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Abstract—In this experimental research paper, analog circuits
are manufactured and their performance evaluated for suitability
in performing FIR image filtering with the convolution kernel
and data altered via error spectrum shaping and oversampling
so as to preclude corruption by circuit imperfections. Similar to
the one–dimensional (1-D) binary signals output by Sigma Delta
analog-to-digital converters, the representational noise caused
by the circuit’s resolution inaccuracy is pushed into an unused
portion of the spectrum in these analog signals, permitting the
inband portion of the oversampled signal to be more effectively
represented and processed by imperfect circuits. An analysis of
image convolutions performed using the circuits’ data establishes
that ESS is successful at reducing the computational error in
certain analog image convolutions.

Index Terms—Analog CMOS, analog signal processing, error
spectrum shaping, FIR image convolutions, noise shaping.

I. INTRODUCTION

M OST electronic signal sensing and processing systems
attempt to maintain a high signal-to-noise ratio (SNR)

throughout their internal data paths, and this dictates that the
circuits operating on these signals then similarly maintain high
levels of precision, functional performance, and integrity. For
many systems, this typically involves raising circuit perfor-
mance to the level of sustaining the signal content, in contrast to
subordinating the signals’ traits to fit those of the components.
Efforts toward this end can be expensive and generally produce
designs that are catastrophically intolerant of even a single
element’s immoderate variance.

A different approach is through the adroit manipulation of
signal data and noise, where better matching of signals with
device characteristics greatly simplifies hardware complexity.
Switching power supplies and Sigma Delta analog-to-
digital converters (ADCs) are examples of where such signal
conditioning reduces the overall obligations on a substantial
portion of their analog circuitry.

Unlike their charge-coupled device (CCD) predecessors,
CMOS imagers can incorporate a wide range of signal pro-
cessing circuitry on the same die with the photodetectors,
making cameras or imaging systems on a chip possible. As a
fundamental signal processing mechanism, convolutions are
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going to be one of the operations that vision systems must
perform, making the development of high performance convo-
lution architectures an elemental precursor to the construction
of complex CMOS imaging and vision systems.

Use of a mixed-signal design approach allows incorporating
the best features of both analog and digital circuits in such
systems. Specifically, analog circuits are very much faster
and significantly smaller than their digital counterparts, but
analog computations can be expected to include uncontrollably
variable offset, gain, and nonlinearity. In an image convolution,
such errors would be manifest as spatial noise and so would
be subject to spatial manipulations. Error spectrum shaping
(ESS) is a signal processing tool that dissipates this kind of
representational error, making it possible to tradeoff enough
circuit complexity for signal complexity that small, nonideal
analog CMOS circuits can perform image convolutions with
sufficient accuracy to be useful.

A. Analog CMOS Image Convolutions

Numerous analog convolution architectures have been con-
structed in both CCD and CMOS VLSI processes. What typi-
cally prevents these devices from performing general image fil-
tering tasks is that either there is inadequate control over their
convolution kernel coefficients, the spatial support of their con-
volution kernels is far too small to affect any but the very highest
image frequencies, or computational inaccuracy attributable to
device mismatch severely limits output SNR.

Various imagers/processors that smooth or bandpass the inci-
dent image via an assortment of passive, active, and nonlinear
resistive networks have been constructed: Mahowald [1] and
Mead [2], Bairet al. [3], Boahenet al. [4], Kobayashiet al. [5],
and Harriset al. [6]. While all of these networks are scalable,
and smoothing is an incidence of a convolution, the utility of this
particular filtering operation is extremely limited, its range and
specific characteristics are somewhat difficult to control, and it
is not readily extensible to general convolutions.

Chong et al. [7], use current mirrors to perform a 33
DOG/LOG convolution, and Wardet al. [8] have used current
mirrors to convolve an incident image with a 33 Sobel kernel
[9]. The kernel size is too small to support filters beyond the
very highest image frequencies, and is not well scalable to
either general convolution coefficients or easily scalable to
larger kernels. Nilson [10] comparably uses Gilbert multipliers
to provide and transmit convolution kernel weights. While all
of the weights in this filter are negative, the scheme could be
extended to include positive coefficients. Again, kernel expan-
sion is limited; note that the smallest on/off-center surround
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fields (i.e., convolution kernels) in the human retina have been
shown to have well over an order of magnitude more input
samples [11].

Allen et al. [12] row-wise shift the incident image into a
pipeline that buffers the previous two rows. Per-column cells
convolve the three-row subimage with the three hexagonal
equivalents of Prewitt’s directional gradients [10] using current
mirrors, with the results assembled off-chip. Though less so
than in fully parallel implementations, spatial support and
kernel coefficients are very limited.

Nitta et al. use variable photodetector response to scale the
pixel value [13]. This method permits only a single multiplica-
tion per pixel and so can only compute one convolution output
sample at a time, though it has image-wide spatial support.

B. Remedial Concepts

The conceptual complexities of discrete filtering, analog
CMOS design, and noise shaping are far from trivial, and are
sufficient to prevent including a genuinely adequate introduc-
tion or review in a paper of this scope and length. Among many
others available in the literature: Oppenheimet al. [14] provide
a thorough investigation of one-dimensional (1-D) discrete
signal filtering with Dudgeonet al. [15] extending the concepts
to multiple dimensions; Candyet al. [16] provide a thorough
description of noise shaping in their review of oversampling
methods for analog-to-digital (A/D) and digital-to-analog
(D/A) converters (with the extension to multiple dimension
signals largely being an inclusion of dimension indices to the
otherwise 1-D signal variables); and, Allenet al. [17] provide
a current overview of analog CMOS design concepts.

ESS is essentially a generalized term for the noise shaping
technique that is used in such sampling operations asquan-
tization [16] and digital half-toning [18]. It is a mechanism for
transforming point-wise resolution information into a signal’s
temporal or spatial domain [19], [20], whereby representational
error is accumulated and then used to influence the choice of
subsequent output sample values. One everyday use of ESS
that even most laypeople are familiar with is the sequence of
charges that traditionally occur when purchasing like items that
are priced to include fractions of a currency’s smallest denomi-
nation. For example, purchasing the first in a collection of like
items priced at 3/$1 (i.e., 33 1/3¢ each; $1=100¢) typically re-
sults in a charge of 34¢ (where the vendor’s quantization al-
gorithm is to always round up; rounding to the nearest integer
works equally as well for this demonstration), with the over-
charge of 2/3¢ then being subtracted from the cost of the next
like item. The second-like item is then charged at 33¢, with the
accumulated overcharge of 1/3¢ being subtracted from the cost
of the third-like item. Once a third like item is charged at 33¢
the accumulated error is zero, and the sequence of 34¢, 33¢,
33¢ then repeats as additional like items are purchased. Another
widely familiar application of ESS is the use of leap days to
fit a calendar made of whole days onto a year that technically
contains 365.2425 days: a leap day is injected into the calendar
every four years, omitted once every hundred years (i.e., every
36 524.25 days, of which 24 were leap days), but not so omitted
every 400 years (reducing the accumulated error to zero then
every 400 years).

Of interest from an engineering perspective are both the spec-
tral performance and noise behavior of such operations. While
the specifics are dependent on the ESS algorithm used, the goal
is to shape the spectrum of the representational error such that
it is minimized in the frequency band of interest at the expense
of increasing it elsewhere in the spectrum. Oversampling can
be used to provide additional bandwidth specifically intended
for the disposal of this noise (the “disposal band”). As an ex-
ample, the differentiation of quantization error in first-order
oversampled A/D conversion serves to attenuate the portion of
the quantization noise that is in the signal band (’inband’) by
displacing a great deal of it into the spectrum that lies above
the input signal’s Nyquist frequency. Though the total noise
energy remains fixed (i.e., the full-spectrum SNR remains un-
changed), the portion of it inband is substantially reduced, in
turn increasing the inband SNR. At whatever point in the signal
processing sequence it is convenient, if even necessary at all, the
inband portion of the signal can be extracted with a bandpass
filter. In the case of first-order oversampled A/D conver-
sion, the pass band of interest is from DC to the input’s Nyquist
frequency, so a low pass filter is used in any such restorative
step. Returning to the ESS example of like items priced at 3/$1,
note that low-pass filtering (i.e., averaging) the output sequence
of 34¢, 33¢, 33¢ reproduces the input sequence of 33 1/3¢, 33
1/3¢, 33 1/3¢.

With convolution in the time/image domain being equivalent
to multiplication in the frequency domain, the primary interest
is in the behavior of the operations that occur inband, with what-
ever events or chaos that occurs in the disposal band, where
noise operates upon noise, a largely independent and irrelevant
matter. Thus, the convolution of an ESS’d image with an ESS’d
kernel will produce a result with ESS-like characteristics: the
signal of interest confined to a particular spectral band and sub-
stantial noise energy outside of that.

C. Research Overview

The fundamental hypothesis in this effort is that ESS can be
used to enhance the inband SNR of image convolutions per-
formed with inaccurate analog circuits. This is motivated by
the observation that the most sophisticated image acquisition
and processing systems in existence today are constructed of
biological components that are, relative to man-made devices,
poorly matched in size and response, vary in quality with time
and other conditions, and operate at bandwidths that barely ex-
ceed O(1kHz) [11]. Rather than attempt to modify the circuit
architecture with improvements to some enhanced level of per-
formance or to use the set of convolution coefficients and image
sample values that lie nearest those that are ideal, ESS has been
used to select a subtly different set of comparably inexact coef-
ficients and image samples, creating coefficient/data sets that in
particular have spectral characteristics such that the noise they
produce lies outside of the signal band.

A convolution consists of many multiplications and a summa-
tion. Salient features of the particular current-mode convolution
architecture that is used in this research are diagramed in Fig. 1.
Since the current-mode summation can be performed virtually
without error using only wires and a node, the quality of the
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Fig. 1. Spatial noise model of current-mode analog convolution.

multiplier array largely sets the performance of the operation.
Various error sources corrupt the array multipliers’ result:
and , both of which contain quantization noise and random
spatial error, and , which in an aggregate sense (i.e., mea-
sured from multiplier to multiplier) consists of only random
error. The fundamental assumption made here is that the quan-
tization noises and ’s random error component can be attenu-
ated with ESS and that the effects of the remaining error sources
are subject to noise reduction with oversampling.

To evaluate this hypothesis, a simple first- and second-order
ESS algorithm have been selected (see the following section),
and then step-wise following the signal flow in Fig. 1, its perfor-
mance sequentially quantified against the error sources and their
increasingly combined effects. First, ESSs inband attenuation of
both quantization noise and random gaussian error was evalu-
ated (i.e., its effect on models of and ). Second, convolu-
tions of images corrupted by quantization and random gaussian
error were performed and measured with and without ESS (i.e.,
its effect on the overall system model short). Lastly, convo-
lutions of ESS images and kernels using actual circuit measure-
ments were performed; note that this final test suplants the con-
volution model in Fig. 1 in that it includes the effects of any po-
tentially unmodeled error sources, operations, or relationships.
Space constraints limit this paper to only discussing this last
step, with the previous two largely superceded by its results.

To obtain the circuit data, CMOS circuits that perform the
array multiplier’s function have been designed and constructed,
and measurements made of their performance to quantify the
effects of the noise sources. Lastly, an analysis of image convo-
lutions performed using the circuits’ data establishes that ESS is
successful at reducing the computational error in analog image
computations.

II. ERRORSPECTRUMSHAPING

ESS is a mechanism for transforming point-wise resolution
information into the spatial domain [19], [20]. It is a general-
ized term for the noise shaping done in ADC [16] and is
commonly employed in half-tone printing [18] and other as-
pects of signal processing. For example, both Figs. 2 and 3 are

Fig. 2. Lenna512 � 1-b simple binary quantization.

Fig. 3. Lenna512 � 1-b first-order ESS quantization.

Fig. 4. Detail section of lenna1024 � 1-b first-order ESS quantization.
Squint to approximate the restorative effect of low pass filtering.

Fig. 5. Detail section of lenna2048 � 1-b. Squint to approximate the
restorative effect of low pass filtering.

1-b images derived from an 8-b image (note: the various steps
involved in transferring these images into print may have dam-
aged them). In the ESS image, the otherwise lost point-wise res-
olution data is encoded in the high frequency variation of the
samples; low-pass filtering (i.e., local averaging) then is the ap-
propriate step necessary to restore the original image. Oversam-
pling provides additional spectrum where such resolution infor-
mation can be stored; compare Fig. 4 with its higher frequency
counterpart, Fig. 5. The greater the ESS algorithm’s spatial sup-
port (i.e., polynomial order), the more efficiency that it has in
capturing the resolution information; see Fig. 8.
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Fig. 6. Propagation of error in the first-order ESS algorithm.

Fig. 7. Propagation of error in the second-order ESS algorithm.

Recall that in first-order 1-D Sigma Delta A/D conversion that
the output signal is the sum of the input signal and the first-order
difference of the error signal:

Expanding this to two-dimensional (2-D) with the error
signal’s energy evenly divided between the dimensions yields
a simple first-order 2-D ESS algorithm (strictly speaking, this
is first order per dimension)

This first-order ESS error signal’s propagation is graphically
illustrated in Fig. 6. This is the first-order ESS algorithm used
in this research; Figs. 3–5 illustrate its application.

A simple second-order ESS algorithm can be similarly con-
structed (strictly speaking, this is second-order per dimension):

This second-order ESS error signal’s propagation is graph-
ically illustrated in Fig. 7. This is the second-order ESS algo-
rithm used in this research.

Much more elaborate, efficient, and isotropic ESS algorithms
obviously exist, error-diffusion half-toning algorithms have
been reported with several dozen coefficients [21], but these
two are adequate for the task at hand.

The standard SNR equation used for quantifying the results
of image processing operations is

where represents the original image samples,represents
altered image samples, and the summations are taken over the

image’s entire range [22]. Being a point-wise process (i.e., it
says nothing about the spatial interaction between pixels), this
encompasses the complete spectral content of each image, and
counts all of the energy in the original image as “signal” regard-
less of its actual bandwidth. ESS’d signals contain a substan-
tial noise element outside of the signal band that is inappropri-
ately counted as “signal” when using this metric. What is de-
sired instead is to only count the inband portion of the spectrum
as signal.

Parseval’s theorem equates the total energy in a sequence to
its total spectral energy

This provides a mechanism for converting the standard
point-wise SNR metric from sample space to frequency space:

Rather than compute this over the entire spectrum of the
image, it can be limited to any spectral band of interest, such as
the inband component of ESS’d images.

III. CIRCUITS

The circuit’s purpose in this research is two-fold: to provide
real-world error data for evaluation in ESS convolutions (,

, and in Fig. 1), and to insure the inclusion of any noise
sources or operations omitted from the spatial noise model of
Fig. 1.

A. Archtetural Considerations

Each output point in a convolution consists of many multipli-
cations and a summation. Image data is typically nonnegative
(ranging from 0 to full-scale), while convolution weights may
be negative or even complex, necessitating multiquadrant mul-
tiplications and the potential for a complex summation.

The multisummand addition encourages current-mode sum-
mations, where any number of values can be added using only
wires and a node. Particularly advantageous to such current
mode additions is that they are not necessarily affected by MOS
device mismatch so long as the driving circuits have a high
enough output resistance; in MOS design, output resistance can
be made as arbitrarily high as desired using cascoding. Other
advantages to current-mode computation are that currents can
be easily replicated and conveyed with negligible loss. Also,
current-mode multiplication can be compactly performed with
current mirrors.

Noise shaping of the kernel coefficients requires the ability to
store and alter their values. Currents can not be directly stored,
and though they could be generated from a stored voltage, tem-
porary storage of analog values has its general problems: circuit
complexity, decay, destructive read-out, and corruption; all of
these are issues that threaten to distort and degrade the results
of this research and are beyond its scope. Digital storage satis-
factorily addresses these needs, and though digital quantization
produces yet another noise source, its effects can be easily cal-
culated and then accounted for in the final results.
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Fig. 8. Total inband quantization noise (dB) versus signal bandwidth, 3-bit lenna512 , 1024 , and2048 images.

Fig. 9. Convolution circuit architecture.

With the summation portion of a current-mode convolution
unlikely to cause significant error, the inital issue defaults to
resolving the effect of noise shaping on the performance of the
multipliers. To that end, measuring the noise characteristics of
a multiplier array is the focus of the fabricated circuits.

B. Circuit Architecture

Fig. 9 illustrates the block diagram of the selected archi-
tecture for evaluating ESS performance on analog-computed
CMOS VLSI image convolutions. This circuit computes a
single convolution point at a time using an array of parallel
multiplying analog to digital converters (MDAC). The weight
and data values are loaded via a common data bus into registers,
and the positive and negative summation components are
collected on independent nodes.

While this structure is primarily intended as a vehicle to mea-
sure mismatch in the array of multipliers, it could easily be ex-

Fig. 10. Pipelined convolution processor.

tended to performing real-time convolutions in any spatial di-
mension by replacing the data bus and data registers with a chain
of shift registers such that signal data would be swept past the
convolution kernel, with one convolution output sample for each
shift of the registers. In an image convolution, a succession of
additional shift registers could maintain the pixels’ spatial re-
lationship and only retain the portion of the image that would
be subsequently used (Fig. 10), effectively spiraling the kernel
around the 2-D signal as it is row-wise shifted into the shift reg-
ister array. For imagers that serialize their data, such a pipelined
structure would not interfere with the preexisting data-rate bot-
tleneck and only imposes a time shift on the results.

In practice, the convolution kernel coefficients would be ad-
justed using ESS to both correct for the individual hardware’s
variations and the resolution loss from quantization (i.e., the two
components of in Fig. 1); the resultant values would then be
stored in the weight registers for the duration of a convolution.
Since each sample of the image is swept through the kernel and
eventually visits each MDAC, no hardware-specific correction
can be made to the image values, though such error is still prone
to reduction through oversampling. Nonetheless, the image’s re-
duced quantization necessitates the use of ESS to preserve its
point-wise resolution.

The weight’s sign bit directs the output current of each
MDAC onto the appropriate summing node. Splitting the
positive and negative components into two nodes simplifies
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Fig. 11. MDAC schematic.

Fig. 12. MDAC layout.

Fig. 13. 16� 16 MDAC array IC.

the multiplier’s design, helps to avoid saturation, and provides
additional dynamic range for the output. Complex convolutions
would require four summing nodes. In addition to representing
the two polarity sums, the two output nodes provide a way to

Fig. 14. Automated data collection system.

Fig. 15. Example MDAC output sweep.

Fig. 16. Example output sweeps from one corner of an MDAC Array IC;
0–200���A vertical span subplots. Each line represents a constant weight value.

isolate the output of a particular MDAC from all of the others
during test. Note that there is a precedent for this type of split-
ting: it is done in virtually all biological vision systems since
neurons can only represent magnitude, necessitating parallel
channels to independently carry the positive (e.g., “on-center”
surrounds [11]) and negative (“off-center”) information.
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Fig. 17. IncrementalI per bit for data MSB.

The process of consolidating the summing nodes’ data is
dependent on the needs of the downstream processing steps
and represents a degree of design freedom that is not central to
this research. A single opamp or current mirror could be used
to combine them, if desired. Whatever methodology might be
used, it is necessary that the voltage on these nodes remain
within the limits allowed by the MDACs output resistance.

C. MDAC Design

The circuits shown in the left and right halves of Fig. 11 are
CMOS current-mode 5-b Digital to Analog Converters (DAC);
they are CMOS mirror images, but otherwise identical to each
other. This DACs primary advantage is that it is very small in
size, consisting of only 46 minimum geometry transistors.

Focusing on the weight DAC, the input current, , is cas-
code mirrored nine times. Triple cascoding was believed to be
unnecessary overkill considering the accuracy expected of this
circuit in most processes, though it might have utility in con-
ditions where the output node voltage is under-controlled and
it would prevent undesirable feedback through the output resis-
tance. Three sets of these current sinks are gated on/off in group-
ings of four, two, and one, respectively sinking four, two, and
one times a current equal to from the output node. Another
of the N-channel current sinks drives a divide-by-4P-channel
mirror.

The remaining N-channel current sink works with the
P-channel current sources to mimic the behavior of finer reso-
lution N-channel current sinks. By using theP-channel sources
to displace current that is already being drawn, additional cur-
rent mirroring back toN-channel devices is avoided along with
its attendant mismatching. Each of theP-channel sources can
provide one quarter of the current drawn by anN-channel sink,

leaving a balance of zero net current available on the output
node when the two least significant bits (W0 and W1) are
low. As theP-channel current sources turn off, theN-channel
balancing sink must turn to the output node for an equivalent
current: with the LSB (W0) high, net is drawn from the
output node, and with W1 high of net is drawn. Like
theN-channel balancing sink, theP-channel balancing current
source is always on and is there so that the DAC sinks currents
ranging from 0–7 times rather than -8 times .

By using the output of the Weight DAC as the bias input to
the Data DAC, the overall computation performed by the MDAC
circuit is

whereWEIGHT is the numerical value of the 5-b binary input
to the Weight DAC andDATA is the numerical value of the 5-b
binary input to the Data DAC.

A representative layout of the MDAC occupies the lower half
of Fig. 12. To avoid undue error contributions or inadvertently
whitening its inherent error, various efforts were taken during
creation of the layout to minimize expected geometrical and
structural mismatch: compact design, shared well, central loca-
tion of the mirror input transistors, etc.

D. MDAC Array IC

This IC contains a 16 16 array of MDACs, each of which
has its own set of storage registers for retaining both the Sign +
Weight (6 b) and unsigned 5-b Data values; its photomicrograph
is shown in Fig. 13. This chip was fabricated in HPs CMOS26
G 0.8 N-well process using the MOSIS fabrication service.
Both MDAC registers read from a single chip-wide data bus and
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Fig. 18. Histogram of MDAC array maximum outputs.

Fig. 19. Histogram of the weight bits (with the data word at maximum and each MDACs maximum output normalized to a value of 100). MSB on right, LSB on
left.

the specific register is selected by row, column, and weight/data
address lines. In addition to representing the two polarity sums,
the two output nodes provide a way to isolate the output of a
particular MDAC from all of the others.

Two different mechanisms were used to provide the refer-
ence (bias) current for the MDAC array. The 128 neighboring
MDACs that occupy row addresses 8 through 15 are biased with
a voltage that is distributed via a network of metal interconnect

(voltage biased). The advantage of this approach is that it uses a
minimum of silicon area to distribute the biasing signal. Its dis-
advantage is that the currents drawn from this line will produce
a voltage drop that will in turn be reflected in the signal avail-
able at the input to the biasing circuits.

The 128 MDACs that occupy row addresses 0 through 7 are
biased via individual current lines (current biased). While these
MDACs are expected to be biased closer together than the
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Fig. 20. Histogram of the data bits (with the weight word at maximum and each MDACs maximum output normalized to a value of 100) MSB on right, LSB on
left.

Fig. 21. Normalized per bit and maximum-output distributions plotted against MDAC physical location.

voltage biased group, this method requires substantially more
metal interconnect to route the 128 individual current lines and

a massive current mirror (visible on the right side of Fig. 14) to
create the currents for distribution.
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IV. TESTING and MEASUREMENT

The working data for this research comes from the MDAC
Array IC and its 16 16 array of MDACs. In addition to the
array of MDACs, it also contains the row and column decoders,
data and weight + sign registers for each MDAC, and the two
different biasing mechanisms outlined in Section III.D.

Ignoring output directioning, each MDAC is capable of 1024
distinct input configurations. Twenty-five of these MDAC Array
IC chips were fabricated, each with 256 MDACs, making a total
of roughly 6 million inspection points to measure under sev-
eral sets of differing biasing conditions each.

A. Automated Data Collection

An automated data collection system was built to measure the
MDAC Array ICs performance; its block diagram is in Fig. 14.
A National Instruments DIO-96 digital IO card placed in a
generic brand 33 MHz 486 PC was used to drive digital signals
(Row and Column Addresses, the Data Bus, and Write Pulse)
into the IC under test. A Keithly 236 Source Measurement Unit
(SMU) was used to collect the analog output data. Fifteen-turn
potentiometers set up as voltage dividers were used to supply
each of the necessary bias voltages and a HP 6205C Power
Supply powered the chip and biasing dividers.

A custom LABView program was developed to control the
automated system. After an initial sweep to clear each of the
Weight and Data registers of any random power-on contents
and to tie each of the MDACs to the same output node (“node
B”’), each of the 256 MDACs was singly connected to the other
output node (“node A”) and swept through all 1024 possible
input combinations. The Keithly SMU was set to measure the
current sourced from output node A, and the collective results
were written to a data file per MDAC.

B. MDAC Response

Fig. 15 is a 3-D graph of a data sweep collected from
the MDAC at row 0 and column 0 of MDAC Array IC #8
(“8da0b0”). Note that the output is predominately linear,
contains a minor element of irregularity (e.g., mismatch noise),
and successfully implements the multiplication function.

Full data sweeps of the entire 1616 MDAC array of each of
the working chips have been recorded. Fig. 16 displays a repre-
sentative set of sweeps for the MDACs in rows 0 through 3 and
columns 0 through 3 of chip #8 with the SMU sinking current
while biased to 2.50 V and tied to 3.90 V. The response is
fairly linear in general, and with the exception of MDAC (0,0),
which is only operating across roughly half of the typical output
span, all of the MDACs are comparably responding. Various
pathologies are represented here: the central gap in the spread
of the lines in the graphs for MDACs (0,0), (0,2), (1,1), (2,1),
and (2,2) indicate that their W4 bit (Weight MSB) is somewhat
stronger than normal; similarly, MDAC (0,1) has a stronger than
normal W3 bit, as evidenced by the upward displacement of
both of its W3-on regions; several of the graphs have weight
curves grouped into eight bunches of four lines each, MDAC
(2,0) for example, which indicates the presence of some inordi-
nate mismatch in their P-balance mirrors, etc.

Fig. 22. MDAC-based convolution result:1024 1-b first-order ESS image
convolved with64 MDAC array-specific first-order ESS DOG.

Fig. 23. Desired goal: result of convolving a floating point64 DOG with 8-b
1024 image.

C. Differential Nonlinearity

Referring to Fig. 11, the incremental output in current as a
given Data bit turns on should be the same for a fixed Weight
word and regardless of how the other data bits are set; any devia-
tion would appear as differential nonlinearity (DNL). Extending
the DNL concept to MDACs, as the Weight word increases, this
incremental output per Data word bit should also increase pro-
portionally. As plotted in Fig. 17, for D4 (the Data word’s MSB)
of the MDAC at row 4 column 2 of chip #8 (a random selec-
tion), the incremental output current, , largely exhibits this
behavior.

D. Error Distribution

A histogram of maximum outputs
from the MDACs in the current biased half of an individual

IC is plotted in Fig. 18. The central distribution largely follows
a gaussian pattern.

The histogram of output values for each weight bit (with the
Data word set to the maximum of 31, and the MDACs maximum
output normalized to a value of 100,) is plotted in Fig. 19. Again,
each of the significant bits cluster in essentially Gaussian-like
distributions. A similar histogram for the Data bits is in Fig. 20.

To visually inspect for correlation between these distribu-
tions, each of the Weight and Data bit clusters and the maximum
output histogram have been normalized to zero mean and unit
variance and then superimposed on a per MDAC basis; the result
appears in Fig. 21. This reveals that eight of the nine MDACs
in the outlying cluster that form the leftmost group in Fig. 18
are all in the same column of the array (with the remaining such
defect at MDAC (0,0), as visible in Fig. 16,).
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Fig. 24. Total inband noise for selected MDAC-based convolutions, chip #8. Curves from top to bottom (a) Best-fit 5-b kernel and unmodified 5-b image.(b)
Unmodified 5-b kernel and 1-b first-order ESS image. (c) Unmodified 5-b kernel and unmodified 5-b image. (d) MDAC array-specific first-order ESS kernel and
first-order ESS 1-b image. (e) Oversampled MDAC array-specific first-order ESS kernel and first-order ESS 1-b image.32 DOG and512 image for (a)-(d),64
DOG and1024 image for (e).

V. EVALUATION

The measured MDAC data has been used to form the core
of a convolution simulator. After loading a single ICs MDAC
data into a four-dimensional (4-D) look-up table (addressed by
row, column, 5-b weight word, and 5-b data word), each multi-
plication in a convolution is simulated by retrieving the associ-
ated output measurement. With the top and bottom halves of the
fabricated arrays biased differently, the largest set of measured
MDAC responses with uniform statistics is only 816, so to
simulate larger kernels, the array data has been repeatedly tiled.

Fig. 22 is the result of convolution simulation using a
Difference of Gaussians Filter (DOG; as a bandpass filter, it is
representative of many linear filters) that has been first-order
ESS fit to the recorded MDAC outputs of one IC array and a 1-b
first-order ESS image. For comparison, Fig. 23 is the targeted
ideal result (floating point kernel and 8-b image).

Fig. 24 compares the inband noise for several types of
MDAC-based convolutions: no noise shaping (the baseline, line
c: 5-b DOG and 5-b image); only the image noise shaped (line
b: 5-b DOG and 1-b first-order ESS image); only the kernel
coefficients modified so as to select the MDAC output nearest
the ideal value (line a: “best-fit” 5-b kernel and unmodified 5-b
image); both the kernel and image noise shaped (line d: MDAC

Array-Specific first-order ESS DOG and 1-b first-order ESS
image), and both the 2 oversampled per dimension kernel
and 2 oversampled per dimension image noise shaped (line
e: oversampled MDAC array-specific first-order ESS kernel
and first-order ESS 1-b image). A 15-dB improvement over the
baseline occurs with noise shaping both signals, and a further
10 dB above that with additional oversampling.

Table I lists the inband SNR for various convolutions per-
formed using the recorded data from a single chip. Identical
calculations were performed for four other chips, with similar
results [23]; space limitations preclude their inclusion here. In
all cases, the baseline (i.e., “signal”) image was computed using
floating point values for the kernel coefficients and 8-b for the
image samples.

With one clear and considerable exception, the benefit from
noise shaping the kernel and/or image is generally only minor
using this metric under these conditions. The exception is for the
MDAC array-specific first-order ESS kernels and 1-b first-order
ESS images, which across all chips and filter frequencies shows
a substantial improvement that further increases with oversam-
pling; these particular results are highlighted with bold text in
the table.

Though it is reasonable to expect that decreases in the image’s
sample resolution would produce a corresponding decrease in
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TABLE I
TOTAL IN-BAND SNR OF CONVOLUTION RESULTS FORMDAC DATA

FROM CHIP #8

the convolution’s inband SNR, that is not revealed in these fig-
ures, where no general trend in either direction is apparent. Sim-
ilarly, noise shaping the images showed no appreciable advan-
tage when using an unmodified kernel.

The best-fit kernels, where the coefficients are selected to pro-
duce the MDAC weight closest to the ideal output regardless of
which particular 5-b address produces it, could also be expected
to out-perform the unmodified kernels, but there is no case when
they did not instead do worse, often considerably.

In general, first-order ESS of both the kernel and the image
produced only minor improvements over the unmodified kernel
and unmodified image resultsions). The performance of the 1-b
ESS images with the first-order ESS kernel, however, is sub-
stantially better than at the other resolutions.

A potential reason for this is that the 1-b images contain
a substantial number of “0”valued coefficients, probably
somewhat more so than the other resolution images, which do
not contribute to the random component ofas much as do
nonzero values. Detracting from this hypothesis is that there is
no improvement of inband SNR as the images’ bit resolution
decreases (and the number of “0” value coefficients rises), but
instead only a substantial jump at the 1-b level.

A more likely explanation for the superior results at the level
of 1-b image resolution is that the levels used in the ESS feed-

back loop do not match those ultimately used in the MDAC
array, creating another noise source (just as with multilevel
ADCs, which similarly perform poorly compared to their 1-b
counterparts).

The second-order ESS kernels do not perform as well as the
first-order, though the improvement at 1-b image resolution ap-
pears to hold for them as well.

A further distinguishing characteristic of the 1-b first-order
ESS images is that additional inband SNR improvement accom-
panies oversampling, which is not the case for at least the 5-b
images. The high-pass nature of the first-order differential ESS
is also apparent in these 1-b image results, where the lower the
center of the DOGs passband (where the ESS image has better
captured its information), the higher the resulting inband SNR.

VI. CONCLUSION

ESS has been demonstrated as a mechanism for reducing in-
band noise expected from quantization and circuit mismatch in
mixed-signal FIR image filters, with the best results occurring
when 1-b ESS images are convolved with noisy 5-b weights that
are selected via ESS. The ESS algorithms used here were very
crude, with the first-order filter using only two coefficients and
the second-order filter using only four. Though they have been
useful in demonstrating a successful utilization of ESS, their ef-
ficiency is very low and the second-order algorithm used here
proved to be unstable on occasion. Refinement of the ESS algo-
rithms and complete identification of the individual noise floors
should be accomplished before another generation of circuits is
attempted. Also, an assumption was made that noise in the cur-
rent-mode addition would be negligible and this remains to be
verified.
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