WAR: Write After Read

write-after-read (WAR) = artificial (name) dependence

add R1, R2, R3
sub Rz‘ﬁ R1

or R1, Ro6, R3

e problem: add could use wrong value for R2

e can’t happen in vanilla pipeline (reads in ID, writes in WB)
e can happen if: early writes (e.g., auto-increment) + late reads (??)

e can happen if: out-of-order reads (e.g., out-of-order execution)

o artificial: using different output register for sub would solve
* The dependence is on the name R2, but not on actual dataflow

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 31
Sohi, Smith, Vijaykumar, Lipasti Pipelining

WAW: Write After Write

write-after-write (WAW) = artificial (hame) dependence

add R1, R2, R3
sub %2 R4, R1
or Rl1, R6, R3

e problem: reordering could leave wrong value in R1
e later instruction that reads R1 would get wrong value

e can’t happen in vanilla pipeline (register writes are in order)
e another reason for making ALU ops go through MEM stage

e can happen: multi-cycle operations (e.g., FP ops, cache misses)

o artificial: using different output register for or would solve
» Also a dependence on a name: R1

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 32
Sohi, Smith, Vijaykumar, Lipasti Pipelining

RAR: Read After Read

read-after-read (RAR)

add R1l, R2, R3
sub R2, R4,
or R, R6, R3

e N0 problem: R3 is correct even with reordering

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

33

Memory Data Hazards

have seen register hazards, can also have memory hazards

RAW WAR WAW
store R1, 0(SP) | oad R4, O(SP) store R1, 0(SP)
| oad R4, O(SP) store R1, 0(SP) store R4, 0(SP)

1 2 3 4 5 6 7 8 9
store RL,0(SP) | F D X M W
| oad R1, O(SP) F D XAM W

e in simple pipeline, memory hazards are easy
e in-order
e One at a time
e read & write in same stage

e in general, though, more difficult than register hazards

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 34
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Hazards vs. Dependences

dependence: fixed property of instruction stream (i.e., program)

hazard: property of program and processor organization

 implies potential for executing things in wrong order
* potential only exists if instructions can be simultaneously “in-flight”

 property of dynamic distance between instrs vs. pipeline depth

For example, can have RAW dependence with or without hazard
« depends on pipeline

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 35
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Control Hazards

when an instruction affects which instruction executes next

store R4, 0(R5)
bne R2, R3, | oop
*sub R1, R6, R3

 naive solution: stall until outcome is available (end of EX)
+ simple
— low performance (2 cycles here, longer in general)
* e.9. 15% branches * 2 cycle stall = 30% CPI increase!

1 2 3 4 5 o6 7 8 9

store R4, O(R5) F D X M W
bne R2, R3, | oop F D X\M W
?? c* c* F D X M W
© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 36

Sohi, Smith, Vijaykumar, Lipasti Pipelining

Control Hazards: “Fast” Branches

fast branches: can be evaluated in ID (rather than EX)
+ reduce stall from 2 cycles to 1

1 2 3 4 5 6 7 8 9
sw R4, O(R5) F D X M W
bne R2, R3, | oop F D\X M W
?7? c* F D X M W

— requires more hardware
 dedicated ID adder for (PC + immediate) targets

— requires simple branch instructions
* N0 time to compare two registers (would need full ALU)

e comparisons with O are fast (beqz, bnez)

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 37
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Control Hazards: Delayed Branches

delayed branch: execute next instruction whether taken or not
e instruction after branch said to be in “delay slot”
 old microcode trick stolen by RISC (MIPS)

store R4, O(R5) bned R2, R3, 1 o0p
bne R2, R3, 1 oo0p » Store R4, O(R5)
sub R1, R6, R6 sub R1, R6, R6
1 2 3 4 5 6 7 8 9
bned R2,R3,loop | F D X ™M W
store R4, O(R5) F D\X MW
sub R1, R6, R6 ct* F D X M W

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

38

What To Put In Delay Slot?

e instruction from before branch
« when? if branch and instruction are independent

 helps? always

e instruction from target (taken) path
* when? if safe to execute, but may have to duplicate code

 helps? on taken branch, but may increase code size

e instruction from fall-through (not-taken) path
* when? if safe to execute

 helps? on not-taken branch

 upshot: short-sighted ISA feature
— not a big win for today’s machines (why? consider pipeline depth)

— complicates interrupt handling (later)

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 39
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Control Hazards: Speculative Execution

idea: doing anything is often better than doing nothing

e Speculative execution
 guess branch target = start executing at guessed position

« execute branch = verify (check) guess
+ minimize penalty if guess is right (to zero?)
— wrong guess could be worse than not guessing

 branch prediction: guessing the branch
» one of the “important” problems in computer architecture

 very heavily researched area in last 15 years
e static: prediction by compiler

« dynamic: prediction by hardware

 hybrid: compiler hints to hardware predictor

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

40

The Speculation Game

speculation: engagement in risky business transactions on the
chance of quick or considerable profit

 Speculative execution (control speculation)
» execute before all parameters known with certainty

+ correct speculation
+ avoid stall/get result early, performance improves

— Incorrect speculation (mis-speculation)
— must abort/squash incorrect instructions

— must undo incorrect changes (recover pre-speculation state)

 the speculation game: profit > penalty
* profit = speculation accuracy * correct-speculation gain

* penalty = (1-speculation accuracy) * mis-speculation penalty

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

41

Speculative Execution Scenarios

1 2 3 4 5 ecorrectspeculation
insto/ B | F D X M W « cyclel: fetch branch, predict next (inst8)
Inst8 F D X M c2, c3: fetch inst8, inst9
Inst9 F D X * c3: execute/verify branch = correct
Inst10 F D « nothing needs to be fixed or changed

* incorrect speculation: mis-speculation

_ 1 2 3 4 ° e c1: fetch branch, predict next (instl)
!nstO/B DX MW c2, c3: fetch instl, inst2
Instl F D .
(2 F c3: execute/verify branch = wrong
insts verify/flush & D c3: send correct target to IF (inst8)

 c3: squash (abort) instl, inst2 (flush F/D)
o c4: fetch inst8

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 42
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Static (Compiler) Branch Prediction

Some static prediction options

e predict always not-taken
+ very simple, since we already know the target (PC+4)

— majority of branches (~65%) are taken (why?)

o predict always taken
+ better performance

— more difficult, must know target before branch is decoded

e predict backward taken
» most backward branches are taken

o predict specific opcodes taken

 use profiles to predict on per-static branch basis
* pretty good

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

43

Comparison of Some Static Schemes

CPl-penalty = Y%y anch * [(Yor * penaltyt) + (Yot * penaltynr)]

e simple branch statistics

* 14% PC-changing instructions (“branches”)

* 65% of PC-changing instructions are “taken”

scheme penaltyt penaltyyT CPI penalty
stall 2 2 0.28
fast branch 1 1 0.14
delayed branch 1.5 1.5 0.21
not-taken 2 0) 0.18
taken 0) 2 0.10

© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

ECE 252 / CPS 220 Lecture Notes

Pipelining

Dynamic Branch Prediction

regfile [«
F/D D/X XIM M/W

-

hardware (BP) guesses whether and where a branch will go

0x64 bnez r1, #10
Ox74 add r3,r2,rl
o start with branch PC (0x64) and produce
e direction (Taken)

» direction + target PC (0x74)
e direction + target PC + target instruction (add r3, r2,r1)

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes
Sohi, Smith, Vijaykumar, Lipasti Pipelining

45

Branch History Table (BHT)

branch PC = prediction (T, NT)
— need decoder/adder to compute target if taken
 branch history table (BHT)

BHT
 read prediction with least significant bits (LSBs) of branch PC 1
» change bit on misprediction 0

+ simple 1
— multiple PCs may map to same bit (aliasing)

* Major improvements
* two-bit counters [Smith]

o correlating/two-level predictors [Patt]
* hybrid predictors [McFarling]

branch PC —»

T/N l

© 2009 by Sorin, Roth, Hill, Wood, ECE 252 / CPS 220 Lecture Notes 46
Sohi, Smith, Vijaykumar, Lipasti Pipelining

Improvement: Two-bit Counters

example: 4-iteration inner loop branch

state/prediction
branch outcome
mis-prediction?

N T T T N T T
T T T N T T T

* * *

—| -
—| -
* Z| —

T N
N T
* *

— problem: two mis-predictions per loop

e solution: 2-bit saturating counter to implement hysteresis
* 4 states: strong/weak not-taken (N/n), strong/weak taken (T/t)

etransitions: N e N et T

state/prediction
branch outcome
mis-prediction?

+ only one mis-prediction per iteration

© 2009 by Sorin, Roth, Hill, Wood,

Sohi, Smith, Vijaykumar, Lipasti

ECE 252 / CPS 220 Lecture Notes 47
Pipelining

