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Abstract—The goal of this paper is to extend the lifetime
of Flash memory by reducing the frequency with which a
given page of memory is erased. This is accomplished by
increasing the number of writes that are possible before erasure
is necessary. Redundancy is introduced into the write process
to decrease the number of memory cells that are impacted by
a given write, and to even out the impact of writing across an
entire page of memory. Improvements are expressed in terms
of write efficiency and lifetime gain. Write efficiency is the ratio
of cells written to cells available, and lifetime gain is the ratio
of coded writes to the baseline of uncoded writing.

We use a physical model that allows multiple writes to a
given region of memory. This can be realized with single level
cells or with multi-level cells. Data is written to memory in the
form of a coset of a convolutional code. The coset is represented
by a binary vector that is selected by the Viterbi algorithm to
minimize the number of cells impacted by the write (Hamming
weight) and to even out the number of writes to each cell within
a given page. Several different Viterbi metrics are evaluated. It
is shown that page write efficiencies of over 85% and lifetime
gains of over 500% are possible with only modest encoding and
decoding complexity.

It is also straightforward to integrate lifetime extension with
standard methods of error correction by requiring that the coset
representative be drawn from an error correcting code. An
example is provided where single error correction is provided
using a Hamming code.

I. INTRODUCTION AND BACKGROUND

Current computing systems usually include hard disk
drives (HDDs). However HDDs are losing ground because
they do not support random access, their moving parts con-
sume significant power (3-8W) [1], and they have relatively
slow read and write speeds. HDDs are also susceptible to
early failure [2], requiring an expensive burn-in process to
avoid significant return costs. Furthermore, prices are falling
for alternative storage devices, encouraging the transition
from HDDs.

One alternative to HDDs are Flash Electronically Erasable
Programmable Read Only Memory (EEPROM) Solid State
Drives (SSDs). Flash memory was patented by Fujio Ma-
suoka at Toshiba in 1980 [3]. The first patent on Flash
SSDs was released in 1989 [4] and had support for handling
defective cells, a problem at the time, and still a problem
today. In 1991 Sandisk developed and sold one of the first

Flash SSDs: a 20MB model for $1000. In 1987, Masouka
developed a new variation of Flash known as NAND Flash.
NAND Flash can be manufactured much more densely than
prior Flash technologies. The vast majority of Flash SSDs
today use NAND Flash. When we refer to Flash memory in
this paper, we will be referring only to NAND Flash. NAND
Flash and the development of multi-level cells (MLCs),
which allow multiple states to be stored in a single Flash
cell!, caused prices to fall dramatically. Further advances in
miniaturization and reliable manufacturing have resulted in
the SSDs we see today.

Only recently have SSDs achieved the data densities re-
quired to replace HDDs. There is still a difference in density,
but as transistor minimum feature size shrinks the gap is clos-
ing. SSDs are becoming more attractive despite being more
expensive than HDDs. In 2012 prices, HDDs cost around
$0.06/GB [5] for consumer grade, and around $0.15/GB
[6] for enterprise grade. SSDs cost around $1.00/GB [7]
for consumer grade, and $5.50/GB [8] for enterprise grade.
Therefore a typical SSD in 2012 costs around 15x - 40x per
GB more than an equivalently sized HDD.

The adoption of SSDs by large data centers [9] has made
SSDs’ shortcomings more visible. Our primary focus is on
wear out, the fact that an SSD can only support a limited
number of writes before cells fail. On average, Flash cells
support around 10* erases (1-to-0 transitions) before failing.
This number is projected to decrease as the minimum feature
size of Flash transistors shrinks [10]. This shortcoming is
magnified by patterns of writing data that concentrate writes
on a small number of cells in a given device [11].

We introduce two metrics to evaluate the performance
of codes that extend Flash SSD lifetime by introducing
redundancy into the write process. Both metrics are with
respect to the minimum addressable unit of a Flash SSD
often referred to as a page. Typically a page is composed
of 2KB, 4KB, 8KB of Flash cells or more. The page is
the smallest region of memory that can be read or written
to at a given time. The first of the two metrics is lifetime

I'Single Level Cells (SLCs) are still used in enterprise applications due to
their longer lifetimes.



gain, which measures how many additional writes to a page
are possible compared to writing without a code. This is
our primary metric, as our goal is to be able to write
many times before erasing. Our secondary metric is write
efficiency. Write efficiency indicates when more writes might
be possible. It is not a perfect metric because it would report
100% write efficiency even if we were to exhaust a page by
writing to every cell. We refer to codes designed to optimize
these metrics as endurance codes.

Lifetime Gain £
# of Writes w/ Code Before Erase is Req
# of Writes w/o Code Before Erase is Req

— 1) x 100%

Write Efficiency £

# of Writes to all Cells Before Erase is Req
Max # of Writes Possible to all Cells -

We design endurance codes that make use of the Program
Without Erase (PWE) write mechanism, a technique that
enables incremental programming of Flash cells without
first requiring an erase [12]. In practice we must be able
to increase the charge in MLC cells accurately, and this
is complicated by issues such as overshoot, [13] where
the programmed charge exceeds the given target level, and
Program and Read Disturbs (PRD), where reading/writing
proximate cells causes changes in threshold voltage levels
[14]. Both overshoot and PRD may compromise direct use of
a technique like waterfall coding [15] with PWE. In order to
provide an interface for PWE endurance codes it is necessary
to combine waterfall coding with improvements to program-
ming accuracy [16] and coding techniques that reduce the
tolerances required for MLC programming [17][18].

Not only is Flash memory prone to wear out, Flash
memory must also be resilient to manufacturing defects and
to transient errors. This includes those due to alpha particle
strikes [19], neutron particle strikes [20], and finally what are
known as retention errors [21] where charge slowly leaks
out of the Flash cell causing it to change value. Previous
work has shown that, on average, the number of bits with
incorrect values present at a given time in the memory can
be as high as 1 out of 105 due to retention errors for 63nm
Flash cells [21] and 2 out of 10® due to alpha particle strikes
on 25nm Flash cells [19]. These studies guide our choice
of ECC parameters when choosing examples to demonstrate
the integration of standard ECC with coding to extend the
lifetime of Flash memory.

In this paper we will primarily use binary convolutional
codes to construct endurance codes. Data is then written to
memory as a coset representative, and this representative is
chosen to minimize the number of writes and to even out wear

across the memory (see [22][23] for background material on
coset coding). Integration with standard ECC is accomplished
by requiring that the representative be chosen from a binary
Hamming code. We achieve write efficiencies of 53% and
lifetime extension of 300% for SLCs, and write efficiencies
of over 95% and lifetime extension of over 700% for MLCs.

Sections II and III provide a brief description of the physics
of Flash memory and the system model. Section IV compares
the performance of our endurance codes with prior work on
Write Once Memory (WOM), floating codes and enumerative
codes. Coset coding with block and convolutional codes are
described in Sections VI and VII respectively. The integration
of coset coding with standard error correction is described in
Section V. A technique for gaining a few additional writes
for very low overhead is introduced in Section VIII. The
modification of the Viterbi algorithm to promote wearleveling
is described in Section IX.

II. THE PHYSICS OF FLASH MEMORY

In traditional circuit design, a planar MOSFET? (Metal
Oxide Semiconductor Field Effect Transistor) has a single
gate. When a voltage larger than the threshold voltage (V)
is applied to the gate, the transistor turns on. When a voltage
below V;, is applied, the transistor is off. A Flash MOSFET
has two gates: a floating gate and a control gate. When
charge is present between the floating and control gates, a
voltage above Vy; applied to the control gate will turn on
the transistor. If no charge is present between the two gates,
the same voltage applied to the control gate will not turn on
the transistor. Figure 1 abstracts the difference in structure
between standard and Flash MOSFETs.

Devices store state in Flash memory through two oper-
ations: PROGRAM and ERASE. Programming is the act
of injecting charge between a cell’s control and floating
gate through either Hot-Electron Injection (HEI) or Fowler-
Nordheim (FN) tunneling [24]. Erasure of a block requires
removing the charge from the gate, typically through Fowler
- Nordheim tunneling. HEI uses strong lateral and transversal
electric fields to inject carriers through the oxide quickly
and into the gap between the floating and control gates.
FN tunneling uses a strong electric field across a thin oxide
to induce quantum tunneling. For more information on the
physics of Flash MOSFETs as well as a detailed model, we
refer the reader to [24].

In Flash memory cells it is possible to create multiple
ON states by varying the amount of charge between the
floating and control gate. Single-Level Cells (SLCs) contain
two states. Cells which are programmed to contain more than
two states are known as Multi-Level Cells (MLCs). Figure 2
shows how the output current of a multi-level cell depends

These transistors are still used in logic and classical memory configura-
tions such as SRAM and DRAM.
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Figure 1: Traditional Planar and Flash MOSFETs

on the control gate voltage (V) and on the level of charge
between the floating and control gates. It is customary to
fabricate MLCs to store multiple bits in a single Flash cell,
but it is not strictly necessary that the number of states be
a power of 2. The most important property of MLCs is that
it is possible to increment their state without first requiring
an erase by increasing the charge between the floating and
control gates. This capability is called program without erase
[12] and it is the key to increasing the lifetime of NAND
Flash memory.
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Figure 2: Output current (/4) as a function of voltage level
Li,i=0, 1, ..., n-1 for an n-level cell. The safety margin
assures that one level is not read as another.

III. SYSTEM MODEL

Flash SSDs are composed primarily of two components:
the NAND Flash memory chips in which data is stored,

and a controller called the Flash Translation Layer (FTL).
A component on the host computer known as the Host Bus
Adapter (HBA) uses a protocol (usually SCSI, Infiniband,
Fibre Channel or SATA/PATA based) to communicate with
the SSD.

The Flash Translation Layer (FTL) shown in Figure 3 is
the brain of the SSD. The FTL translates memory read/write
requests into the sequence of operations that are necessary
to change the state of the Flash memory. The FTL reads and
writes SLC or MLC Flash memory cells at granularity of a
page. Flash memory is erased at the more coarser granularity
of a block, typically 256KB or more.

Erasures stress Flash cells, with Flash transistors expected
to fail after 10* erasures [10]. This number is projected to
decrease as the minimum feature size of flash transistors
shrinks. Therefore it is important to increase the number of
writes before an erasure is necessary and to even out wear
across the page.

Note also that without error correction, a page will fail
when a single cell fails within that page. The industry
standard for the number of cells with erroneous data in a
HDD is 1 in 10'3 - 10'® [25]. For SSDs to be competitive
with HDDs they must meet this standard. Setting aside
manufacturing defects, the number of cells with erroneous
data for SSDs can be as high as 1 in 10° (see Section I).
Some level of error correction is necessary if SSDs are to
match the data integrity of HDDs.

Our systems objective then is to delay the wear out of
Flash cells by reducing the frequency with which blocks are
erased while still tolerating errors at a level required to match
that of HDDs.

IV. PREVIOUS WORK

We now discuss prior work on endurance codes and on
error correction for SSDs.

A. Endurance Coding for SSDs

The Write Once Memory (WOM) model exhibits the same
behavior as implementing PWE in a multi-level cell. The
value of WOM coding in terms of extending the number of
writes (before failure in their paper, before erase in ours) is
explored in the original paper by Rivest and Shamir [26] and
in subsequent work [27][28]. WOM codes can be applied to
multiple alphabet sizes, but we will assume an alphabet of
{0,1} for our input. We will also assume writing to g-level
MLCs (g-ary cells).

Flash memory can be presented either as a Write Once
Memory (WOM) or Write Asymmetric Memory (WAM). We
define a WOM (and/or WAM) code by defining an encoding
function from k data bits d = (di,...,dx) to n code bits
¢ = (¢1,...,¢,) and a decoding function that recovers the
data bits d from the codeword c. Given the exact properties
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Figure 3: High level architecture showing integration of computer processor and Flash SSD

of the underlying storage, WOM/WAM codes can be created
directly [27][28] or using enumerative coding [29]. There are
also frameworks for implementing WOM/WAM codes in a
systematic manner such as by using Floating Codes [30].

The codewords in a floating code are organized in a multi-
level directed graph where updating a single input variable
d; causes the memory state to change from one level to the
next. The number of levels in the graph is more than the
number of states in an individual cell, and this translates to
extending the life of the memory. For example, given a 3-
state MLC, it is possible with 3 cells to guarantee that 2
data bits can be rewritten 5 times (see [30] for details). With
no coding, data is written directly to memory (k = n) and
only 3 rewrites are possible if the same bit is updated three
times. In this example, the price of resilience to updates that
are focused on a single input bit is 50% area overhead. The
initial focus on worst case performance of floating codes has
been expanded to average case performance [31] by viewing
rewriting as a Markov process on the multilevel graph. One
of the advantages of the coset coding approach described in
Section V is that information carried by an individual input
bit is spread across a larger number of memory cells. It is
immaterial whether updates are focused on a small number
of bits or distributed more evenly.

Enumerative coding is a generalized technique for mapping
between a set of vectors and their relative indexes when
lexographically enumerated. Jagmohan et. al. [32] uses enu-
merative coding to guarantee two writes to SLC cells before
erasing is required. Jagmohan et al. does this by representing
the input data as a lexographic index of a set of vectors
V. The vectors in V' all have the same symbol frequency
distribution. Vectors are then selected from V' to be written
to memory. A second write is accomplished by indexing the
feasible vectors that remain. Note however that the rate of the
second write depends on what was written initially. Decoding
consists of determining the lexographic order of the written

vector which is then read out as the data.

B. Error Correction for SSDs

Commercial SSDs require Flash memory that can accom-
modate large numbers of writes and withstand a mixture
of permanent faults and transient errors. Alpha particle and
neutron strikes may cause the threshold voltage in an MLC
to shift which may in turn cause the state to change to a
higher value. Conversely the state of an MLC might change
to a lower value because a gate fails to retain charge.

Error Correcting Codes (ECC) are the most common
means of recovery from these types of error, but there has also
been prior work that takes advantage of the unique character-
istics of Flash memory. One such method is to detect invalid
threshold values by expanding the buffers between different
threshold voltages [33]. However this method reduces the
number of states that can be supported by a single MLC cell,
creating additional area overhead. Another technique breaks
up input data into sub-blocks, encodes each sub-block with
ECC, and then uses coset coding to write the data to disk [34].
There has also been work on asymmetric error correction that
leverages the fact that cell defects during manufacture usually
have a known value even though the cell cannot be rewritten
[351[36]1[37]1[38].

V. INTEGRATION OF COSET CODING AND ERROR
CORRECTION

This section describes how coset coding [22][23][39] may
be integrated with standard error correction. We provide
complete details for a simple illustrative example, the single
error correcting Hamming code, and leave it to the reader
to extend the method to an arbitrary linear block code. We
employ an [n,k] binary linear code C' for error correction
and an [n,m] subcode C’ for coset coding. Input data is
encoded as a coset of C’ in C' and the coset representative is
chosen to reduce the number of bits written to memory and



to promote wearleveling. By varying the objective function
we can tradeoff lifetime gain and write efficiency within the
same optimization framework. The area overhead is the ratio
of the number of input data bits to the length of the code

minus one, that is ﬁ —

A. Encoding

When uncoded data is written directly to Flash memory
cells, uneven wear can significantly reduce the lifetime of
the SSD [11]. Wear can be reduced by reading the state of
the memory and using this information to reduce the number
of writes. For example we might choose between a data word
and its complement as in Flip-N-Write [40]. As an illustrative
example consider the integration of coset coding using the
repetition code with error correction using the [8,4] Hamming
code C. Here n = 8, kK = 4, m = 1 and the area overhead
is 5/3 = 167%.

The first row (m = 1) of the generator matrix G given
below generates the repetition code C’ and the next three
rows (k —m = 3) generate distinct coset representatives for
C’ in C. Three input bits generate a coset of C’ in C' and
the representative is chosen to minimize Hamming weight.
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In general we may select a k X n generator matrix G for
C where the first m rows form a matrix B that generates
the coset code C’ and the remaining &k — m rows form a
matrix D that generates representatives for 2¥~™ distinct
cosets of C’ in C. If d is the dataword, then we select the
coset representative d - D + b - B that minimizes our objective
function. The input vector b is used to balance lifetime gain
and write efficiency.

At small block lengths, the area overhead incurred by
error correction and coset coding is prohibitive. This sug-
gests making block length and page length commensurate,
but if the dimension of the coset code C’ scales linearly
with the block length n then the number of potential coset
representatives scales exponentially with n and exhaustive
search is infeasible. Since the search metric is non-negative
and computed entry by entry it is natural to use the Viterbi
algorithm to select the coset representative. The role of the
coset code is then to provide an ensemble of vectors that can
be searched efficiently by this algorithm. We have chosen to
implement coset coding primarily using convolutional codes,
though we note that many traditional block codes have low
complexity trellis representations.

We generate an initial coset representative d - D and use
the Viterbi algorithm to find an approximation b-B to d - D.

If wearleveling were not a concern this would simply reduce
to data compression with respect to the Hamming metric. It
is the error vector e = d - D @& b - B that is then written to
memory. If the current state of the memory is S then we
need to write the coset S @ d - D and we approximate this
vector rather than d - D.

B. Decoding

We encode a dataword d as

c=d-Dob-B=[dG

where G is the generator matrix of the error correcting code
C. We decode ¢ by forming ¢ - G* where G* is the right
inverse of G (that is GG* = Ik). One method of calculating
G* is to invert the Smith or Hermite Normal Form of G.

VI. BLocK CODES

This section explores the use of block codes for both error
correction and coset coding. We begin by calculating the Bit
Flip Gain of the repetition code Ry, of length L in the absence
of error correction, when the input is a random binary vector
of length L.

Bit Flip Gain 2 (# of Bits Flipped Writing a Dataword)

# of Bits Flipped Writing a Codeword

Theorem 1: When L is even, the Bit Flip Gain of the
repetition code Ry of length L is given by

L/2

L L L M
4(2L-T) (2 - (L/2))
and when L is odd, the Bit Flip Gain is given by
L/2
/ @

[\

3% (2L_1 - ((LL:l)l/2))

Proof: When L is even, the expected number of bit flips Er,
is given by

L+5550(5) ~ ()%

L= 9L—1
_ L +§L_1 L
- 2Ll (j—DUL —35)!  4\L/2

()

The Bit Flip Gain is the ratio of % to Ey.



When L is odd the expected number of bit flips £y, is given

by
L (L—l)/2
1 L 2 L
2L ]z:(:) J 2L ; J

Applying the identity k(}) = n(}”]) we obtain

L L-1
Ep=— (21—
YT ( ((L - 1)/2))
The Bit Flip Gain is the ratio of % to Er. ]

Remark If L is even then

L/2 L+1)/2
Bit Flip Gain = / = (L+1)/
L+1

e (20 (5) (22 - (5)

The Bit Flip Gains for L and L+1 coincide.
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Figure 4: Bit flip gains for Flip-N-Write as a function of
the block length L. The area overhead is L/(L —1). Shorter
codes are less efficient but provide larger bit flip gains.

Figure 4 shows that the Bit Flip Gain (%—/Lg) decreases
with the block length L. This is unsurprising since the most
likely input vector weight is L/2, and therefore the longer
the input vector the less likely it is that there will be bit flip
gains.

Next we combine error correction, using an extended
Hamming code of length mL, with a coset code formed by
concatenating m Repetition codes of length L. We permute
the entries of the extended Hamming code so that it contains
every codeword in the coset code. A generator matrix for the
case m = 2, L = 8 is shown below; the first two rows form a
matrix B that generates the coset code C’ and the remaining

9 rows form a matrix D that generates representatives for 512
distinct cosets of C’ in C.
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The area overhead for this code is 16/9—1 = 77%, the bit flip
gain is 1.38 (calculated using Theorem 1). When m = 2i we
have measured the bit flip gains of coset codes C’ contained
in the extended Hamming code of length m/L that are the
product of m r-dimensional subcodes C” of the Hamming
code of length L. Flip-N-Write corresponds to the special
case of the Repetition code where r = 1.

The bit flip gains shown in Table I were obtained by
numerical simulation. Larger values of r and smaller values
of L provide higher Bit Flip Gains at the cost of more
significant area overhead.

Bit flip gains are only a means to an end and we extend
memory lifetime not only by writing fewer bits but by
distributing those writes evenly over the memory cells. Sec-
tion IX describes methods for selecting coset representatives
that promote wearleveling. These methods provided only
modest lifetime extension when applied to Flip-N-Write. For
example, assuming 8-level MLC cells, it was possible to use
a Repetition code of length L = 8 to write to a 4KB page 8
times rather than 7. In this example, the write efficiency is
relatively high (80% after 7 writes and 92% after 8§ writes). It



Block ]l;lgcck Bit Flip Area
dim(C")=r Length L Length Gain Ove(ryhead
mL (%)
3 32 64 1.07 25.49
3 32 128 1.14 18.52
3 32 256 1.17 14.80
3 32 512 1.19 12.78
3 64 128 1.09 12.28
3 64 256 I.12 8.94
3 64 512 1.14 7.11
3 64 1024 I.15 6.11
3 128 256 1.08 6.22
3 128 512 1.10 4.49
3 128 1024 I.11 3.54
3 128 2048 I.11 3.01
4 8 16 0.43 433.33
4 8 32 091 220
4 8 64 I.14 156
4 8 128 1.27 128.57
4 16 32 0.99 77.78
4 16 64 I.13 56.10
4 16 128 [.2T 45.45
4 16 256 1.26 39.89

Table I: Numerical evaluation of bit flip gains provided by
coset codes that are m-fold direct products of r-dimensional
seeds.

is the combination of small overhead and small bit flip gains
that limits performance. The search for long block codes with
significant bit flip gains is a subject for future study.

VII. CONVOLUTIONAL CODES

This section presents results showing that very simple
convolutional codes are remarkably effective as coset codes.
Consider the problem of lossy compression of equiprobable
binary data using the rate 1/2 convolutional code with 2 states
that appears in Table II. It is possible to analyze the Viterbi
algorithm via a Markov process on three decoder states and
to show that on average it is only necessary to change one
bit in six to convert a random binary vector to a codeword.

Constraint Length | Bit Flip Gain | Area Overhead
1 1.49 100%
2 1.79 100%
3 1.85 100%
4 1.90 100%
5 1.94 100%
6 1.97 100%
7 2.03 100%
8 2.04 100%

Table II: Bit flip gains associated with coset codes that are
rate 1/2 convolutional codes. The outer error correcting code
is an extended Hamming code. The generator polynomials
are are taken from Table 12.1 (c) of [41]. The convolutional
codes are allowed to start and terminate at any state.

Constraint Length | Bit Flip Gain | Area Overhead
1 1.31 33%
2 1.40 33%
3 1.51 33%
4 1.57 33%
5 1.60 33%
6 1.62 33%
7 1.63 33%
8 1.64 33%

Table III: Bit flip gains associated with coset codes that are
rate 1/4 convolutional codes. The outer error correcting code
is an extended Hamming code. The generator polynomials
are are taken from Table 12.1 (c) of [41]. The convolutional
codes are allowed to start and terminate at any state.

The cost of writing N data bits as a codeword of length
2N is then N/3, the cost of writing N uncoded bits is
N/2, so the bit flip gain is 3/2. This is slightly different
from the value reported in Table II because the input to
the coset code is a random Hamming codeword and not a
random vector. Tables II and III show that the bit flip gains
provided by convolutional codes are significantly higher than
those provided by Repetition codes. The Viterbi algorithm is
used to select the coset representative. Bit flip gains increase
with constraint length and significant gains are possible with
modest complexity (16 trellis states).

Note however that gains are considerably more modest
when the decoding window for the convolutional code is
shorter than the full codeword length. The advantage of using
convolutional codes is that it is possible to optimize pattern
matching by delaying decoding decisions. Table IV lists bit
flips gains for convolutional codes using a sliding window
from size 16 to the full codeword length. These gains are
calculated by numerical simulation.

Bit Flip Gains
History 8-State | 512-State Area
Depth Code Code Overhead
16 1.55 1 100%
32 1.80 1.11 100%
64 1.84 1.37 100%
128 1.84 1.78 100%
256 1.84 2.05 100%
512 1.84 2.1 100%

Table IV: Bit flip gain as a function of decoding depth for
coset codes that are rate 1/2 convolutional codes appearing
in Table II

In the application of convolutional codes to digital com-
munication the input sequence is a codeword perturbed by
noise rather than a random vector, so quantization is less
of a challenge. Experience and analysis have shown that if



3100% £100% -
£ 95% ¢ 90%
2 90% ~05CPs £ 80% 40 SCPs
[4 £
& 85% 100 SCPs Z 70% «100 SCPs
;‘Z 80% 2 60% g

0 256 512 5 0 256 512

History Length History Length

(a) First State Convergence (b) % of Full Lifetime Gain

Figure 5: The Effects of using a Sliding Window on Life-
time Gain for a Rate 1/2 8-State Code, Codeword Length
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the number of stages ¢ in the decoder window is on the
order Fof 5 times the constraint length then with probability
approaching 1 all survivors stem from the same information
block ¢ stages back (see [41] for more details). When random
vector inputs are used with our modified Viterbi algorithm,
reduction to a single survivor is slower. Figure 5 shows that
convergence for a code of constraint length 3 occurs only
after approximately 45 stages.

VIII. SATURATED CELL POINTERS
SCPs Page

Pointer 1 I:

Pointer 2 \’.

_). Saturated Cell

Replacement Bit(s)

Figure 6: An Illustration of Saturated Cell Pointers

Saturated Cell Pointers (SCPs) are resources that can be
combined with coset coding to extend the lifetime of memory.
A SCP points at a saturated cell and delays the need to erase
the page by providing one or more replacement bits as shown
in Figure 6. When the page is erased the pointer is also
erased. Table V relates the number of writes to the number of
SCPs. As the SCPs become active the quantization problem
approaches that of finding a convolutional codeword that
matches the SCP entries (see [42]. These entries constitute
a fraction of the total entries and there is a threshold above
which there are diminishing returns.

IX. WEARLEVELING

Our systems objective is not bit flip reduction, rather it is
the maximize the number of writes to a page before erasure is

# of Writes
# of Area
SCPs SLC | 4-MLC | 8-MLC Overhead
0 3 15-16 45 0%
1 3 16 45 0%
10 3 16 46 0.5%
20 3 16-17 46 1%
50 4 17 47 2.4%
100 4 18 48 4.9%
200 4 18 49 10%
500 4 19 49 24%
1000 5 19 50 49%

Table V: Number of Writes Before Erasure for Different
Numbers of SCPs When Writing to a 4KB Page. Area Over-
head is Calculated for a Rate 1/2, 512-State Convolutional
Code

necessary. We found that when the Viterbi algorithm simply
selects the coset representative by minimizing the Hamming
distortion the result is uneven wear and premature saturation
of the page. We illustrate this in Figure 7 which shows the
distribution of cell states immediately before an erase for
both uncoded recording ( Case (a) ) and coset coding without
wearleveling ( Case (b) ). In both cases the write efficiency
is far from ideal. We therefore modify the edge metric in the
Viterbi algorithm to promote wearleveling.

» 30% » 60%
3 T 40%
o Q
20% -
5T 5 20%
X X
0% - 0%
01 2 3 0 1 2 3
Writes to Cells Writes to Cells

(b) Coset Coding w/o Wearlevel-
ing

(a) No Coding

Figure 7: Terminal wear distribution across a page of 4-
level MLCs. Case (a) shows the baseline of no coding
which supports 3 writes before erasure. Case (b) shows
coset coding without wearleveling for a convolutional code
with constraint length 9. The combination of coset coding
and 100 SCPs supports 5 writes before erasure.

Let ¢ — 1 be the number of writes that a cell can accom-
modate. We use the Viterbi algorithm to find a codeword
in a rate 1/n convolutional code that best approximates the
initial coset representative. The branch metric that minimizes
Hamming distortion is simply the Hamming distance between
the input ¢ = (¢q, ..., ¢, ) and the edge label d = (d1, ..., d,).



We promote wearleveling by incorporating the Per Cell
Previous Write Count (PCPWC) into a new edge metric
M (e, d) given by

M(C, d) = 5(Cl,d1)W1 + e + 5(Cn,dn)Wn

where d(x,y) is 0 or 1 according as x are y are the same
or different. If the number of prior writes to cell ¢, denoted
here as e, is less than ¢ — 1 then the weight W; is set to
the number of prior writes. If e = ¢ — 1 then the weight is
set to a large positive number (approximating oo) to strongly
discourage use of this edge.

» 60% - » 60% -
§40%— 340% B
620% | 6 20% Ilj:t
X 0% X 0%

0 1 2 3 0 1 2 3

Writes to Cells Writes to Cells

(b) Viterbi edge metric forcing
interpolation of saturated cell
entries

(a) Viterbi edge metric
incorporating PCPWC

60%
8 40% -
020% -

0% -

lls

%

01 2 3
Writes to Cells

(c) Viterbi edge metric combining
(a) and (b) above

Figure 8: Terminal wear distribution across a page of 4-level
MLCs. Case (a) shows the effect of integrating the PCWC
into the Viterbi edge metric. Case (b) shows the effect of
modifying the Viterbi edge metric to force interpolation of
entries in saturated cells. Case (c) shows the effect of both
modifications in combination. The number of writes before
erasure is 11 in Case (a), 16-17 in Case (b), and 18 in
Case (c). All results are obtained for coset coding with a
convolutional code with constraint length 9 in combination
with 100 SCPs.

Figure 8 displays the effect of these modifications. Incor-
porating PCPWC into the Viterbi edge metric creates a wear
distribution very similar to that of uncoded recording. Simply
requiring the coset representative to match values stored at
saturated cell locations also creates a very favorable wear
distribution. In combination they provide a terminal wear
distribution where about half the cells are fully saturated and
almost every cell has been written to at least once.

Figure 9 provides examples of Viterbi path selection
in three circumstances encountered during encoding. When
there are no prior writes (Case (b)) the best path corresponds
to the codeword that is closest in Hamming distance to the
input string. With prior writes (Case (c)) the number of writes
to a given cell enters the Viterbi edge metric. With saturated
cells (Case (d)) the Viterbi edge metric is modified further
to force survivor paths to match the entries in these cells.

Cost of Convolutional .
. Cod Cost: 11 11 11
Mismatch ode Data: 10 01 11
1-Costof 0 State 0 ® .
—Costof 1
1—-Costof 2 State 1 " 01.-@
1—Costof 3 el @ ‘ 01 el
1-Cost of 4 sate2 @107 @’
SN10
State 3 . 01 . 1 { )
Codeword: 11 01 11

(a) Legend and Code Used (b) Encoding, No Prior Writes

Cost: 44 X2
Data: 10 01

Cost: 13 22 32
Data: 10 01 11
State 0 @ [ 11 .

0@y

State 1 K
State 2 State 2@ 10

State 7).

State 3 @

Codeword: 00 01 11
(c) Encoding with Prior Writes

Codeword: 10 00 10
(d) Encoding, Unwritable Cell

Figure 9: Encoding at different stages in the life of a page.
The edge metric in the Viterbi algorithm is determined by
the cost of changing the entry in a given cell.

X. LIFETIME EXTENSION COMPARISON
A. Methodology

Our implementation of coset coding uses a convolutional
code with 512-states in combination with 100 SCPs. Random
inputs of length 501 choose the initial coset representative,
which is a codeword in an extended Hamming code of length
1024. The Viterbi algorithm is then used to choose a coset
representative which is then written to a 4kB page.

Since enumerative codes have a pre-determined number
of rewrites, we used the numbers from their papers as their
lifetime improvements.

Our evaluation of floating codes uses the mapping of 2
logical bits to 4 physical cells presented in [30]. Random
data, viewed as a sequence of pairs of logical bits, is written
to a 4kB page and each time a pair is rewritten a counter
specific to that pair is decremented. Erasure is required when
the counter associated with some pair of bits reaches zero.
Floating codes were implemented in combination with 100
SCPs for fair comparison with coset coding. The comparison
was in fact a little unfair to coset coding since each floating
code SCP contained two replacement bits instead of one.



Coding Technique Number of Writes Before Erasure is Required
Scheme Name Encoding Gran | SLC | 4-Level MLC | 8-Level MLC | 16-Level MLC | 200-Level MLC | ECC
Coset Coding + ECC + 100 SCPs 501-bits 4 18 48 112 1632 Yes
Floating Codes + 100 SCPs [30] 2-bits 1 6 17 41 651 N/A
Enumerative Coding [32] 3-bits 2 N/A N/A N/A N/A N/A
Table VI: Comparison of Different WOM Schemes for 4KB page, 100% Overhead, Random Inputs.
Coding Technique Expected Lifetime Gain
Scheme Name Encoding Gran | SLC | 4-Level MLC | 8-Level MLC | 16-Level MLC | 200-Level MLC | ECC
Coset Coding + ECC + 100 SCPs 501-bits 300% 500% 586% 640% 720% Yes
Floating Codes + 100 SCPs [30] 2-bits 0% 100% 143% 173% 227% N/A
Enumerative Coding [32] 3-bits 100% N/A N/A N/A N/A N/A

Table VII: Comparison of Different WOM Schemes for 4KB page, 100% Overhead, Random Inputs. Waterfall Coding

(mod 2) is Used as a Baseline.

In the above schemes the algorithm and/or alphabet for
writing to a given cell or group of cells is independent of the
number of prior writes. When the writing scheme is allowed
to be a function of the number of writes it is possible to
obtain very significant gains. A representative example taken
from [27][28] uses 200% overhead to achieve 11.4 writes
before erasure with SLCs. If we view a WOM/WAM code
as an inner code and we use a coset code to construct a
concatenated code then the bit flip gains will be additive.
A system implementation of WOM/WAM coding requires
that the number of writes to a given cell or block of
cells be available at the encoder. This is also required for
implementation of the Viterbi algorithm in coset coding. In
coset coding this information can be read off from the cell
state but this is not the case in WOM/WAM coding. If it were
necessary to record separately in Flash memory the number
of writes to a given cell or block of cells, then the result
would be a significant expansion of memory overhead. This
cost is not considered in [27][28], so we have not included
performance of WOM/WAM coding in Tables VI and VIIL.

B. Results

Table VI compares the effect of different coding techniques
on the number of writes to a 4KB page before erasure is
required. Table VII provides a different perspective on the
same data. Binary data is written to memory using waterfall
coding [15] in which the MLC value is interpreted modulo
2 (for example a physical value of 7 is read as a logical
1). The coset code results were obtained with 100 SCPs by
applying the Viterbi edge metrics described in Section IX to
a convolutional code with constraint length 9.

We conclude from Tables VI and VII that the lifetime gains
associated with coset coding are superior to those associated
with other techniques by a factor between 3 and 5. Coset
coding gains increase with the number of levels in the cells.
To approximate coset coding gains in the infinite case we
simulated coset coding using 200-level cells, resulting in
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a lifetime gain of 720%. This shows how we can still get
significant lifetime benefit using more than 16-level MLCs.

XI. WORST CASE PERFORMANCE

Tables VI and VII report results for random writes leaving
open the possibility that a worst case pattern of writes might
compromise the expected lifetime extension. Floating codes
have the property that the mapping from input bits to recorded
bits is local, and repeated writes to the same bits will then
cause premature erasure. Coset codes have the property that
there are many ways to represent every pattern of inputs,
and that the different ways are distributed across the entire
page. When using coset coding there is little or no difference
between worst case and average case lifetime extension.

XII. FUTURE WORK

Storage systems can benefit from using coset coding. This
will be the subject of future work. Since our code has positive
lifetime extension, we believe it will render in-place updates
feasible, reducing the need to migrate data to a new block
when writing to memory. Improvements will be expressed
in terms of write amplification—the ratio of data written to
NAND Flash to the data written by the host computer.

XIII. CONCLUSION

We have presented a technique for increasing the number
of writes we can perform to a page of data before it must then
be erased using the Viterbi algorithm, linear codes, SCPs, and
coset coding. We have also demonstrates that our technique
translates directly into increased lifetime for flash devices
by increasing the number of writes before a block needs to
be erased. We have demonstrated lifetime gains for SLCs
of 300%, for 4-level MLCs of 500%, for 8-level MLCs of
586%, and finally for 16-level MLCs of 640%. We have also
shown that our technique can successfully be used with ECC
to tolerate bit errors at an arbitrary granularity.
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