
ECE 252 / CPS 220 Lecture Notes
Pipelining

31© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAR: Write After Read

write-after-read (WAR) = artificial (name) dependence

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

• problem: add could use wrong value for R2

• can’t happen in vanilla pipeline (reads in ID, writes in WB)
• can happen if: early writes (e.g., auto-increment) + late reads (??)

• can happen if: out-of-order reads (e.g., out-of-order execution)

• artificial: using different output register for sub would solve
• The dependence is on the name R2, but not on actual dataflow

ECE 252 / CPS 220 Lecture Notes
Pipelining

32© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAW: Write After Write

write-after-write (WAW) = artificial (name) dependence

add R1,R2,R3

sub R2,R4,R1

or R1,R6,R3

• problem: reordering could leave wrong value in R1
• later instruction that reads R1 would get wrong value

• can’t happen in vanilla pipeline (register writes are in order)
• another reason for making ALU ops go through MEM stage

• can happen: multi-cycle operations (e.g., FP ops, cache misses)

• artificial: using different output register for or would solve
• Also a dependence on a name: R1

ECE 252 / CPS 220 Lecture Notes
Pipelining

33© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

RAR: Read After Read

read-after-read (RAR)

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

• no problem: R3 is correct even with reordering

ECE 252 / CPS 220 Lecture Notes
Pipelining

34© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Memory Data Hazards

have seen register hazards, can also have memory hazards

RAW

store R1,0(SP)

load R4,0(SP)

WAR

load R4,0(SP)

store R1,0(SP)

WAW

store R1,0(SP)

store R4,0(SP)

• in simple pipeline, memory hazards are easy
• in-order

• one at a time

• read & write in same stage

• in general, though, more difficult than register hazards

1 2 3 4 5 6 7 8 9
store R1,0(SP) F D X M W
load R1,0(SP) F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

35© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Hazards vs. Dependences

dependence: fixed property of instruction stream (i.e., program)

hazard: property of program and processor organization

• implies potential for executing things in wrong order
• potential only exists if instructions can be simultaneously “in-flight”

• property of dynamic distance between instrs vs. pipeline depth

For example, can have RAW dependence with or without hazard

• depends on pipeline

ECE 252 / CPS 220 Lecture Notes
Pipelining

36© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards

when an instruction affects which instruction executes next

store R4,0(R5)

bne R2,R3,loop

sub R1,R6,R3

• naive solution: stall until outcome is available (end of EX)
+ simple

– low performance (2 cycles here, longer in general)

• e.g. 15% branches * 2 cycle stall ⇒ 30% CPI increase!

1 2 3 4 5 6 7 8 9
store R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

37© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: “Fast” Branches

fast branches: can be evaluated in ID (rather than EX)

+ reduce stall from 2 cycles to 1

– requires more hardware
• dedicated ID adder for (PC + immediate) targets

– requires simple branch instructions
• no time to compare two registers (would need full ALU)

• comparisons with 0 are fast (beqz, bnez)

1 2 3 4 5 6 7 8 9
sw R4,0(R5) F D X M W
bne R2,R3,loop F D X M W
?? c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

38© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: Delayed Branches

delayed branch: execute next instruction whether taken or not

• instruction after branch said to be in “delay slot”

• old microcode trick stolen by RISC (MIPS)

store R4,0(R5)

bne R2,R3,loop

sub R1,R6,R6

bned R2,R3,loop

store R4,0(R5)

sub R1,R6,R6

1 2 3 4 5 6 7 8 9
bned R2,R3,loop F D X M W
store R4,0(R5) F D X M W
sub R1,R6,R6 c* F D X M W

ECE 252 / CPS 220 Lecture Notes
Pipelining

39© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

What To Put In Delay Slot?

• instruction from before branch
• when? if branch and instruction are independent

• helps? always

• instruction from target (taken) path
• when? if safe to execute, but may have to duplicate code

• helps? on taken branch, but may increase code size

• instruction from fall-through (not-taken) path
• when? if safe to execute

• helps? on not-taken branch

• upshot: short-sighted ISA feature
– not a big win for today’s machines (why? consider pipeline depth)

– complicates interrupt handling (later)

ECE 252 / CPS 220 Lecture Notes
Pipelining

40© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Control Hazards: Speculative Execution

idea: doing anything is often better than doing nothing

• speculative execution
• guess branch target ⇒ start executing at guessed position

• execute branch ⇒ verify (check) guess

+ minimize penalty if guess is right (to zero?)

– wrong guess could be worse than not guessing

• branch prediction: guessing the branch
• one of the “important” problems in computer architecture

• very heavily researched area in last 15 years

• static: prediction by compiler

• dynamic: prediction by hardware

• hybrid: compiler hints to hardware predictor

ECE 252 / CPS 220 Lecture Notes
Pipelining

41© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

The Speculation Game

speculation: engagement in risky business transactions on the
chance of quick or considerable profit

• speculative execution (control speculation)
• execute before all parameters known with certainty

+ correct speculation
+ avoid stall/get result early, performance improves

– incorrect speculation (mis-speculation)
– must abort/squash incorrect instructions

– must undo incorrect changes (recover pre-speculation state)

• the speculation game: profit > penalty
• profit = speculation accuracy * correct-speculation gain

• penalty = (1–speculation accuracy) * mis-speculation penalty

ECE 252 / CPS 220 Lecture Notes
Pipelining

42© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Speculative Execution Scenarios

1 2 3 4 5
inst0/B F D X M W
inst8 F D X M
inst9 F D X
inst10 F D

1 2 3 4 5
inst0/B F D X M W
inst1 F D
inst2 F
inst8 verify/flush F D

• correct speculation
• cycle1: fetch branch, predict next (inst8)

• c2, c3: fetch inst8, inst9

• c3: execute/verify branch ⇒ correct

• nothing needs to be fixed or changed

• incorrect speculation: mis-speculation
• c1: fetch branch, predict next (inst1)

• c2, c3: fetch inst1, inst2

• c3: execute/verify branch ⇒ wrong

• c3: send correct target to IF (inst8)

• c3: squash (abort) inst1, inst2 (flush F/D)

• c4: fetch inst8

ECE 252 / CPS 220 Lecture Notes
Pipelining

43© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Static (Compiler) Branch Prediction

Some static prediction options

• predict always not-taken
+ very simple, since we already know the target (PC+4)

– majority of branches (~65%) are taken (why?)

• predict always taken
+ better performance

– more difficult, must know target before branch is decoded

• predict backward taken
• most backward branches are taken

• predict specific opcodes taken

• use profiles to predict on per-static branch basis
• pretty good

ECE 252 / CPS 220 Lecture Notes
Pipelining

44© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Comparison of Some Static Schemes

CPI-penalty = %branch * [(%T * penaltyT) + (%NT * penaltyNT)]

• simple branch statistics
• 14% PC-changing instructions (“branches”)

• 65% of PC-changing instructions are “taken”

scheme penaltyT penaltyNT CPI penalty

stall 2 2 0.28
fast branch 1 1 0.14

delayed branch 1.5 1.5 0.21
not-taken 2 0 0.18

taken 0 2 0.10

ECE 252 / CPS 220 Lecture Notes
Pipelining

45© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Dynamic Branch Prediction

hardware (BP) guesses whether and where a branch will go

0x64 bnez r1,#10

0x74 add r3,r2,r1

• start with branch PC (0x64) and produce
• direction (Taken)

• direction + target PC (0x74)

• direction + target PC + target instruction (add r3, r2,r1)

I$
D$

regfile

DF M WX

F/D D/X X/M M/WPC

BP

I$

ECE 252 / CPS 220 Lecture Notes
Pipelining

46© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch History Table (BHT)

branch PC ⇒ prediction (T, NT)

– need decoder/adder to compute target if taken

• branch history table (BHT)
• read prediction with least significant bits (LSBs) of branch PC

• change bit on misprediction

+ simple

– multiple PCs may map to same bit (aliasing)

• major improvements
• two-bit counters [Smith]

• correlating/two-level predictors [Patt]

• hybrid predictors [McFarling]

branch PC

BHT

1

0

1

T/N

ECE 252 / CPS 220 Lecture Notes
Pipelining

47© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Improvement: Two-bit Counters

example: 4-iteration inner loop branch

– problem: two mis-predictions per loop

• solution: 2-bit saturating counter to implement hysteresis
• 4 states: strong/weak not-taken (N/n), strong/weak taken (T/t)

• transitions: N ⇔ n ⇔ t ⇔ T

+ only one mis-prediction per iteration

state/prediction N T T T N T T T N T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * * * *

state/prediction n t T T t T T T t T T T
branch outcome T T T N T T T N T T T N
mis-prediction? * * * *

