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Abstract—In this experimental research paper, analog circuits going to be one of the operations that vision systems must
are manufactured and their performance evaluated for suitability perform, making the development of high performance convo-

in performing FIR image filtering with the convolution kemel 40 architectures an elemental precursor to the construction
and data altered via error spectrum shaping and oversampling f lex CMOS i . d visi ¢
SO as to preclude corruption by circuit imperfections. Similar to of compiex Imaging and vision Systems.

the one—dimensional (1-D) binary signals output by Sigma Delta ~ Use of a mixed-signal design approach allows incorporating
analog-to-digital converters, the representational noise caused the best features of both analog and digital circuits in such
by the circuit's resolution inaccuracy is pushed into an unused systems. Specifically, analog circuits are very much faster
portion of the spectrum in these analog signals, permitting the 54 gignificantly smaller than their digital counterparts, but

inband portion of the oversampled signal to be more effectively | tati b ted to includ trollabl
represented and processed by imperfect circuits. An analysis of analog computations can be expected to include uncontroliably

image convolutions performed using the circuits’ data establishes Variable offset, gain, and nonlinearity. In an image convolution,
that ESS is successful at reducing the computational error in such errors would be manifest as spatial noise and so would

certain analog image convolutions. be subject to spatial manipulations. Error spectrum shaping
Index Terms—Analog CMOS, analog signal processing, error (ESS) is a signal processing tool that dissipates this kind of
spectrum shaping, FIR image convolutions, noise shaping. representational error, making it possible to tradeoff enough

circuit complexity for signal complexity that small, nonideal
analog CMOS circuits can perform image convolutions with
sufficient accuracy to be useful.

OST electronic signal sensing and processing systems

attempt _to_ maintain a high signal-to-r_lois_e ratio (SNR} Analog CMOS Image Convolutions
throughout their internal data paths, and this dictates that the
circuits operating on these signals then similarly maintain high Numerous analog convolution architectures have been con-
levels of precision, functional performance, and integrity. F&tructed in both CCD and CMOS VLSI processes. What typi-
many systems, this typically involves raising circuit perforcally prevents these devices from performing general image fil-
mance to the level of sustaining the signal content, in contrast@ing tasks is that either there is inadequate control over their
subordinating the signals’ traits to fit those of the componeng@nvolution kernel coefficients, the spatial support of their con-
Efforts toward this end can be expensive and generally produdution kernels is far too small to affect any but the very highest
designs that are catastrophically intolerant of even a sindiBage frequencies, or computational inaccuracy attributable to
element’s immoderate variance. device mismatch Severely limits output SNR.

A different approach is through the adroit manipulation of Various imagers/processors that smooth or bandpass the inci-
signal data and noise, where better matching of signals wHRNt image via an assortment of passive, active, and nonlinear
device characteristics greatly simplifies hardware complexitigsistive networks have been constructed: Mahowald [1] and
Switching power supplies and Sigma De(t8A) analog-to- Mead [2], Bairet al.[3], Boaheret al.[4], Kobayashiet al.[3],
digital converters (ADCs) are examples of where such sigrﬁ{pd Harriset al. [6]. While all of these networks are scalable,
conditioning reduces the overall obligations on a substantRitd smoothing is an incidence of a convolution, the utility of this
portion of their analog circuitry. particular filtering operation is extremely limited, its range and

Unlike their charge-coupled device (CCD) predecessogpecific characteristics are somewnhat difficult to control, and it
CMOS imagers can incorporate a wide range of signal prig-not readily extensible to general convolutions.
cessing circuitry on the same die with the photodetectors,Chonget al. [7], use current mirrors to perform a»33
making cameras or imaging systems on a chip possible. AO®G/LOG convolution, and Warelt al. [8] have used current
fundamental signal processing mechanism, convolutions @wérors to convolve an incidentimage with a3 Sobel kernel

[9]. The kernel size is too small to support filters beyond the
very highest image frequencies, and is not well scalable to
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fields (i.e., convolution kernels) in the human retina have beenOf interest from an engineering perspective are both the spec-
shown to have well over an order of magnitude more inptrial performance and noise behavior of such operations. While
samples [11]. the specifics are dependent on the ESS algorithm used, the goal
Allen et al. [12] row-wise shift the incident image into ais to shape the spectrum of the representational error such that
pipeline that buffers the previous two rows. Per-column celisis minimized in the frequency band of interest at the expense
convolve the three-row subimage with the three hexagordlincreasing it elsewhere in the spectrum. Oversampling can
equivalents of Prewitt’s directional gradients [10] using curreiie used to provide additional bandwidth specifically intended
mirrors, with the results assembled off-chip. Though less &or the disposal of this noise (the “disposal band”). As an ex-
than in fully parallel implementations, spatial support andmple, the differentiation of quantization error in first-ordek
kernel coefficients are very limited. oversampled A/D conversion serves to attenuate the portion of
Nitta et al. use variable photodetector response to scale tthee quantization noise that is in the signal band (‘inband’) by
pixel value [13]. This method permits only a single multiplicadisplacing a great deal of it into the spectrum that lies above
tion per pixel and so can only compute one convolution outptite input signal’'s Nyquist frequency. Though the total noise
sample at a time, though it has image-wide spatial support. energy remains fixed (i.e., the full-spectrum SNR remains un-
changed), the portion of it inband is substantially reduced, in
B. Remedial Concepts turn increasing the inband SNR. At whatever point in the signal
The conceptual complexities of discrete filtering, analoBrocessing sequence itis convenient, if even necessary atall, the
CMOS design, and noise shaping are far from trivial, and alfgband portion of the signal can be extracted with a bandpass
sufficient to prevent including a genuinely adequate introdufilter. In the case of first-ordeEA oversampled A/D conver-
tion or review in a paper of this scope and length. Among ma&jen, the pass band of interest is from DC to the input’s Nyquist
others available in the literature: Oppenhaitral.[14] provide frequency, so a low pass filter is used in any such restorative
a thorough investigation of one-dimensional (1-D) discrefdep. Returning to the ESS example of like items priced at 3/$1,
signal filtering with Dudgeoret al.[15] extending the concepts Note that low-pass filtering (i.e., averaging) the output sequence
to mu|tip|e dimensions; Can(bt al. []_6] provide a thorough of 34¢, 33¢, 33¢ reproduces the input sequence of 33 1/3¢, 33
description of noise shaping in their review of oversamplingy/3¢, 33 1/3¢.
methods for analog-to-digital (A/D) and digital-to-analog With convolution in the time/image domain being equivalent
(D/A) converters (with the extension to multiple dimensiofo multiplication in the frequency domain, the primary interest
signals largely being an inclusion of dimension indices to tH&in the behavior of the operations that occur inband, with what-
otherwise 1-D signal variables); and, Allenal. [17] provide €ver events or chaos that occurs in the disposal band, where
a current overview of analog CMOS design concepts. noise operates upon noise, a largely independent and irrelevant
ESS is essentially a generalized term for the noise Shapm@tter. Thus, the convolution of an ESS'd image with an ESS'd
technique that is used in such samp“ng operatiomsluan_ kernel will pl’OdUCG a result with ESS-like characteristics: the
tization [16] and digital half-toning [18]. It is a mechanism fossignal of interest confined to a particular spectral band and sub-
transforming point-wise resolution information into a signal’stantial noise energy outside of that.
temporal or spatial domain [19], [20], whereby representational
error is accumulated and then used to influence the choice®f Rasearch Overview
subsequent output sample values. One everyday use of ESS
that even most laypeople are familiar with is the sequence ofThe fundamental hypothesis in this effort is that ESS can be
charges that traditionally occur when purchasing like items thiaged to enhance the inband SNR of image convolutions per-
are priced to include fractions of a currency’s smallest denonfi@rmed with inaccurate analog circuits. This is motivated by
nation. For example, purchasing the first in a collection of likthe observation that the most sophisticated image acquisition
items priced at 3/$1 (i.e., 33 1/3¢ each; $1=100¢) typically rend processing systems in existence today are constructed of
sults in a charge of 34¢ (where the vendor's quantization dliological components that are, relative to man-made devices,
gorithm is to always round up; rounding to the nearest integeoorly matched in size and response, vary in quality with time
works equally as well for this demonstration), with the ove@nd other conditions, and operate at bandwidths that barely ex-
charge of 2/3¢ then being subtracted from the cost of the neged O(1kHz) [11]. Rather than attempt to modify the circuit
like item. The second-like item is then charged at 33¢, with tta&chitecture with improvements to some enhanced level of per-
accumulated overcharge of 1/3¢ being subtracted from the ctsgimance or to use the set of convolution coefficients and image
of the third-like item. Once a third like item is charged at 33¢ample values that lie nearest those that are ideal, ESS has been
the accumulated error is zero, and the sequence of 34¢, 33%ed to select a subtly different set of comparably inexact coef-
33¢ then repeats as additional like items are purchased. Anotfigents and image samples, creating coefficient/data sets that in
widely familiar application of ESS is the use of leap days tparticular have spectral characteristics such that the noise they
fit a calendar made of whole days onto a year that technicaflyoduce lies outside of the signal band.
contains 365.2425 days: a leap day is injected into the calendaA convolution consists of many multiplications and a summa-
every four years, omitted once every hundred years (i.e., evéion. Salient features of the particular current-mode convolution
36 524.25 days, of which 24 were leap days), but not so omittacthitecture that is used in this research are diagramed in Fig. 1.
every 400 years (reducing the accumulated error to zero tHeimce the current-mode summation can be performed virtually
every 400 years). without error using only wires and a node, the quality of the
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Analog Multiplier
Weight Data

Fig. 2. Lenna122x 1-b simple binary quantization.
From Other

Multipliers

Fig. 1. Spatial noise model of current-mode analog convolution.

multiplier array largely sets the performance of the operation.
Various error sources corrupt the array multipliers’ reseyt:

and e, both of which contain quantization noise and random
spatial error, and,,,, which in an aggregate sense (i.e., mea-
sured from multiplier to multiplier) consists of only random
error. The fundamental assumption made here is that the quan-4
tization noises and,,’s random error component can be attenu-
ated with ESS and that the effects of the remaining error sources
are subject to noise reduction with oversampling.

To evaluate this hypothesis, a simple first- and second-order
ESS algorithm have been selected (see the following section),
and then step-wise following the signal flow in Fig. 1, its perfor-
mance sequentially quantified against the error sources and their
increasingly combined effects. First, ESSs inband attenuation of
both quantization noise and random gaussian error was evalu-
ated (i'e" its effect on models ef, anded)' Second, convolu- Fig. 4. Detail section of lennd0242%x 1-b first-order ESS quantization.
tions of images corrupted by quantization and random gauss&juint to approximate the restorative effect of low pass filtering.
error were performed and measured with and without ESS (i.e.,
its effect on the overall system model sheyt). Lastly, convo-
lutions of ESS images and kernels using actual circuit measure-
ments were performed; note that this final test suplants the con-
volution model in Fig. 1 in that it includes the effects of any po-
tentially unmodeled error sources, operations, or relationships.
Space constraints limit this paper to only discussing this last
step, with the previous two largely superceded by its results.

To obtain the circuit data, CMOS circuits that perform the
array multiplier’'s function have been designed and constructéay. 5. Detail section of lenn2048°x 1-b. Squint to approximate the
and measurements made of their performance to quantify fRaiorative effect of low pass filtering.

effects of the noise sources. Lastly, an analysis of image convo-

lutions performed using the circuits’ data establishes that ESSHY images derived from an 8-b image (note: the various steps

successful at reducing the computational error in analog imagé!ved in transferring these images into print may have dam-
computations. aged them). In the ESS image, the otherwise lost point-wise res-

olution data is encoded in the high frequency variation of the
samples; low-pass filtering (i.e., local averaging) then is the ap-
propriate step necessary to restore the original image. Oversam-

ESS is a mechanism for transforming point-wise resolutigaling provides additional spectrum where such resolution infor-
information into the spatial domain [19], [20]. It is a generalmation can be stored; compare Fig. 4 with its higher frequency
ized term for the noise shaping doneX\ ADC [16] and is counterpart, Fig. 5. The greater the ESS algorithm’s spatial sup-
commonly employed in half-tone printing [18] and other agort (i.e., polynomial order), the more efficiency that it has in
pects of signal processing. For example, both Figs. 2 and 3 aepturing the resolution information; see Fig. 8.

Lenna>122x 1-b first-order ESS quantization.

Il. ERROR SPECTRUM SHAPING
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Fig. 6. Propagation of error in the first-order ESS algorithm.
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Fig. 7. Propagation of error in the second-order ESS algorithm.

Recall thatinfirst-order 1-D Sigma Delta A/D conversion that
the output signal is the sum of the input signal and the first-order

difference of the error signal:

yi = w; + (e; — e;i_1)

image’s entire range [22]. Being a point-wise process (i.e., it
says nothing about the spatial interaction between pixels), this
encompasses the complete spectral content of each image, and
counts all of the energy in the original image as “signal” regard-
less of its actual bandwidth. ESS’d signals contain a substan-
tial noise element outside of the signal band that is inappropri-
ately counted as “signal” when using this metric. What is de-
sired instead is to only count the inband portion of the spectrum
as signal.

Parseval's theorem equates the total energy in a sequence to
its total spectral energy

1
Z |z[n]|? = N Z |X(n)|?, N =sequence length

This provides a mechanism for converting the standard
point-wise SNR metric from sample space to frequency space:

> 1Sl }
SNR = 10Log [7
22 1Y5 = Sij 2
Rather than compute this over the entire spectrum of the
image, it can be limited to any spectral band of interest, such as
the inband component of ESS’'d images.

Expanding this to two-dimensional (2-D) with the error

signal’s energy evenly divided between the dimensions yields

Il. CIRCUITS

a simple first-order 2-D ESS algorithm (strictly speaking, this The circuit's purpose in this research is two-fold: to provide

is first order per dimension)

1
Yij =Tq 5+ E(ei,j - eifl,j) + §(€i,j - ei,jfl)

1 1
=Tijt€ij — 5€i-1,j — 5€ij-1

2 2

real-world error data for evaluation in ESS convolutiong,(

eq, ande,, in Fig. 1), and to insure the inclusion of any noise
sources or operations omitted from the spatial noise model of
Fig. 1.

A. Archtetural Considerations

This first-order ESS error signal's propagation is graphically g4ch output point in a convolution consists of many multipli-
illustrated in Fig. 6. This is the first-order ESS algorithm useg,tinns and a summation. Image data is typically nonnegative

in this research; Figs. 3-5 illustrate its application.

(ranging from 0 to full-scale), while convolution weights may

A simple second-order ESS algorithm can be similarly copj hegative or even complex, necessitating multiquadrant mul-
structed (strictly speaking, this is second-order per d'mens'oﬂ?:ilications and the potential for a complex summation.

1
Yij =Tij + i(ei,j —2ei-1;+ei-2;)

1
+5(eig —2ei -1 +eij-2)

=Tijt€ij —€i-15 = €ij-1+F 5€i—2;+ €

2 2

This second-order ESS error signal’s propagation is grap
ically illustrated in Fig. 7. This is the second-order ESS alg%

rithm used in this research.

Much more elaborate, efficient, and isotropic ESS algorith
obviously exist, error-diffusion half-toning algorithms have
been reported with several dozen coefficients [21], but theg

two are adequate for the task at hand.

The standard SNR equation used for quantifying the resu

of image processing operations is

SNR = 10Log {%]

The multisummand addition encourages current-mode sum-
mations, where any number of values can be added using only
wires and a node. Particularly advantageous to such current
mode additions is that they are not necessarily affected by MOS
device mismatch so long as the driving circuits have a high
enough output resistance; in MOS design, output resistance can
e made as arbitrarily high as desired using cascoding. Other
jvantages to current-mode computation are that currents can
e easily replicated and conveyed with negligible loss. Also,
current-mode multiplication can be compactly performed with

MRrrent mirrors.

Noise shaping of the kernel coefficients requires the ability to
fore and alter their values. Currents can not be directly stored,
nd though they could be generated from a stored voltage, tem-
§8rary storage of analog values has its general problems: circuit
complexity, decay, destructive read-out, and corruption; all of
these are issues that threaten to distort and degrade the results
of this research and are beyond its scope. Digital storage satis-
factorily addresses these needs, and though digital quantization

wheres;; represents the original image samplgs.represents produces yet another noise source, its effects can be easily cal-
altered image samples, and the summations are taken overdhlated and then accounted for in the final results.
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Total In-Band Noise vs BandWidth
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Fig. 8. Total inband quantization noise (dB) versus signal bandwidth, 3-bit fghittg 10242, and20482 images.
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: L C 1 C g
: Fig. 10. Pipelined convolution processor.
V] v v+ Y] v . . o o
Data —| Weight|[Data —{ Weight| [Data— Weight tended to performing real-time convolutions in any spatial di-
DA MDA eee | MDAC mension by replacing the data bus and data registers with a chain
\ . P ® of shift registers such that signal data would be swept past the
Summing Nodes convolution kernel, with one convolution output sample for each
—— Control shift of the registers. In an image convolution, a succession of
Data additional shift registers could maintain the pixels’ spatial re-
Fig. 9. Convolution circuit architecture. lationship and only retain the portion of the image that would

be subsequently used (Fig. 10), effectively spiraling the kernel
_ . . ._around the 2-D signal as it is row-wise shifted into the shift reg-
With the summation portion of a current-mode conVolutiofye array. For imagers that serialize their data, such a pipelined

unlikely to cause significant error, the inital issue defaults 1,6 would not interfere with the preexisting data-rate bot-
resolving the effect of noise shaping on the performance of the .\ and only imposes a time shift on the results

multipl_ie_rs. To thqt end, measuring the _noise chara_cteristics OfIn practice, the convolution kernel coefficients would be ad-
a multiplier array is the focus of the fabricated circuits. justed using ESS to both correct for the individual hardware’s
o ) variations and the resolution loss from quantization (i.e., the two
B. Circuit Architecture components of,, in Fig. 1); the resultant values would then be
Fig. 9 illustrates the block diagram of the selected archstored in the weight registers for the duration of a convolution.
tecture for evaluating ESS performance on analog-computsihce each sample of the image is swept through the kernel and
CMOS VLSI image convolutions. This circuit computes @ventually visits each MDAC, no hardware-specific correction
single convolution point at a time using an array of parallelan be made to the image values, though such error is still prone
multiplying analog to digital converters (MDAC). The weighto reduction through oversampling. Nonetheless, the image’sre-
and data values are loaded via a common data bus into registéuged quantization necessitates the use of ESS to preserve its
and the positive and negative summation components @a@nt-wise resolution.
collected on independent nodes. The weight's sign bit directs the output current of each
While this structure is primarily intended as a vehicle to medMDAC onto the appropriate summing node. Splitting the
sure mismatch in the array of multipliers, it could easily be exositive and negative components into two nodes simplifies
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Fig. 14. Automated data collection system.
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Fig. 11. MDAC schematic.
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Fig. 15. Example MDAC output sweep.
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Data Word Output Weight Word
—

Fig. 12. MDAC layout.

Column Index ——»

Focus Portion /El

of Array

Fig. 16. Example output sweeps from one corner of an MDAC Array IC;
0-200p A vertical span subplots. Each line represents a constant weight value.

Fig. 13. 16x 16 MDAC array IC. isolate the output of a particular MDAC from all of the others

during test. Note that there is a precedent for this type of split-
the multiplier's design, helps to avoid saturation, and providéisg: it is done in virtually all biological vision systems since
additional dynamic range for the output. Complex convolutiomseurons can only represent magnitude, necessitating parallel
would require four summing nodes. In addition to representirfpannels to independently carry the positive (e.g., “on-center”
the two polarity sums, the two output nodes provide a way surrounds [11]) and negative (“off-center”) information.
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39s4b2 D4 Incremental Output

Measured Output Current

Weight DAC Word "55"‘-«-53/"" 2

Fig. 17. Incremental,,. per bit for data MSB.

The process of consolidating the summing nodes’ dataléeaving a balance of zero net current available on the output
dependent on the needs of the downstream processing stapde when the two least significant bits (W0 and W1) are
and represents a degree of design freedom that is not centrdbta As the P-channel current sources turn off, thechannel
this research. A single opamp or current mirror could be usedlancing sink must turn to the output node for an equivalent
to combine them, if desired. Whatever methodology might teirrent: with the LSB (WO) highi I,;.s net is drawn from the
used, it is necessary that the voltage on these nodes remaitput node, and with W1 hig% of I;as Net is drawn. Like
within the limits allowed by the MDACs output resistance. the N-channel balancing sink, tHe-channel balancing current

source is always on and is there so that the DAC sinks currents
C. MDAC Design ranging from O—E timesly,;,s rather than}I—S timesly;as.
By using the output of the Weight DAC as the bias input to

The circuits shown in the left and right halves of Fig. 11 g - Data DAC, the overall computation performed by the MDAC

CMOS current-mode 5-b Digital to Analog Converters (DAC);

they are CMOS mirror images, but otherwise identical to ea&h ™" >
other. This DACs primary advantage is that it is very small in (WEIGHT)(DATA)
size, consisting of only 46 minimum geometry transistors. Lout = Ibias T

Focusing on the weight DAC, the input curreht,, is cas- ) ) ) )
code mirrored nine times. Triple cascoding was believed to B&1ereWEIGHTIis the numerical value of the 5-b binary input

unnecessary overkill considering the accuracy expected of tfidhe Weight DAC andATAis the numerical value of the 5-b

circuit in most processes, though it might have utility in corPinay input to the Data DAC. _
ditions where the output node voltage is under-controlled ang” representative layout of the MDAC occupies the lower half

it would prevent undesirable feedback through the output resf-Fig- 12. To avoid undue error contributions or inadvertently
itening its inherent error, various efforts were taken during

tance. Three sets of these current sinks are gated on/offin groWB i el !
ings of four, two, and one, respectively sinking four, two, angreation of the layout to minimize expected geometrical and

one times a current equal g,.. from the output node. Another structural mismatch: compact design, shared well, central loca-
of the N-channel current sinks drives a divide-byr4channel tion of the mirror input transistors, etc.
mirror.

The remainingN-channel current sink works with theD: MDAC Array IC
P-channel current sources to mimic the behavior of finer reso-This IC contains a 1& 16 array of MDACs, each of which
lution N-channel current sinks. By using tRechannel sources has its own set of storage registers for retaining both the Sign +
to displace current that is already being drawn, additional ci¥eight (6 b) and unsigned 5-b Data values; its photomicrograph
rent mirroring back tdN-channel devices is avoided along withis shown in Fig. 13. This chip was fabricated in HPs CMOS26
its attendant mismatching. Each of tRechannel sources canG 0.8 m N-well process using the MOSIS fabrication service.
provide one quarter of the current drawn byNwehannel sink, Both MDAC registers read from a single chip-wide data bus and
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Fig. 18. Histogram of MDAC array maximum outputs.
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Fig. 19. Histogram of the weight bits (with the data word at maximum and each MDACs maximum output normalized to a value of 100). MSB on right, LSB on
left.

the specific register is selected by row, column, and weight/d4teltage biased). The advantage of this approach is that it uses a
address lines. In addition to representing the two polarity sunmsinimum of silicon area to distribute the biasing signal. Its dis-
the two output nodes provide a way to isolate the output ofa@lvantage is that the currents drawn from this line will produce
particular MDAC from all of the others. a voltage drop that will in turn be reflected in the signal avail-
Two different mechanisms were used to provide the refeable at the input to the biasing circuits.

ence (bias) current for the MDAC array. The 128 neighboring The 128 MDACs that occupy row addresses 0 through 7 are
MDACSs that occupy row addresses 8 through 15 are biased wittased via individual current lines (current biased). While these
a voltage that is distributed via a network of metal interconneBtDACs are expected to be biased closer together than the
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Fig. 20. Histogram of the data bits (with the weight word at maximum and each MDACs maximum output normalized to a value of 100) MSB on right, LSB on
left.
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Fig. 21. Normalized per bit and maximum-output distributions plotted against MDAC physical location.

voltage biased group, this method requires substantially marenassive current mirror (visible on the right side of Fig. 14) to
metal interconnect to route the 128 individual current lines amdeate the currents for distribution.
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IV. TESTING and MEASUREMENT

The working data for this research comes from the MDAC
Array IC and its 16x 16 array of MDACSs. In addition to the
array of MDACs, it also contains the row and column decoders,
data and weight + sign registers for each MDAC, and the two
different biasing mechanisms outlined in Section III.D.

Ignoring output directioning, each MDAC is capable of 1024
distinctinput configurations. Twenty-five of these MDAC Array
IC chips were fabricated, each with 256 MDACs, making a total
of roughly 6% million inspection points to measure under sev-
eral sets of differing biasing conditions each.

Fig. 22. MDAC-based convolution result02421-b first-order ESS image
convolved with64? MDAC array-specific first-order ESS DOG.

A. Automated Data Collection

An automated data collection system was built to measure the
MDAC Array ICs performance; its block diagram is in Fig. 14.
A National Instruments DIO-96 digital IO card placed in a
generic brand 33 MHz 486 PC was used to drive digital signals
(Row and Column Addresses, the Data Bus, and Write Pulse)
into the IC under test. A Keithly 236 Source Measurement Unit
(SMU) was used to collect the analog output data. Fifteen-turn
potentiometers set up as voltage dividers were used to supply
each of the necessary bias voltages and a HP 6205C Power
Supply powered the chip and biasing dividers.

A custom LABView program was developed to control the. _ ) . .

s ig. 23. Desired goal: result of convolving a floating pdidt DOG with 8-b

automated system. After an initial sweep to clear each of the,> inage.
Weight and Data registers of any random power-on contents
and to tie each of the MDACs to the same output node (“noge pitferential Nonlinearity
B™), each of the 256 MDACSs was singly connected to the other ) _ . )
output node (“node A”) and swept through all 1024 possible Referring t_o Fig. 11, the incremental output in c_urrent as a
input combinations. The Keithly SMU was set to measure ticiven Data bit turns on should be the same for a fixed Weight

current sourced from output node A, and the collective resufford and regardiess of how the other data bits are set; any devia-
were written to a data file per MDAC tion would appear as differential nonlinearity (DNL). Extending

the DNL concept to MDACSs, as the Weight word increases, this
incremental output per Data word bit should also increase pro-
B. MDAC Response portionally. As plotted in Fig. 17, for D4 (the Data word’s MSB)
Fig. 15 is a 3-D graph of a data sweep collected fro®f the MDAC at row 4 column 2 of chip #8 (a random selec-
the MDAC at row 0 and column 0 of MDAC Array IC #8 tion), the incremental output curreit,,, largely exhibits this
(“8da0b0”). Note that the output is predominately lineahehavior.
contains a minor element of irregularity (e.g., mismatch noise), o
and successfully implements the multiplication function. - Error Distribution
Full data sweeps of the entire ¥616 MDAC array of each of A histogram of maximum output®ata = 31, Weight =
the working chips have been recorded. Fig. 16 displays a repsé) from the MDACs in the current biased half of an individual
sentative set of sweeps for the MDACs in rows 0 through 3 ah@ is plotted in Fig. 18. The central distribution largely follows
columns 0 through 3 of chip #8 with the SMU sinking currend gaussian pattern.
while biased to 2.50 V anbl,;,s tied to 3.90 V. The response is The histogram of output values for each weight bit (with the
fairly linear in general, and with the exception of MDAC (0,0)Pata word set to the maximum of 31, and the MDACs maximum
which is only operating across roughly half of the typical outpwdutput normalized to a value of 100,) is plotted in Fig. 19. Again,
span, all of the MDACs are comparably responding. Variowsach of the significant bits cluster in essentially Gaussian-like
pathologies are represented here: the central gap in the spriattibutions. A similar histogram for the Data bits is in Fig. 20.
of the lines in the graphs for MDACs (0,0), (0,2), (1,1), (2,1), To visually inspect for correlation between these distribu-
and (2,2) indicate that their W4 bit (Weight MSB) is somewhadtons, each of the Weight and Data bit clusters and the maximum
stronger than normal; similarly, MDAC (0,1) has a stronger thasutput histogram have been normalized to zero mean and unit
normal W3 bit, as evidenced by the upward displacement wdriance and then superimposed on a per MDAC basis; the result
both of its W3-on regions; several of the graphs have weighppears in Fig. 21. This reveals that eight of the nine MDACs
curves grouped into eight bunches of four lines each, MDAG the outlying cluster that form the leftmost group in Fig. 18
(2,0) for example, which indicates the presence of some inordke all in the same column of the array (with the remaining such
nate mismatch in their P-balance mirrors, etc. defect at MDAC (0,0), as visible in Fig. 16,).
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Fig. 24. Total inband noise for selected MDAC-based convolutions, chip #8. Curves from top to bottom (a) Best-fit 5-b kernel and unmodified 54) image.
Unmodified 5-b kernel and 1-b first-order ESS image. (c) Unmodified 5-b kernel and unmodified 5-b image. (d) MDAC array-specific first-orden&$8der
first-order ESS 1-b image. (e) Oversampled MDAC array-specific first-order ESS kernel and first-order ESS 1-B2hageG and5122 image for (a)-(d)(4>

DOG and1024? image for (e).

V. EVALUATION Array-Specific first-order ESS DOG and 1-b first-order ESS
image), and both the 2 oversampled per dimension kernel
The measured MDAC data has been used to form the ceiigd 2x oversampled per dimension image noise shaped (line
of a convolution simulator. After loading a single ICs MDACe: oversampled MDAC array-specific first-order ESS kernel
data into a four-dimensional (4-D) look-up table (addressed yd first-order ESS 1-b image). A 15-dB improvement over the
row, column, 5-b weight word, and 5-b data word), each multyaseline occurs with noise shaping both signals, and a further
plication in a convolution is simulated by retrieving the assoct0 dB above that with additional oversampling.
ated output measurement. With the top and bottom halves of therable | lists the inband SNR for various convolutions per-
fabricated arrays biased differently, the largest set of measufggmed using the recorded data from a single chip. Identical
MDAC responses with uniform statistics is onlyx8L6, so to calculations were performed for four other chips, with similar
simulate larger kernels, the array data has been repeatedly tile@ults [23]; space limitations preclude their inclusion here. In
Fig. 22 is the result of convolution simulation usings4’  all cases, the baseline (i.e., “signal”) image was computed using
Difference of Gaussians Filter (DOG; as a bandpass filter, itfipating point values for the kernel coefficients and 8-b for the
representative of many linear filters) that has been first-ordienage samples.
ESS fit to the recorded MDAC outputs of one IC array and a 1-b With one clear and considerable exception, the benefit from
first-order ESS image. For comparison, Fig. 23 is the targetadise shaping the kernel and/or image is generally only minor
ideal result (floating point kernel and 8-b image). using this metric under these conditions. The exception is for the
Fig. 24 compares the inband noise for several types MWIDAC array-specific first-order ESS kernels and 1-b first-order
MDAC-based convolutions: no noise shaping (the baseline, lilE®&SS images, which across all chips and filter frequencies shows
c: 5-b DOG and 5-b image); only the image noise shaped (liassubstantial improvement that further increases with oversam-
b: 5-b DOG and 1-b first-order ESS image); only the kerngling; these particular results are highlighted with bold text in
coefficients modified so as to select the MDAC output nearetsie table.
the ideal value (line a: “best-fit” 5-b kernel and unmodified 5-b Thoughitis reasonable to expect that decreases inthe image’s
image); both the kernel and image noise shaped (line d: MDAfample resolution would produce a corresponding decrease in
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TABLE | back loop do not match those ultimately used in the MDAC
TOTAL IN-BAND SNR OF CSF:‘C\)’;L&’;'F?ZBRESULTS FORMDAC DATA array, creating another noise source (just as with multilEvl
ADCs, which similarly perform poorly compared to their 1-b
Nyquist Rate Kernel Size counterparts).
512* Image Il}l;;fe 64* 322 162 . The second-order E_SS kernels do not perform as we[l as the
S S9c T 3505 5155 first-order, though the improvement at 1-b image resolution ap-
] ) ] pears to hold for them as well.
Unmodified Kernel & 4 22.86 24.95 22.16 . .- - .
Unmodified Image 3 2221 | 2393 | 22.58 A further distinguishing characteristic of the 1-b first-order
% %3;11 ;g-gg }g-gg ESSimages is that additional inband SNR improvement accom-
5 1530 1 13.05 | 1248 panies oversampling, which is not the case for at least the 5-b
Bect.Fit Kernel & 4 1466 | 13.81 | 1251 images. The high-pass nature of the first-order differential ESS
Unmodified Image 3 [ 1511 1403 | 1292 is also apparent in these 1-b image results, where the lower the
f iggg }g'gé 1956978 center of the DOGs passband (where the ESS image has better
5 23.95 | 23.81 | 2181 captured its information), the higher the resulting inband SNR.
Unmeodified Kernel & g gggg iiég ;g;;
1* Order ESS Image : ’ )
2 27.57 | 2591 | 27.08 VI. CONCLUSION
1 20.94 | 26.45 | 21.00
5 2505 | 24.62 | 2130 ESS has been demonstrated as a mechanism for reducing in-
1 Order ESS Kernel & g igfi %2'@% %g; band noise expected from quantization and circuit mismatch in
st . . . . . . . . .
17 Order ESS Image 2 12700 | 2543 | 20,00 mixed-signal FIR image filters, with the best results occurring
. 1 40.78 | 34.57 | 25.37 when 1-b ESS images are convolved with noisy 5-b weights that
2 lsf)(‘;dgr ESSSKI““‘ &3 gig gg-gi éggg are selected via ESS. The ESS algorithms used here were very
mage . . . . . . . . .
—_— = crude, with the first-order filter using only two coefficients and
Orersampled - Kernel Size the second-order filter using only four. Though they have been
2 mage 2 2 2 . . are . .
1024° Image B | 128° | 64 32 useful in demonstrating a successful utilization of ESS, their ef-
Unmodified Kernel & 5 2401 | 2191 | 23.32 ficiency is very low and the second-order algorithm used here
ls,g‘::;"rd;:‘;esf’é‘;ige‘; < ; gg? ;ﬁ?; gégé proved to be unstable on occasion. Refinement of the ESS algo-
1* Order ESS Image 1 | 51.56 | 46.24 | 37.63 rithms and complet_e identification of the |nd|V|du§1I noise floqrs_
2048 1 mage | e | 128 | 6a? should be accomplished before another generation of circuits is
mage Bits attempted. Also, an assumption was made that noise in the cur-
1* Order ESS Kernel & 1 B} 5239 | 446 rent-mode addition would be negligible and this remains to be
st
1* Order ESS Image verified

the convolution’s inband SNR, that is not revealed in these fig-
ures, where no general trend in either direction is apparent. Sim-
ilarly, noise shaping the images showed no appreciable advant
tage when using an unmodified kernel. 2]

The best-fit kernels, where the coefficients are selected to pro-
duce the MDAC weight closest to the ideal output regardless of%l
which particular 5-b address produces it, could also be expected
to out-perform the unmodified kernels, but there is no case wheri4l
they did not instead do worse, often considerably.
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