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Abstract

Growing interest in ambitious multiple-issue

machines and heavily -pipelined machines requires a care-

ful examination of how much instruction-level parallel-

ism exists in typical programs. Such an examination is

complicated by the wide variety of hardware and

software techniques for increasing the parallelism that

can be exploited, including branch prediction, register

renaming, and alias analysis. By performing simulations

based on instruction maces, we can model techniques at

the limits of feasibility and even beyond. Our study

shows a striking difference between assuming that the

techniques we use are perfect and merely assuming that

they are impossibly good. Even with impossibly good

techniques, average parallelism rarely exceeds 7, with 5

more common.

1. Introduction

There is growing interest in machines that exploit,

usually with compiler assistance, the parallelism that pro-
grams have at the instruction

example of this parallelism.

rl := O[r9]

r2 := 17

4[r3] := r6

level. Figure 1 shows an

rl := O[r9]

r2 := rl + 17

4[r2] := r6

(a} parallelt’stn=3 (b) parallelism=l

Figure 1. Instruction-level parallelism (and lack thereofl.

The code fragment in l(a) consists of three instructions

that can be executed at the same time, because they do

not depend on each other’s results. The code fragment in

l(b) does have dependencies, and so cannot be executed
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in parallel. In each case, the parallelism is the number of

instructions divided by the number of cycles required.

Architectures to take advantage of this kind of

parallelism have been proposed. A superscalar machine

[1] is one that can issue multiple independent instructions

in the same cycle. A superpipelined machine [7] issues

one instruction per cycle, but the cycle time is set much

less than the typical instruction latency. A VLIW

machine [11] is like a superscalar machine, except the

parallel instructions must be explicitly packed by the

compiler into very long instruction words.

But how much parallelism is there to exploit?

Popular wisdom, supported by a few studies [7,13,14],

suggests that parallelism within a basic block rarely

exceeds 3 or 4 on the average. Peak parallelism can be

higher, especially for some kinds of numeric programs,

but the payoff of high peak parallelism is low if the aver-

age is still small.

These limits are troublesome. Many machines

already have some degree of pipelining, as reflected in

operations with latencies of multiple cycles. We can

compute the degree of pipelining by multiplying the

latency of each operation by its dynamic frequency in

typical programs; for the DECStation 5000,” load laten-

cies, delayed branches, and floating-point latencies give

the machine a degree of pipelining equal to about 1.5.

Adding a superscalar capability to a machine with some

pipelining is beneficial only if there is more parallelism

available than the pipelining already exploits.

To increase the instruction-level parallelism that

the hardware can exploit, people have explored a variety

of techniques. These fall roughly into two categories.

One category includes techniques for increasing the

parallelism within a basic block, the other for using

parallelism across several basic blocks. These techniques

often interact in a way that has not been adequately

explored. We would like to bound the effectiveness of a
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technique whether it is used in combination with impos-

sibly good companion techniques, or with none. A gen-

eral approach is therefore needed. In this paper, we will

describe our use of trace-driven simulation to study the

importance of register renaming, branch and jump predic-

tion, and alias analysis. In each case we can model a

range of possibilities from perfect to non-existent.

We will begin with a survey of ambitious tech-

niques for increasing the exploitable instruction-level

parallelism of programs.

1.1. Increasing parallelism within blocks.

Parallelism within a basic block is limited by

dependencies between pairs of instructions. Some of

these dependencies are real, reflecting the flow of data in

the program. Others are false dependencies, accidents of

the code generation or results of our lack of precise

knowledge about the flow of data.

Allocating registers assuming a traditional scalar

architecture can lead to a false dependency on a register.

In the code sequence

rl := 0[r9]

r2:=rl+l

rl := 9

we must do the second and third instructions in that

order, because the third changes the value of rl. How-

ever, if the compiler had used r3 instead of rl in the third

instruction, these two instructions would be independent.

A smart compiler might pay attention to its alloca-

tion of registers, so as to maximize the opportunities for

parallelism. Current compilers often do not, preferring

instead to reuse registers as often as possible so that the

number of registers needed is minimized.

An alternative is the hardware solution of register

renaming, in which the hardware imposes a level of

indirection between the register number appearing in the

instruction and the actual register used. Each time an

instruction sets a register, the hardware selects an actual

register to use for as long as that value is needed. In a

sense the hardware does the register allocation dynami-

cally, which can give better results than the compiler’s

static allocation, even if the compiler did it as well as it

could. In addition, register renaming allows the hardware

to include more registers than will fit in the instruction

format, further reducing false dependencies. Unfor-

tunately, register renaming can also lengthen the machine

pipeline, thereby increasing the branch penalties of the
machine, but we are concerned here only with its effects

on parallelism.

False dependencies can also involve memory. We

assume that memory locations have meaning to the pro-

grammer that registers do not, and hence that hardware

renaming of memory locations is not desirable. How-

ever, we may still have to make conservative assump-

tions that lead to false dependencies on memory. For

example, in the code sequence

rl := 0[r9]

4[r16] := r3

we may have no way of knowing whether the memory

locations referenced in the load and store are the same.

If they are the same, then there is a dependency between

these two instructions: we cannot store a new value until

we have fetched the old. If they are different, there is no

dependency. Alias analysis can help a compiler decide

when two memory references are independent, but even

that is imprecise; sometimes we must assume the worst.

Hardware can resolve the question at run-time by deter-

mining the actual addresses referenced, but this may be

too late to affect parallelism decisions. If the compiler or

hardware are not sure the locations are different, we must

assume conservatively that they are the same.

1.2. Crossing block boundaries.

The number of instructions between branches is

usually quite small, often averaging less than 6. If we

want large parallelism, we must be able to issue instruc-

tions from different basic blocks in parallel. But this

means we must know in advance whether a conditional

branch will be taken, or else we must cope with the pos-

sibility that we do not know.

Branch prediction is a common hardware tech-

nique. In the scheme we used [9,12], the branch predic-

tor maintains a table of two-bit entries. Low-order bits

of a branch’s address provide the index into this table.

Taking a branch causes us to increment its table entry;

not taking it causes us to decrement. We do not wrap

around when the table entry reaches its maximum or

minimum. We predict that a branch will be taken if its

table entry is 2 or 3. This two-bit prediction scheme

mispredicts a typical loop only once, when it is exited.

Two branches that map to the same table entry interfere

with each othe~ no “key” identifies the owner of the

entry. A good initial vahte for table entries is 2, just

barely predicting that each branch will be taken.

Branch prediction is often used to keep a pipeline

full: we fetch and decode instructions after a branch

while we are executing the branch and the instructions

before it. To use branch prediction to increase parallel

execution, we must be able to execute instructions across

an unknown branch speculatively. This may involve

maintaining shadow registers, whose values are not com-
mitted until we are sure we have correctly predicted the

branch. It may involve being selective about the instruc-

tions we choose: we may not be willing to execute

memory stores speculatively, for example. Some of this

may be put partly under compiler control by designing an

instruction set with explicitly squashable instructions.
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Each squashable instruction would be tied explicitly to a

condition evaluated in another instruction, and would be

squashed by the hardware if the condition turns out to be

false.

Rather than try to predict the destinations of

branches, we might speculatively execute instructions

along both possible paths, squashing the wrong path

when we know which it is. Some of our parallelism

capability is guaranteed to be wasted, but we will never

miss out by taking the wrong path. Unfortunately,

branches happen quite often in normal code, so for large

degrees of parallelism we may encounter another branch

before we have resolved the previous one. A real archi-

tecture may have limits on the amount of fanout we can

tolerate before we must assume that new branches are not

explored in parallel.

Many architectures have two or three kinds of

instructions to change the flow of control. Branches are

conditional and have a destination some specified offset

from the PC. Jumps are unconditional, and may be

either direct or indirect. A direct jump is one whose des-

tination is given explicitly in the instruction, while an

indirect jump is one whose destination is expressed as an

address computation involving a register. In principle we

can know the destination of a direct jump well in

advance. The same is true of a branch, assuming we

know how its condition will turn out. The destination of

an indirect jump, however, may require us to wait until

the address computation is possible. Little work has

been done on predicting the destinations of indirect

jumps, but it might pay off in instruction-level parallel-

ism. This paper considers a very simple (and, it turns

out, fairly accurate) jump prediction scheme. A table is

maintained of destination addresses. The address of a

jump provides the index into this table. Whenever we

execute an indirect jump, we put its address in the table

entry for the jump. We predict that an indirect jump will

be to the address in its table entry. As with branch pred-

iction, we do not prevent two jumps from mapping to the

same table entry and interfering with each other.

Loop unrolling is an old compiler optimization

technique that can also increase parallelism. If we unroll

a loop ten times, thereby removing 909?0of its branches,
we effectively increase the basic block size tenfold. This

larger basic block may hold parallelism that had been

unavailable because of the branches.

Software pipelining [81 is a compiler technique for

moving instructions across branches to increase parallel-

ism. It analyzes the dependencies in a loop body, look-

ing for ways to increase parallelism by moving instmc-

tions from one iteration into a previous or later iteration.

Thus the dependencies in one iteration can be stretched

out across several, effectively executing several iterations

in parallel without the code expansion of unrolling.

Trace scheduling [4] was developed for VLIW

machines, where global scheduling by the compiler is

needed to exploit the parallelism of the long instruction

words. It uses a profile to find a trace (a sequence of

blocks that are executed often), and schedules the instruc-

tions for these blocks as a whole. In effect, trace

scheduling predicts a branch statically, based on the

profile. To cope with occasions when this prediction

fails, code is inserted outside the sequence of blocks to

correct the state of registers and memory whenever we

enter or leave the sequence unexpectedly. This added

code may itself be scheduled as part of a later and less

heavily executed trace.

2. This and previous work.

To better understand this bewildering array of tech-

niques, we have built a simple system for scheduling

instructions produced by an instruction trace. Our system

allows us to assume various kinds of branch and jump

prediction, alias analysis, and register renaming. In each

case the option ranges from perfect, which could not be

implemented in reality, to non-existent. It is important to

consider the full range in order to bound the effectiveness

of the various techniques. For example, it is useful to

ask how well a realistic branch prediction scheme could

work even with impossibly good alias analysis and regis-

ter renaming.

This is in contrast to the 1989 study of Jouppi and

Wall [7], which worked by scheduling static program

executable rather than dynamic instruction traces. Since

their compiler did scheduling only within basic blocks,

they did not consider more ambitious scheduling.

The methodology of our paper is more like that of

Tjaden and Flynn [14], which also scheduled instructions

from a dynamic trace. Like Jouppi and Wall, however,

Tjaden and Flynn did not move instructions across

branches. Their results were similar to those of Jouppi

and Wall, with parallelism rarely above 3, even though

the two studies assumed quite different architectures.

Nicolau and Fisher’s trace-driven study [11] of the

effectiveness of trace scheduling was more liberal,

assuming perfect branch prediction and perfect alias

analysis. However, they did not consider more realistic
assumptions, arguing instead that they were interested

primarily in programs for which realistic implementations

would be close to perfect.

The study by Smith, Johnson, and Horowitz [13]

was a realistic application of trace-driven simulation that

assumed neither too restrictive nor too generous a model.

They were interested, however, in validating a particular

realistic machine design, one that could consistently

exploit a parallelism of only 2. They did not explore the

range of techniques discussed in this paper.
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We believe our study can provide useful bounds on to retiring the cycle’s instructions from the scheduler, and

the behavior not only of hardware techniques like branch passing them on to be executed.

prediction and register renaming, but also of compiler

techniques like software pipelining and trace scheduling,

Unfortunately, we could think of no good way to

model loop unrolling. Register renumbering can cause

much of the computation in a loop to migrate backward

toward the beginning of the loop, providing opportunities

for parallelism much like those presented by unrolling.

Much of the computation, however, like the repeated

incrementing of the loop index, is inherently sequential.

We address loop unrolling in an admittedly unsatisfying

manner, by unrolling the loops of some numerical pro-

grams by hand and comparing the results to those of the

normal versions.

3. Our experimental framework.

To explore the parallelism available in a particular

program, we execute the program to produce a trace of

the instructions executed. This trace also includes data

addresses referenced, and the results of branches and

jumps. A greedy algorithm packs these instructions into

a sequence of pending cycles.

In packing instructions into cycles, we assume that

any cycle may contain as many as 64 instructions in

parallel. We further assume no limits on replicated func-

tional units or ports to registers or memory: all 64

instructions may be multiplies, or even loads. We

assume that every operation has a latency of one cycle,

so the result of an operation executed in cycle N can be

used by an instruction executed in cycle N+ 1. This

includes memory references: we assume there are no

cache misses.

We pack the instructions from the trace into cycles

as follows. For each instruction in the trace, we start at

the end of the cycle sequence, representing the latest

pending cycle, and move earlier in the sequence until we

find a conflict with the new instruction. Whether a

conflict exists depends on which model we are consider-

ing. If the conflict is a false dependency (in models

allowing them), we assume that we can put the instruc-

tion in that cycle but no farther back. Otherwise we

assume only that we can put the instruction in the next

cycle after this one. If the correct cycle is full, we put

the instruction in the next non-full cycle. If we cannot

put the instruction in any pending cycle, we start a new

pending cycle at the end of the sequence.

As we add more and more cycles, the sequence

gets longer. We assume that hardware and software tech-

niques will have some limit on how many instructions

they will consider at once. When the total number of

instructions in the sequence of pending cycles reaches

this limit, we remove the first cycle from the sequence,

whether it is full of instructions or not. This corresponds

When we have exhausted the trace, we divide the

number of instructions by the number of cycles we

created. The result is the parallelism.

3.1. Parameters.

We can do three kinds of register renaming: per-

fect, finite, and none. For perfect renaming, we assume

that there are an infinite number of registers, so that no

false register dependencies occur. For finite renaming,

we assume a finite register set dynamically allocated

using an LRU discipline: when we need a new register

we select the register whose most recent use (measured

in cycles rather than in instruction count) is earliest. Fin-

ite renaming is normally done with 256 integer registers

and 256 floating-point registers. It is also interesting to

see what happens when we reduce this to 64 or even 32,

the number on our base machine. To simulate no renam-

ing, we simply use the registers specified in the codq this

is of course highly dependent on the register strategy of

the compiler we use.

We can assume several degrees of branch predic-

tion. One extreme is perfect prediction: we assume that

all branches are correctly predicted. Next we can assume

a two-bit prediction scheme as described before. The

two-bit scheme can be either infinite, with a table big

enough that two different branches never have the same

table entry, or finite, with a table of 2048 entries. To

model trace scheduling, we can also assume static branch

prediction based on a profile from an identical run; in

this case we predict that a branch will always go the way

that it goes most frequently. And finally, we can assume

that no branch prediction occurs; this is the same as

assuming that every branch is predicted wrong.

The same choices are available for jump predic-

tion. We can assume that indirect jumps are perfectly

predicted. We can assume infinite or finite hardware

prediction as described above (predicting that a jump will

go where it went last time). We can assume static pred-

iction based on a profile. And we can assume no predic-

tion. In any case we are concerned only with indirect

jumps; we assume that direct jumps are always predicted

correctly.

The effect of branch and jump prediction on

scheduling is easy to state. Correctly predicted branches

and jumps have no effect on scheduling (except for regis-

ter dependencies involving their operands). Instructions
on opposite sides of an incorrectly predicted branch or

jump, however, always conflict. Another way to think of

this is that the sequence of pending cycles is flushed

whenever an incorrect prediction is made. Note that we

generally assume no other penalty for failure. This

assumption is optimistic; in most real architectures, a
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failed prediction causes a bubble in the pipeline, resulting

in one or more cycles in which no execution whatsoever

can occur. We will return to this topic later.

We can also allow instntctions to move past a cer-

tain number of incorrectly predicted branches. This

corresponds to architectures that speculatively execute

instructions from both possible paths, up to a certain

~anout limit. None of the experiments described here

involved this ability.

Four levels of alias analysis are available. We can

assume perfect alias analysis, in which we look at the

actual memory address referenced by a load or stor~ a

store conflicts with a load or store only if they access the

same location. We can also assume no alias analysis, so

that a store always conflicts with a load or store.

Between these two extremes would be alias analysis as a

smart vectorizing compiler might do it. We don’t have

such a compiler, but we have implemented two inter-

mediate schemes that may give us some insight.

One intermediate scheme is alias by instruction

inspection. This is a common technique in compile-time

instruction-level code schedulers. We look at the two

instructions to see if it is obvious that they are indepen-

den~ the two ways this might happen are shown in Fig-

ure 2.

rl := O[r9] rl := O[fp]

4[r9] := r2 O[gp] := r2

(a} (b)

Figure 2. Alias analysis by inspection.

The two instructions in 2(a) cannot conflict, because they

use the same base register but different displacements.

The two instructions in 2(b) cannot conflict, because one

is manifestly a reference to the stack and the other is

manifestly a reference to the globaI data area.

The other intermediate scheme is called alias

analysis by compiler even though our own compiler

doesn’t do it. Under this model, we assume perfect

analysis of stack and global references, regardless of

which registers are used to make them. A store to an

address on the stack conflicts only with a load or store to
the same address. Heap references, on the other hand,

are resolved by instruction inspection.

The idea behind our alias analysis by compiler is

that references outside the heap can often be resolved by

the compiler, by doing dataflow analysis and possibly by

solving diophantine equations over loop indexes, whereas

heap references are often less tractable. Neither of these

assumptions is particulady defensible. Many languages

allow pointers into the stack and global areas, rendering

them as difficult as the heap. Practical considerations

such as separate compilation may also keep us from

analyzing non-heap references perfectly. On the other

side, even heap references are not as hopeless as this

model assumes [2,6]. Nevertheless, our range of four

alternatives provides some intuition about the effects of

alias analysis on instruction-level parallelism.

The window size is the maximum number of

instructions that can appear in the pending cycles at any

time. By default this is 2048 instructions. We can

manage the window either discretely or continuously.

With discrete windows, we fetch an entire window of

instructions, schedule them into cycles, and then start

fresh with a new window. A missed prediction also

causes us to start over with a full-size new window.

With continuous windows, new instructions enter the

window one at a time, and old cycles leave the window

whenever the number of instructions reaches the window

size. Continuous windows are the norm for the results

described here, although to implement them in hardware

is more difficult. Smith, Johnson, and Horowitz [13]

assumed discrete windows.
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egrep
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ccom

gccl
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~
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lines instructions
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1019 20759516

1751 1447717
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1856 30948883
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5883 142980475
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8300Q 22745232

12000 135317102

7000 1247190509

2600 244124171

5200 284697827

180 1986257545

remarks

Livermore loops 1-14

floating-point

Linear algebra [3]

Hennessy’s suite [5]

Stream editor

Fite search

Compiler-compiler

Timing verifier

PCB router

Recursive tree comparison

C compiter front end

pass 1 of GNU C compiter

boolean function minimizer

Lisp interpreter

qnantnrn chemistry

hydrocode simulation

mesh generation

Figure 3. The seventeen test programs.

3.2. Programs measured.

As test cases we used four toy benchmarks, seven

real programs used at WRL, and six SPEC benchmarks.

These programs are shown in Figure 3. The SPEC

benchmarks were run on accompanying test data, but the

data was usually an official “short” data set rather than

the reference data set. The programs were compiled for a

DECStation 5000, which has a MIPS R3000* processor.

The Mips version 1.31 compilers were used.

“ R3000 is a trademark of MIPS Computer Systems, Inc.
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4. ResuIts.

We ran these test programs for a wide range of

configurations. The results we have are tabulated in the

appendix, but we will extract some of them to show

some interesting trends. To provide a framework for our

exploration, we defined a series of five increasingly

ambitious models spanning the possible range. These

five are specified in Figure 4; the window size in each is

2K instructions. Many of the results we present will

show the effects of variations on these standard models.

Note that even the Fair model is quite ambitious.

branch jump reg alias

predict predict renaming analysis

Stupid none none none none

Fair infinite infinite 256 inspection

Good I infinite infinite 256 perfect

Great infinite infinite perfect perfeet

Perfect perfect ~rfect perfect perfect

Linpack

Livermore

Stanford

Whetstones

sed

egrep

yacc

met

grr

eco

Ccom

ti

tomcatv

doduc

espresso

feeee

gcc

mean

Figure 4. Five increasingly ambitious models.

branches

injinite jinite static

96% 96% 95%

98% 98% 98%

90% 90% 89%

90% 90% 92%

97% 97% 97%

90% 90% 91%

95% 95% 92%

92% 92% 92%

85% 84% 82%

92% 92% 91%

90% 90% 90%

90% 90% 90%

99% 99% 99%

95% 95% 95%

89% 89% 87%

92% 91% 8870

90% 89’70 90%

92% 92% 92%

jumps

injinite jinite static

99% 99% 96%

19% 19% 77%

69% 69% 71%

80% 80% 88%

96% 96% 97%

98% 98% 98%

75% 75% 71%

77% 77% 65%

67% 66% 64%

47% 47% 56%

55% 54% 64%

56% 55% 70%

58% 58% 72~o

39% 39% 62%

65% 65% 53%

84% 84% 80%
55% 54% 60%

67% 67% 73%

Figure 5. Success rates of branch and jump prediction.

4.1. Branch and jump prediction.

The success of the two-bit branch prediction has

been reported elsewhere [9, 101. Our results were com-
parable and are shown in Figure 5. It makes little

difference whether we use an infinite table or one with

only 2K entries, even though several of the programs are

more than twenty thousand instructions long. Static

branch prediction based on a profile does almost exactly

as well as hardware prediction across atl of the tests;

static jump prediction does a bit better than our simple

dynamic prediction scheme. It would be interesting to

explore how small the hardware table can be before per-

formance starts to degrade, and to explore how well static

prediction does if the profile is from a non-identical run

of the program.
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4.2.

Figure 6. Parallelism under the five models.

Parallelism under the five models.

Figure 6 shows the parallelism of each program for

each of the five models. The numeric programs are

shown as dotted lines. Unsurprisingly, the Stupid model

rarely gets above 2; the lack of branch prediction means

that it finds only intra-block parallelism, and the lack of

renaming and alias analysis means it won’t find much of

that. The Fair model is better, with parallelism between

2 and 4 common. Even the Great model, however, rarely

has parallelism above 8. A study that assumed perfect

branch prediction, perfect alias analysis, and perfect

register renaming would lead us down a dangerous gar-

den path. So would a study that included only fpppp and

tomcatv, unless that’s really all we want to run on our

machine.

It is interesting that Whetstones and Livermore,

two numeric benchmarks, do poorly even under the Per-

fect model. This is the result of Afndahl’s Law: if we

compute the parallelism for each Livermore loop

independently, the values range from 2.4 to 29.9, with a

median around 5. Speeding up a few loops 30-fold sim-

ply means that the cycles needed for less parallel loops

will dominate the total.

4.3. Effects of unrolling.

Loop unrolling should have some effect on the five

models. We explored this by unrolling two benchmarks

by hand. The normal Linpack benchmark is already

unrolled four times, so we made a version of it unrolled
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Figure 7. Unrolling under the five models.

ten times, and a version in which we rolled the loops

back up, removing the normal unrolling by four. We

also unrolled the Livermore benchmark ten times. We

did the unrolling in two different ways. One is naive

unrolling, in which the loop body is simply replicated ten

times with suitable adjustments to array indexes and so

on. The other is careful unrolling, in which computa-

tions involving accumulators (like scalar product) are

reassociated to increase parallelism, and in which assign-

ments to array members are delayed until after all the

calculations are complete, so that false memory conflicts

do not interfere with doing the calculations in parallel.

Figure 7 shows the result. The dotted lines are the

10-unrolled versions. Unrolling helps both Livermore

and Linpack in the more ambitious models, although

unrolling Linpack by 10 doesn’t make it much more

parallel than unrolling by 4. The difference between

unrolling by 4 or 10 disappears altogether in the Perfect

model, because the saxpy routine, which accounts for

75% of the executed instructions, achieves a parallelism

just short of our maximum of 64 in each case. The

aggregate parallelism stays lower because the next most

frequently executed code is the loop in the matgen rou-

tine. This loop includes an embedded random-number
generator, and each iteration is thus very dependent on its
predecessor. This confirms the importance of using

whole program traces; studies that considered only the

parallelism in saxpy would be quite misleading.

Naive unrolling actually hurts the parallelism

slightly under the Fair model. The reason is fairly sim-

ple. The Fair model uses alias analysis by inspection,

which is not always sufficient to resolve the conflict

between a store at the end of one iteration and the loads

at the beginning of the next. In naive unrolling, the loop

body is simply replicated, and these memory conflicts

impose the same rigid framework to the dependency

structure as they did before unrolling. The unrolled ver-

sions have slightly less to do within that framework,

however, because 3/4 or 9/10 of the loop overhead has

been removed. As a result, the parallelism goes down

slightly. Even when alias analysis by inspection is ade-

quate, unrolling the loops either naively or carefully

sometimes causes the compiler to spill some registers.

This is even harder for the alias analysis to deal with

because these references usually have a different base

register than the array references.

Loop unrolling is a good way to increase the avail-

able parallelism, but it is clear we must integrate the

unrolling with the rest of our techniques better than we

have been able to do here.

4.4. Effects of window size.

Our standard models all have a window size of 2K

instructions: the scheduler is allowed to keep that many

instructions in pending cycles at one time. Typical

superscalar hardware is unlikely to handle windows of

that size, but software techniques like trace scheduling

for a VLIW machine might. Figure 8 shows the effect of

varying the window size from 2K instructions down to 4.

Under the Great model, which does not have perfect

branch prediction, most programs do as well with a 32-

instruction window as with a larger one. Below that,

parallelism drops off quickly. Unsurprisingly, the Perfect

model does better the bigger its window. The Good

model is not shown, but looks almost identical to the

Great model.

4.5. Effects of using discrete windows.

A less ambitious parallelism manager would get a

window full of instructions, schedule them relative to

each other, execute them, and then start over with a fresh

window. This would tend to have less parallelism than

the continuous window model we used above. Figure 9

shows the same models as Figure 8, except assuming

discrete windows rather than continuous. Under the

Great model, discrete windows do nearly as well as con-

tinuous when the window is 2K instructions, but the

difference increases as the window size decreases; we

must use discrete windows of 128 instructions before the

curves level off. If we have very small windows, it

might pay off to manage them continuously; in other

words, continuous management of a small window is as

good as multiplying the window size by 4. As before,

the Perfect model does better the larger the window, but

the parallelism is only two-thirds that of continuous win-

dows.

4.6. Effects of branch and jump prediction.

We have several levels of branch and jump predic-

tion. Figure 10 shows the results of varying these while

register renaming and alias analysis stay perfect. Reduc-
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ing the level of jump prediction can have a large effect,

but only if we have perfect branch prediction. Other-

wise, removing jump prediction altogether has little

effmt. This graph does not show static or finite predic-

tion: it turns out to make little difference whether predic-

tion is infinite, finite, or static, because they have nearly

the same success rate.

That jump prediction has little effect on the paral-

lelism under non-Perfect models does not mean that jump

prediction is useless. In a real machine, a jump predicted

incorrectly (or not at all) may result in a bubble in the

pipeline. The bubble is a series of cycles in which no

execution occurs, while the unexpected instructions are

fetched, decoded, and started down the execution pipe-

line. Depending on the penalty, this may have a serious

effect on performance, Figure 11 shows the degradation
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of parallelism under the Great model, assuming that each

mispredicted branch or jump adds N cycles with no

instructions in them. If we assume instead that all

indirect jumps (but not all branches) are mispredicted, the

right ends of these curves drop by 10% to 30%.

Livermore and Linpack stay relatively horizontal

over the entire range: They make fewer branches and

jumps, and their branches are comparatively predictable.

Tomcatv and fpppp are above the range of this graph, but

their curves have slopes about the same as these.

4.7. Effects of alias analysis and register renaming.

We also ran several experiments varying alias

analysis in isolation, and varying register renaming in

isolation.

183



64

60 fPPPP
tomcatv

56 doduc

52

48

44

40 espresso

8 36
2

CcInn

egrep
$ 32

& 28 P.
Lmpack

24

20 !!$l”””m’

16
Stanford

JiecO

12

8 Whetstones

4
Livennore

‘&n. J nf‘e bW ?%P jil%;. ~M jpi$ j!t~s ~f# ){~$

Figure 10. Effect of branch and jump prediction with

petfect alias analysis and register renaming

14 ~-..

------- --

------ -

--------

-------- .

12 -
------- .- e---

‘ Linpack

10 -

8.

2 -
li

01 I I I I I I I I I

01234567 891o
mispraiiction penalty (cycles)

60

1 I

. . . . . . . . . . . . . . . . . . fPPPP
------------------- tolucatv

56 ‘----------------- doduc
.“,’

52 .“,’
,“,’

48 ,’,’
,,

44
,,

.,
.,

.,
40 .,,, eaprcsso

,,

I 36
Cconr

egrep
$ 32

& 28 w,
Lmpack

24
gcc

20
~~onome

Stanford
16

tie’o

12

8 Whetstones
Livennom

4

aNone aInsp aCOmp aPerf

Figure 12(a). Effect of alias analysis on Perfect model.

52 , ----------------: tomcatv

48 ;
,’

44 +
j

40 & ,’

~ 36 2
,’ ,,---”” ””-” ----”---: fPPPP

~ 32 ,’ .“

& 28 ,’ ,.’
,’ ,.

,’ ,,
,’ ,’

20 : ,’ ,.’

16 ~
,,’ ,,’

,,
-------------------: Linpack

12

8 -~- . . . . . . . . . . . . . . . . . . . . . .

4

aNOne alnsp aCOmp aPerf

Figure 12(b). Effect of alias analysis on Great model,

Figure 11. Effect of a misprediction cycle penalty on the Great model,

Figure 12 shows the effect of varying the alias

analysis under the Perfect and Great models. We can see

that “alias analysis by inspection” isn’t very powerful; it

rarely increased parallelism by more than 0.5. “Alias

analysis by compiler” was (by definition) indistinguish-

able from perfect alias analysis on programs that do not

use the heap, and was somewhat helpful even on those

that do. There remains a gap between this analysis and

perfection, which suggests that the payoff of further work

on heap disambiguation may be significant. Unless

branch prediction is perfect, however, even perfect alias

analysis usually leaves us with parallelism between 4 and

8.

Figure 13 shows the effect of varying the register

renaming under the Perfect and Great models. Dropping

from infinitely many registers to 256 CPU and 256 FPU

registers rarely had a large effect unless the other parame-

ters were perfect. Under the Great model, register
renaming with 32 registers, the number on the actual

machine, yielded parallelisms roughly halfway between

no renaming and perfect renaming.

4.8. Conclusions.

Good branch prediction by hardware or software is

critical to the exploitation of more than modest amounts

of instruction-level parallelism. Jump prediction cm

reduce the penalty for indirect jumps, but has little effeet

on the parallelism of non-penalty cycles. Register
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renaming is important as well, though a compiler might

be able to do an adequate job with static analysis, if it

knows it is compiling for parallelism.

Even ambitious models combining the techniques

discussed here are disappointing. Figure 14 shows the

parallelism achieved by a quite ambitious hardware-style

model, with branch and jump prediction using infinite

tables, 256 ITT-J and 256 CPU registers used with LRU

renaming, perfect alias analysis, and windows of 64

instructions maintained continuously. The average paral-
lelism is around 7, the median around 5. Figure 15

shows the parallelism achieved by a quite ambitious

software-style model, with static branch and jump predic-

tion, 256 FPU and 256 CPU registers used with LRU

renaming, perfect alias analysis, and windows of 2K

instructions maintained continuously. The average here

zero-conflict branch and jump prediction
256 CPU and 256 FPU registers
perfect alias analysis
continuous windows of 64 instructions

Figure 14. The paratletism from an ambitious hardware model.

ceom jj~~

stanford ?.:+!’ static branch and jump prediction:.:+:::.::
eco ~: 256 CPU and 256 FPU registers

perfect alias analysis
yacc _ continuous windows of 2K instructions

Figure 15. The parallelism from en ambitious software model,

is closer to 9, but the median is still around 5. A con-

sistent speedup of 5 would be quite good, but we cannot

honestly expect more (at least without developing tech-

niques beyond those discussed here).

We must also remember the simplifying assump-

tions this study makes. We have assumed that all opera-

tions have latency of one cycle; in practice an instruction

with larger latency uses some of the available parallel-
ism. We have assumed unlimited resources, including a

perfect cache; as the memory bottleneck gets worse it
may be more helpful to have a bigger on-chip cache than

a lot of duplicate functional units. We have assumed that

there is no penalty for a missed prediction; in practice the

penalty may be many empty cycles. We have assumed a
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uniform machine cycle time, though adding superscalar

capability will surely not decrease the cycle time and

may in fact increase it. We have assumed uniform tech-

nology, but an ordinary machine may have a shorter

time-to-market and therefore use newer, faster technol-

ogy. Sadly, any one of these considerations could reduce

our expected parallelism by a third; together they could

eliminate it completely.
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Appendix. Parallelism under many models.

On the next two pages are the results of running the test
programs under more than 100 different configurations. The

columns labelled ‘ ‘Livcu10” and ‘‘ Lincu10” are the Livermore

and Linpack benchmarks unrolled carefully 10 times. The
configurations are keyed by the following abbreviations:

bPerf perfect branch prediction, 100% correct.
bJnf 2-bit branch prediction with infinite table.

b2K 2-bit branch prediction with 2K-entry table.
bStat static branch prediction from profile.
bNone no branch prediction.

jPerf perfect indirect jump prediction, 100% correct.

jJnf indireet jump prediction with infinite table.

j2K indirect jump prediction with 2K-entry table.
jStat static indirect jump prediction from profile.

jNone no indirect iump prediction.

rPerf perfect register renaming: infinitely many registers.

rN register renaming with N cpu and N fpu registers.
rNone no register renaming: use registers as compiled.

aPerf perfect alias analysis: use actual addresses to decide.

aComp “compiler” alias analysis.
aInsp “alias analysis “by inspection.”

aNone no alias analysis.

WN continuous window of N instructions, default 2K.

dwN discrete window of N instructions, default 2K.
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