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WAR: Write After Read

write-after-read (WAR) = artificial (name) dependence

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

• problem: add could use wrong value for R2

• can’t happen in vanilla pipeline (reads in ID, writes in WB)
• can happen if: early writes (e.g., auto-increment) + late reads (??)

• can happen if: out-of-order reads (e.g., out-of-order execution)

• artificial: using different output register for sub would solve
• The dependence is on the name R2, but not on actual dataflow
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WAW: Write After Write

write-after-write (WAW) = artificial (name) dependence

add R1,R2,R3

sub R2,R4,R1

or R1,R6,R3

• problem: reordering could leave wrong value in R1
• later instruction that reads R1 would get wrong value

• can’t happen in vanilla pipeline (register writes are in order)
• another reason for making ALU ops go through MEM stage

• can happen: multi-cycle operations (e.g., FP ops, cache misses)

• artificial: using different output register for or would solve
• Also a dependence on a name: R1
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RAR: Read After Read

read-after-read (RAR)

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

• no problem: R3 is correct even with reordering
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Memory Data Hazards

have seen register hazards, can also have memory hazards

RAW

store R1,0(SP)

load R4,0(SP)

WAR

load R4,0(SP)

store R1,0(SP)

WAW

store R1,0(SP)

store R4,0(SP)

• in simple pipeline, memory hazards are easy
• in-order

• one at a time

• read & write in same stage

• in general, though, more difficult than register hazards

1 2 3 4 5 6 7 8 9
store R1,0(SP) F D X M W
load R1,0(SP) F D X M W
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Hazards vs. Dependences

dependence: fixed property of instruction stream (i.e., program)

hazard: property of program and processor organization

• implies potential for executing things in wrong order
• potential only exists if instructions can be simultaneously “in-flight”

• property of dynamic distance between instrs vs. pipeline depth 

For example, can have RAW dependence with or without hazard

• depends on pipeline
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Control Hazards

when an instruction affects which instruction executes next

store R4,0(R5)

bne R2,R3,loop

sub R1,R6,R3

• naive solution: stall until outcome is available (end of EX)
+ simple

– low performance (2 cycles here, longer in general) 

• e.g. 15% branches * 2 cycle stall ⇒ 30% CPI increase! 

1 2 3 4 5 6 7 8 9
store R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* c* F D X M W
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Control Hazards: “Fast” Branches

fast branches: can be evaluated in ID (rather than EX)

+ reduce stall from 2 cycles to 1

– requires more hardware 
• dedicated ID adder for (PC + immediate) targets

– requires simple branch instructions
• no time to compare two registers (would need full ALU)

• comparisons with 0 are fast (beqz, bnez)

1 2 3 4 5 6 7 8 9
sw R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* F D X M W
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Control Hazards: Delayed Branches

delayed branch: execute next instruction whether taken or not

• instruction after branch said to be in “delay slot” 

• old microcode trick stolen by RISC (MIPS)

store R4,0(R5)

bne R2,R3,loop

sub R1,R6,R6

bned R2,R3,loop

store R4,0(R5)

sub R1,R6,R6

1 2 3 4 5 6 7 8 9
bned R2,R3,loop F D X M W
store R4,0(R5) F D X M W
sub R1,R6,R6 c* F D X M W
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What To Put In Delay Slot?

• instruction from before branch
• when? if branch and instruction are independent

• helps? always

• instruction from target (taken) path
• when? if safe to execute, but may have to duplicate code

• helps? on taken branch, but may increase code size

• instruction from fall-through (not-taken) path
• when? if safe to execute

• helps? on not-taken branch

• upshot: short-sighted ISA feature
– not a big win for today’s machines (why? consider pipeline depth)

– complicates interrupt handling (later)
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Control Hazards: Speculative Execution

idea: doing anything is often better than doing nothing

• speculative execution
• guess branch target ⇒ start executing at guessed position

• execute branch ⇒ verify (check) guess

+ minimize penalty if guess is right (to zero?)

– wrong guess could be worse than not guessing

• branch prediction: guessing the branch
• one of the “important” problems in computer architecture

• very heavily researched area in last 15 years

• static: prediction by compiler

• dynamic: prediction by hardware

• hybrid: compiler hints to hardware predictor
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The Speculation Game

speculation: engagement in risky business transactions on the 
chance of quick or considerable profit

• speculative execution (control speculation)
• execute before all parameters known with certainty

+ correct speculation
+ avoid stall/get result early, performance improves

– incorrect speculation (mis-speculation)
– must abort/squash incorrect instructions

– must undo incorrect changes (recover pre-speculation state)

• the speculation game: profit > penalty
• profit = speculation accuracy * correct-speculation gain 

• penalty = (1–speculation accuracy) * mis-speculation penalty
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Speculative Execution Scenarios

1 2 3 4 5
inst0/B F D X M W
inst8 F D X M
inst9 F D X
inst10 F D

1 2 3 4 5
inst0/B F D X M W
inst1 F D
inst2 F
inst8 verify/flush F D

• correct speculation
• cycle1: fetch branch, predict next (inst8)

• c2, c3: fetch inst8, inst9

• c3: execute/verify branch ⇒ correct 

• nothing needs to be fixed or changed

• incorrect speculation: mis-speculation
• c1: fetch branch, predict next (inst1)

• c2, c3: fetch inst1, inst2

• c3: execute/verify branch ⇒ wrong

• c3: send correct target to IF (inst8)

• c3: squash (abort) inst1, inst2 (flush F/D)

• c4: fetch inst8
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Static (Compiler) Branch Prediction

Some static prediction options

• predict always not-taken
+ very simple, since we already know the target (PC+4)

– majority of branches (~65%) are taken (why?)

• predict always taken
+ better performance

– more difficult, must know target before branch is decoded

• predict backward taken
• most backward branches are taken

• predict specific opcodes taken

• use profiles to predict on per-static branch basis
• pretty good
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Comparison of Some Static Schemes

CPI-penalty = %branch * [(%T * penaltyT) + (%NT * penaltyNT)]

• simple branch statistics
• 14% PC-changing instructions (“branches”)

• 65% of PC-changing instructions are “taken”

scheme penaltyT penaltyNT CPI penalty

stall 2 2 0.28
fast branch 1 1 0.14

delayed branch 1.5 1.5 0.21
not-taken 2 0 0.18

taken 0 2 0.10
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Dynamic Branch Prediction

hardware (BP) guesses whether and where a branch will go

0x64    bnez r1,#10

0x74    add r3,r2,r1

• start with branch PC (0x64) and produce
• direction (Taken)

• direction + target PC (0x74)

• direction + target PC + target instruction (add r3, r2,r1)

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

BP

I$
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Branch History Table (BHT)

branch PC ⇒ prediction (T, NT)

– need decoder/adder to compute target if taken

• branch history table (BHT)
• read prediction with least significant bits (LSBs) of branch PC

• change bit on misprediction

+ simple

– multiple PCs may map to same bit (aliasing)

• major improvements
• two-bit counters [Smith]

• correlating/two-level predictors [Patt]

• hybrid predictors [McFarling]

branch PC

BHT

1

0

1

T/N
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Improvement: Two-bit Counters

example: 4-iteration inner loop branch

– problem: two mis-predictions per loop

• solution: 2-bit saturating counter to implement hysteresis
• 4 states: strong/weak not-taken (N/n), strong/weak taken (T/t)

• transitions: N ⇔ n ⇔ t ⇔ T

+ only one mis-prediction per iteration

state/prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * * * *

state/prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * *  *  *


