ng

D
ire

ct
or

y

BA
SH

Barnes-Hut

Sn
oo

pi
ng

D
ire

ct
or

y

BA
SH

SPECjbb

Figure 4. System
performance with
snooping, directory,
and the Bandwidth
Adaptive Snooping
Hybrid protocols for
four commercial
workloads and one
scientific applica-
tion. The height of a
bar represents the
average normalized
performance: Bigger
is better. The error
bars show the stan-
dard deviation.

mance of commercial workloads and the use of
dynamic feedback to build adaptive and robust sys-
tems. Martin received his MS in computer science
from the University of Wisconsin-Madison. He is a
student member of the IEEE and the ACM. Con-
tact him at milo@cs.wisc.edu.

Carl J. Mauer is a graduate student at the Univer-
sity of Wisconsin-Madison. His research interests
include multiprocessor architectural simulation and
memory system design. Mauer received an MS in
computer sciences from the University of Wiscon-
sin-Madison. Contact him at cmauer@cs.wisc.edu.

Kevin E. Moore is a graduate student in Computer
Sciences Department at the University of Wisconsin-
Madison. His research interests include multiproces-
sor memory system design and performance
evaluation of Java workloads. Moore received an MS
in computer science from the University of Wiscon-
sin-Madison. Contact him at kmoore@cs. wisc.edu

Min Xu is a PhD student at University of Wisconsin-
Madison. His research focuses on multiprocessor
memory system performance and multiprocessor pro-
grammability. Xu received an MSEE in electrical and
computer engineering from the University of Wis-
consin-Madison. Contact him at mxu@cae. wisc.edu.

Daniel J. Sorin is an assistant professor of electrical
and computer engineering and of computer science
at Duke University. His research interests are in mul-
tiprocessor memory systems, with emphasis on
availability, verification, and analytical performance
evaluation. Sorin received a PhD in electrical and
computer engineering from the University of Wis-
consin-Madison. Contact him at sorin@ee.duke.edu.

Mark D. Hill is a professor and Romnes Fellow in
both the Computer Sciences Department and the
Electrical and Computer Engineering Department
at the University of Wisconsin-Madison. He also co-
directs the Wisconsin Multifacet project to improve
commercial servers. Hill received a PhD from the
University of California, Berkeley. He is an IEEE
Fellow. Contact him at markhill@cs.wisc.edu.

David A. Wood is a professor and Romnes Fellow
in both the Computer Sciences Department and the
Electrical and Computer Engineering Department
at the University of Wisconsin-Madison. He also
co-directs the Wisconsin Multifacet project to
improve commercial servers. Wood received a PhD
in computer sciences from the University of Cali-
fornia, Berkeley. He is a member of the IEEE Com-
puter Society, the IEEE, and the ACM. Contact
him at david@cs.wisc.edu.

January 2003 9

