
Duke ECE152 – Spring 2012 – Project Part 4: ALU
75 Points. Due electronically by 11:59pm on Weds, Feb 22.

In this part of the project, you will implement the integer Arithmetic Logic Unit (ALU)
that you will use in your processor.

Project Part 4: Arithmetic Logic Unit
The ALU implements all of the arithmetic and logical operations specified in the

Instruction Set Architecture, including addition, 2’s complement subtraction, bitwise logical and,
bitwise logical or, left shift, and zero-extending right shift. In addition to the above operations,
the ALU also generates a signal isEqual when both operands are equal to each other; this is used
for the beq (branch-if-equals) instruction. Lastly, the ALU generates a signal isGreaterThan
when data_operandB is greater than data_operandA and the subtract operation is selected
(behavior when the subtract operation is not selected is undefined / don’t-care); this is used for
the bgt (branch-if-greater-than signed 2’s complement) instruction. Be sure to check for under- /
over-flow and generate the correct output when calculating isGreaterThan. The ALU receives a
3-bit ALU operation code (ALU opcode) from the processor’s control logic that denotes which
operation should be performed. The shift operations require only the lower 5 bits of input
data_operandB.

You will implement your ALU in Structural VHDL using the Quartus II software. You
should create one VHDL (alu.vhd) or Block-Diagram (alu.bdf) file that has exactly the same
format as the diagram in Figure 1. This top-level alu.vhd or alu.bdf file is likely to refer to other
lower-level files (e.g., adder, shifter, etc.). The top-level file alu.vhd or alu.bdf file is what you
will then use later in the semester when you need an ALU for your processor. Figure 1 is a
screenshot of the alu component in Quartus, and it shows the signal names that you MUST use in
your design to facilitate testing and grading.

After implementing your ALU, you should test it thoroughly to verify that it works
correctly. One test waveform is provided for your ALU at
http://people.ee.duke.edu/~sorin/ece152/project/test_alu.vwf. In addition, this assignment will
be graded by running additional tests that are not provided, so do not assume that you can ignore
bugs that do not manifest themselves on the one test that is provided.

Submitting This Assignment
To submit this assignment, create a Quartus Archive (Project  Archive Project) named

project4.qar of all the files needed to implement your design. Make sure that your top-level file
is named alu.vhd or alu.bdf. Names of lower-level files are unrestricted, but be sure to include
them along with your top-level design entity in the Quartus Archive file. Email your Quartus
Archive file as an attachment along with all group members’ names and NetIDs to
duke.ece152.spring2012@gmail.com.

Page 1 of 2

http://people.ee.duke.edu/~sorin/ece152/project/test_alu.vwf
mailto:duke.ece152.spring2012@gmail.com

Table 1: ALU Opcodes
Operatio

n
ALU Opcode

add 000
subtract 001

and 010
or 011
sll 100
sra 101

Figure 1: alu VHDL and BDF screenshots

Page 2 of 2

