
1178 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

A CMOS Feedforward Neural-Network Chip
With On-Chip Parallel Learning for Oscillation

Cancellation
Jin Liu, Member, IEEE, Martin A. Brooke, Member, IEEE, and Kenichi Hirotsu, Member, IEEE

Abstract—This paper presents a mixed signal CMOS feedfor-
ward neural-network chip with on-chip error-reduction hardware
for real-time adaptation. The chip has compact on-chip weighs ca-
pable of high-speed parallel learning; the implemented learning al-
gorithm is a genetic random search algorithm—the random weight
change (RWC) algorithm. The algorithm does not require a known
desired neural-network output for error calculation and is suit-
able for direct feedback control. With hardware experiments, we
demonstrate that the RWC chip, as a direct feedback controller,
successfully suppresses unstable oscillations modeling combustion
engine instability in real time.

Index Terms—Analog finite impulse response (FIR) filter, direct
feedback control, neural-network chip, parallel on-chip learning,
oscillation cancellation.

I. INTRODUCTION

ORIGINALLY, most neural networks are implemented
by software running on computers. However, as neural

networks gain wider acceptance in a greater variety of applica-
tions, it appears that many practical applications require high
computational power to deal with the complexity or real-time
constraints. Software simulations on serial computers cannot
provide the computational power required, since they transform
the parallel neural-network operations into serial operations.
When the networks become larger, the software simulation
time increases accordingly. With multiprocessor computers,
the number of processors typically available does not compare
with the full parallelism of hundreds, thousands, or millions
of neurons in most neural networks. In addition, software
simulations are run on computers, which are usually expensive
and cannot always be affordable.

As a solution to the above problems, dedicated hardware is
purposely designed and manufactured to offer a higher level of
parallelism and speed. Parallel operations can potentially pro-
vide high computational power at a limited cost, thus, can poten-
tially solve a complex problem in a short time period, compared

Manuscript received October 25, 2000; revised July 20, 2001 and January 24,
2002. This work was supported by the Multidisciplinary University Research
Initiative (MURI) on Intelligent Turbine Engines (MITE) Project, DOD-Army
Research Office, under Grant DAAH04-96-1-0008.

J. Liu is with the Department of Electrical Engineering, the University of
Texas at Dallas, Richardson, TX 75080 USA.

M. A. Brooke is with the Department of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

K. Hirotsu is with the Sumitomo Electric Industries, Ltd., Osaka 541-0041,
Japan.

Publisher Item Identifier S 1045-9227(02)05565-0.

with serial operations. However, reported implementations of
neural networks do not always exploit the parallelism.

A common principle for all hardware implementations is their
simplicity. Mathematical operations that are easy to implement
in software might often be very burdensome in the hardware
and therefore more costly. Hardware-friendly algorithms are es-
sential to ensure the functionality and cost effectiveness of the
hardware implementation. In this research, a hardware-friendly
algorithm, called random-weight-change (RWC) algorithm [1],
is implemented on CMOS processes. The RWC algorithm is a
fully parallel rule that is insensitive to circuit nonidealities. In
addition, the error can be specified such that minimizing the
error leads the system to reach its desired performance and it
is not necessary to calculate the error by comparing the ac-
tual output of the neural network with the desired output of the
neural network. This enables the RWC chip to operate as a di-
rect feedback controller for real-time control applications.

In the last decade, research has demonstrated that on-chip
learning is possible on small problems, likeXOR problems. In
this paper, a fully parallel learning neural-network chip is ex-
perimentally tested to operate as an output direct feedback con-
troller suppressing oscillations modeling combustion instability,
which is a dynamic nonlinear real-time system.

II. I SSUES ON THEDESIGN OF LEARNING

NEURAL-NETWORK HARDWARE

Neural networks can be implemented with software, digital
hardware, or analog hardware [2]. Depending on the applica-
tion nature, cost requirements, and chip size limitations due to
manufacturability, each of the implementation techniques has its
advantages and disadvantages. The implementations of on-chip
learning neural-network hardware differ in three main aspects:
the learning algorithm, the synapse or weigh circuits, and the
activation function circuits.

A. Learning Algorithm

The learning algorithms are associated with the specific
neural-network architectures. This work focuses on the widely
used layered feedforward neural-network architecture. Among
the different algorithms associated with this architecture,
the following algorithms have been implemented in CMOS
integrated circuits: the backpropagation (BP) algorithm, the
chain perturbation rule, and the random weight change rule.

The BP algorithm requires precise implementation of the
computing units, like adders, multipliers, etc. It is very sen-

1045-9227/02$17.00 © 2002 IEEE

LIU et al.: A CMOS FEEDFORWARD NEURAL-NETWORK CHIP 1179

sitive to analog circuit nonidealities, thus, it is not suitable
for compact mixed signal implementation. Learning rules like
serial-weight-perturbation [3] (or Madaline Rule III) and the
chain perturbation rule [4] are very tolerant of the analog circuit
nonidealities, but they are either serial or partially parallel
computation algorithms, thus are often too slow for real-time
control. In this research, we use the RWC algorithm [1], which
is a fully parallel rule that is insensitive to circuit nonidealities
and can be used in direct feedback control. The RWC algorithm
is defined as follows.

For the system weights

If the error is decreased

If the error is increased

where is either or with equal probability,
is a small quantity that sets the learning rate, and and

are the weight and weight change ofth synapse at the
th iteration. All the weights adapt at the same time in each

weight adaptation cycle.
Previously, it has been shown with simulations that a modi-

fied RWC algorithm can identify and control an inductor motor
[5]. Further simulation-based research has shown that the RWC
algorithm is immune to analog circuit nonidealities [6]. An ex-
ample of analog circuit nonidealities is the nonlinearity and
offset in the multiplier, as will be shown in the following sec-
tion. Replacing the ideal multiplier with the nonlinear multiplier
constructed from the measurement result of an integrated cir-
cuit implementation of the multiplier, we redo the simulations
on identifying and controlling an inductor motor. The results of
both conditions are almost identical, with minor difference in
initial the learning process [6].

B. Synapse Circuits

Categorized by storage types, there are five kinds of synapse
circuits: capacitor only [1], [7]–[11], capacitor with refreshment
[12]–[14], capacitor with EEPROM [4], digital [15], [16], and
mixed D/A [17] circuits.

Capacitor weights are compact and easy to program, but
they have leakage problems. Leakage current causes the weight
charge stored in the capacitor to decay. Usually, the capacitors
have to be designed large enough (around 20 pF for room
temperature decay in seconds) to prevent unwanted weight
value decay. Capacitor weights with refreshment can solve
leakage problem, but they need off chip memory. In addition,
the added A/D and D/A converters either make the chip large or
result in slow serial operation. EEPROM weights are compact
nonvolatile memories (permanent storage), but they are process
sensitive and hard to program. Digital weights are usually large,
requiring around 16-bit precision to implement BP learning.
The mixed D/A weight storage is a balanced solution when
permanent storage is necessary.

For this research, the chip is to operate in conditions where
the system changes continuously and so weight leakage prob-
lems are mitigated by continuous weight updates. Thus, the chip
described here uses capacitor as weight storage. The weight re-
tention time is experimentally found to be around 2 s for loosing
1% of the weight value at room temperature.

Fig. 1. Chip photo.

Fig. 2. Schematic of a weight cell.

C. Activation Function Circuits

Research [11], [18] shows that the nonlinearity used in
neural-network activation functions can be replaced by multi-
plier nonlinearity. In this work, since the weight multiplication
circuit has nonlinearity, we uses a linear current to voltage
converter with saturation to implement the activation function.

III. CIRCUIT DESIGN

A. Chip Architecture

The chip was fabricated through MOSIS in Orbit 2-m n-well
process. Fig. 1 shows a photomicrograph of the 2 mm on a side
chip. It contains 100 weights in a 1010 array and has ten
inputs and ten outputs. The input pads are located at the right
side of the chip, and the output pads are located at the bottom
side of the chip. The pads at the top and left sides of the chip are
used for voltage supplies and control signals. This arrangement
makes it possible for the chip to be cascaded into multilayer
networks.

The schematic of one weight cell is shown in Fig. 2. The left
part is a digital shift register for shifting in random numbers.
The right part is a simple multiplier. The circuits in the middle
are the weight storage and weight modification circuits.

1180 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

Fig. 3. HSPICE simulation result on the adjustment of a weight value.

The shift registers of all the cells are connected as a chain,
therefore, only one random bit needs to be fed into the chip at
a time. At a given time, each cell sees a random number at the
output of the shift register, being either “1” or “0.” If it is “1,”
the voltage is equal to ; if it is a “0,” the voltage is
equal to .

B. Weight Storage andAdaptation Circuits

The weight charge is stored in the larger capacitor, with
representing the weight value. Switching clockPh3 on,

while clock perm is off, loads the smaller capacitor with a
small amount of charge. Then, connecting in parallel with
the smaller capacitor changes the weight value. Suppose
that the voltage across is and the voltage across is

before connecting them in parallel, after connecting them
in parallel for charge sharing, the final voltages across them
are the same, supposed to be . The total charge carried
over the two capacitors does not change,

, thus the new voltage across ,
will be .
In this implementation, the is 100 times of , thus

. So, every time, the weight value
changes approximately by 1% of the voltage across. How-
ever, the change is nonlinear, due to the weight decay term,

in the above equation. The bottom plate of will be
charged to , which will be either or . The top
plate of is connected to a bias voltageLastcap. The values
of , and Lastcap together control the step size of
weight change. The is an external biasing to set the range
of the actual weight value, which is the sum of the value of
and the charge across . Clock perm2has a complementary
phase of clockperm.

An individual weight will have its value either increased or
decreased every time the clockPh3 is activated. When the data
shifted into the weight cell is a “1” (5 v), the weight is increased;
and when the data shifted in is a “0” (0 v), the weight is de-
creased. Fig. 3 shows the results of an HSPICE simulation of
the weight changing with time. In the simulation, from the time
0 to 200 ms, a series of “1s” are shifted into the cell. ClockPh3
is activated to allow the random number to be added to the per-
manent weight change; clockperm turns on and off to make
permanent change on the weight value. ClocksPh3 andperm
have complimentary phases with period of 2 ms. As a result, the
weight keeps on incrementing for 100 times during the 200 ms
period. From time 200 to 400 ms, a series of “0’s” are shifted to
the cell, so the weight keeps on decrementing. The same process
repeats for several cycles in the simulation. The first two cycles

Fig. 4. Measured result on the adjustment of a weight value.

are shown in the figure, the rest of the cycles are identical to the
second cycle.

The weight increment and decrement rates are determined by
the values of , andLastcap, as mentioned earlier. In
this simulation, is 5 V, is 0 V, andLastcapis 2.5
V. When a “0” is shifted in, equals to 0 V; when a “1”
is shifted in, equals to 5 V. However, the voltage at the
bottom plate of does not always equal to exactly, due
to the NMOS switching gate controlled byPh3, which is 5 V.
Suppose the threshold voltage of the switching gate is 0.7 V, the
voltage at the bottom plate of equals to 4.3 V when
equals to 5 V, and equals to 0 V when equals to 0 V. Thus,
the increment step is approximately 0.018 V while the decre-
ment step is 0.025 V, corresponding to about 7-bit resolu-
tion.

Fig. 4 shows the measurement result of the weight increment
and decrement, for comparison with the simulated result shown
in Fig. 3. The shiftin data are series of “0s” and “1s.” In this
measurement, the three voltages controlling the weight incre-
ment and decrement step size are adjusted so that the up slope
and the down slope are almost symmetrical.

The following scheme implements the RWC learning. If the
calculated error decreases, clocksPh1andPh2stop. The same
random number, representing the same weight change direction,
will be used to load with the charge, thus, the weights change
in the same direction. If the error is increased, clocksPh1and
Ph2are turned on, a new random bit will be shifted in, resulting
a random change of the weight values.

C. Multiplier Circuits

The operation of the multiplier, whose schematic is shown in
Fig. 2, is as follows. The voltage is the substrate voltage,
which is the most negative voltage among all the biasing volt-
ages. In the simulation and experiments, we use complimentary
power supplies, i.e., . The output of the multi-
plier is a current flowing into a fixed voltage, which should be

LIU et al.: A CMOS FEEDFORWARD NEURAL-NETWORK CHIP 1181

Fig. 5. HSPICE simulation result on the multiplication function.

Fig. 6. Measured result on the multiplier output current range.

in the middle of and ; in this case, it is ground. The
weight voltage is added at the gate of M2. Fig. 5 shows the
HSPICE simulation result of the multiplier. The horizontal axis
is the input voltage , the vertical axis is the output current

, and different curves represent different weight voltage
values . The multiplier attempts to produce a multiplying
relationship as follows: . When is about 2
V, the drain of M2 is about 0 V; when is below 2 V,
is positive and when is above 2 V, is negative. The range
of is small to ensure that M3 is operated in the nonsaturation
region, thus the output current of M3 is approximately propor-
tional to drain-source voltage, . Depending on the polarity
of , the output current can flow in both directions and is
defined as follows:

where is the threshold voltage of M3. The above equation
explains why the simulated multiplier has both offset and non-
linearity. The nonlinear relationship is actually desirable as it
eliminates the need for a nonlinear stage following the multi-
pliers, as discussed earlier.

Hardware test results, presented in Fig. 6, show that the mea-
sured multiplier function is close to the HSPICE simulation re-
sult. The two lines are constructed from the measured points
when the weight is programmed to be at its maximum and min-
imum. The horizontal axis is input voltage, with units of V and
the vertical axis is current, with units ofA.

IV. L EARNING PROCESS

In the learning, a permanent change is made every time a new
pattern is shifted in. If the change makes the error decrease,
the weights will keep on changing in the same direction in the
following iterations, until the error is increased. If the change

Fig. 7. Test setup for the inverter experiment.

makes the error to increase, the weights keep this change, and
try on a different change for the next iteration.

The test setup shown in Fig. 7 is used to demonstrate the
random-weight-change learning process. The task is to train a
two-input–one-output network to implement an inverter. It is
configured so that one input is always held high as the reference,
while the second one alternates between high and low. The de-
sired output is the inverse of the second input.

In the test, the high and low are set to two voltage values for
the network outputs to reach. The network then is trained to min-
imize an error signal, which is calculated as follows. Suppose
that the desired output values of high and low areand ,
and the actual output values of high and low areand , the
error is calculated as .
Thus, when the error is small enough, the network implements
an inverter. The error is not calculated on current chip. Rather,
it is calculated on PC in the test setup and is sent to the chip, as
a 1-bit digital signal. However, the error calculation can be in-
corporated on the same chip, with additional digital circuits for
error calculation.

The desired low and high output voltages, in this experiment,
are 1 and 2 V. So, the desired output should oscillate between 1
and 2 V. Fig. 8 shows a typical initial learning process captured
from the oscilloscope. The figure shows that, within 0.8 s, the
network is trained to behave as an inverter with the specified
high and low output voltages.

After the initial training, the network converges to the inverter
function. Then, the network tries to maintain the performance
as an inverter by continuously adjusting itself. Fig. 9 shows a
100-ms time slice of the continuously adjusting process; the de-
sired high and low output voltages are 1.5 and 0.5 V for this
case. There are two signals in the plot. One of them is theph2
clock, which is represented by the spikes shown in the figure.
A high of ph2 means that a new random number is sifted in
and indicates that the error starts to increase. The other signal
is the inverter output. It oscillates between high and low, since
the input alternates between low and high. The two horizontal
markers indicate the desired high and low voltages.

Starting from point A (time 0), indicated by the trigger arrow,
clock ph2 is high, thus, a new random pattern is introduced.
From point A to point B, the output signal oscillates between
high and low, converging to the desired high and low values.

1182 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

Fig. 8. Oscilloscope screen capture of the initial learning process for the
inverter experiment, with the desired low and high voltages as 1 and 2 V.

Fig. 9. Oscilloscope screen capture of the detailed learning process of the
inverter experiment.

According to the error calculation equation, the error decreases.
During this process, clockPh2 stops to let the network keep
on using the weight change, which is consistent with the algo-
rithm. The error decreases until point B, when the error starts
to increase. Thus, the network stops using this weight change
direction and tries a new pattern, indicated by a spike ofph2at
point B. Unfortunately, this pattern cause the error to increase;
the network gives up this direction pattern and tries a new one,
indicated by another spike at point C. As this process goes on,
the network dynamically maintains its performance as an in-
verter by continuously adjusting its weights.

The above experimental results show that the recorded
hardware learning process complies with the random weight
change algorithm and the weights of neural-network chip can
be trained in real time for the neural network to implement
simple functions. Next, we apply the chip to a more compli-
cated application—direct feedback control for combustion
oscillation cancellation.

Fig. 10. Direct feedback control scheme with a neural-network controller.

V. COMBUSTION INSTABILITY AND DIRECT

FEEDBACK CONTROL

The combustion system is a dynamic nonlinear system, with
randomly appearing oscillations of different frequencies and un-
stable damping factors. When no control is applied, this system
is unstable and eventually reaches a bounded oscillation state.
The goal of the control is to suppress the oscillation. There are
several well-known passive approaches for reducing the insta-
bilities [19], [20]. However, the implementation of such passive
approaches is high cost and time consuming, and they often fail
to adequately damp the instability. The effort of developing ac-
tive control systems for damping such instabilities has increased
in recent years. Since the combustion system is a nonlinear
system, the system parameters vary with time and operating
conditions. The active controllers that developed to suppress the
oscillation in fixed modes cannot deal with the unpredicted new
oscillation modes. In addition, the actuation delay presented in
the control loop also causes difficulties for the control.

In this research, we use the neural-network chip for direct
feedback control [21] of the oscillation. The RWC chip has
on-chip learning ability; the weights on the chip are adjusted in
parallel, which enables the chip to adapt fast enough for many
real-time control applications. The adaptation time of each
weight update is about 2 ns. Fig. 10 shows the direct feedback
control scheme with the neural-network chip as controller. The
tapped delay line in control setup is used to sample the plant
output (combustion chamber pressure). In general, a period of
the plant output of the lowest signal frequency is to be covered.
At the same time, the sampling rate of the tap delay line should
also be faster than the Nyquist sampling rate of the highest
frequency component of the plant output. The rule is that the
neural network should be provided enough information on
the plant dynamics. Software simulation [22], [23], using the
setup in Fig. 10, suggests that it is possible to suppress the
combustion oscillation with the direct feedback control scheme
using the neural-network controller with the RWC algorithm.

A. Combustion Model With Continuously Changing
Parameters

In this simulation, the combustion process is modeled by the
limit cycle model: , where

LIU et al.: A CMOS FEEDFORWARD NEURAL-NETWORK CHIP 1183

Fig. 11. Simulation result on the control of an unstable engine with continu-
ously changing parameters.

is the input to the engine, is the output, is the oscillation
frequency, is the damping factor, andis limit cycle constant.
The simulation runs with a sampling rate of 8 kHz. The feed-
forward neural network had eight inputs, three hidden neurons,
and one output. The combustion engine output is tap delayed;
the original engine output and the tap-delayed signals are the
inputs of the neural-network controller. The model parameters
of the combustion process change with time and with prefixed
ranges: 400–600 Hz for frequency, 0–0.008 in damping factor,
and 1–100 in limit cycle constant.

Fig. 11 shows the simulation result when the parameter
change rate is 1 point/s. It means that every second, a new
set of plant model parameters are randomly picked within the
parameters’ predefined range and the value of the parameters
between these randomly picked pointed is defined by linearly
interpolating between the two neighbor points. In the figure,
the horizontal axis is time. The top three plots are the plant
parameters, which change with time and will cause unstable
oscillations for the engine. The bottom plot is the engine
output, the engine is stabilized around 2 s. The error signal is
the low-passed signal of the engine output.

B. Noise Tolerance

This section presents the simulation result of the neural-net-
work control of the simulated limit cycle single frequency
combustion instability with 10% random noise. The purpose
of these simulations is to determine the noise tolerance of
the system. The 10% noise is a fair estimation of the real
combustion system. The plant parameters were as follows: the
frequency was 400 Hz, the damping factor was 0.005, and the
limit cycle constant was one. The initial engine pressure was
0.1, without control it eventually enters a limit cycle that with
an amplitude of 2 in about 400 ms as shown in the top plot
in Fig. 12. The bottom plot shows the engine output with the
control of the neural network; only the additive noise remains
in the engine output after about 5 s.

Fig. 12. Combustion oscillation with 10% additive noise under no control and
under the control of the neural network.

Fig. 13. Experimental test setup.

VI. EXPERIMENTAL RESULTS

A. Test Setup

The hardware test setup is shown in Fig. 13. To test the hard-
ware chip, we simulate the oscillation process on a PC, which
only provides digital outputs. The analog-to-digital converter
(ADC) and the digital-to-analog converter (DAC) cards provide
interface between the oscillating process and the hardware chip.
The neural-network chip itself requires several interface pins
like power supply, two nonoverlapping clocks to synchronize
the learning process, a random bit, and one-bit error increase or
decrease signal. Most of the interface signal can be generated
by standard circuits available in the literature, except the one-bit
error increase or decrease signal, which has to be designedad
hocdepending on the application.

In the test, the chip and the PC simulating the combustion
process form a closed loop. The computer runs the program sim-
ulating unstable combustion process and generates the engine
output. The tap-delayed engine outputs are sent to the chip in
parallel through the DAC. The chip functions as a direct feed-
back controller and generates a control signal for the combus-
tion engine. The chip output is a current, it is first transformed
to a voltage and then read into the computer by the ADC. The
weights of the chip are updated every time an error is calcu-
lated. Due to system delay (mainly combustion actuator delay),
we have to wait for about two cycles to calculate the error based
on the previous weight update. Within these two cycles, the
combustion simulation process keeps on generating outputs, and

1184 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

Fig. 14. Experimental result on the suppression of a stable oscillation with the
chip as a feedback controller.

these outputs are forward propagated through the chip and fed
back to the engine input.

B. Stable Oscillations

In this experiment, the combustion process is simulated
using the limit cycle model. The frequency is 400 Hz and
the damping factor is zero. The run time for the simulation
is 10 s. Assigned an initial state with the oscillation magnitude
of 0.5, the process will reach a fixed oscillation magnitude
of one, if no control is applied. The error signal is specified
to be proportional to the magnitude of the oscillation and is
calculated by low-passing the rectified engine output oscillation
signal. Thus, minimizing the error signal will minimize the
oscillation magnitude, which in turn suppress the oscillation
appeared at the engine output.

Fig. 14 shows one of the test results. The first plot in the figure
is the engine output and the second plot is the error-decrement
signal. A “1” of the error-decrement signal means that the error
decreases and a “0” means the error is increased. At around 1 s,
the oscillation magnitude is greatly reduced and the oscillation
is limited to a small magnitude afterwards. Fig. 15 shows the
details of the learning process. At the beginning of the learning
process, the chip explores weight changes in different direc-
tions, the error-decrement signal oscillates and the output mag-
nitude increases slowly. At about 0.6 s, the chip finds a good
weight change direction, it then keeps on changing the weights
in this direction. As a result, the error-decrement signal remains
to be “1” for this period and the magnitude of the oscillation is
greatly reduced. For the rest of the process, the weights adjust
to stay around the optimal value; the error-decrement signal fre-
quently oscillates between “0” and “1” and the oscillation mag-
nitude fluctuates, within a small range.

The above results show that the RWC chip is able to sup-
press the oscillation to a small magnitude. It takes about 1 s to
suppress the oscillation initially. After which, the oscillation is
limited to a small magnitude.

Fig. 15. Details of the initial learning process of the test result shown
in Fig. 14.

Fig. 16. Experimental result on the suppression of an unstable oscillation with
the chip as a feedback controller (� = 0:001).

C. Unstable Oscillations

The above experimental test shows the chip suppressing a
stable oscillation, in this section, we present the experimental
result of the chip suppressing unstable oscillations. The os-
cillation frequency is 400 Hz and limit cycle constant is one.
Fig. 16 shows the result with damping factor of 0.001. The
chip suppresses the oscillation within around 1 s and limits
the magnitude to be within 0.3. Fig. 17 shows the result with
damping factor of 0.002. The chip suppresses the oscillation
within around 1 s. There are two big reoccurred blowups with
magnitude of 1.8 and 0.7, after which the engine output is
limited to the magnitude to be within 0.5.

In both experiments, the weights are adjusted continuously
after the initial oscillation suppression. It is observed that as
the damping factor increases, the chip has harder time to limit
the engine output within a small magnitude, the reason is that a
larger damping factor results in an oscillation with larger magni-
tude. In addition, the I/O card delay and the software simulation

LIU et al.: A CMOS FEEDFORWARD NEURAL-NETWORK CHIP 1185

Fig. 17. Experimental result on the suppression of an unstable oscillation with
the chip as a feedback controller (� = 0:002).

Fig. 18. Video capture of the neural-network controller suppressing the
oscillation.

time of the engine cause the weights to decay and drive them
away from the learned values.

D. Controller Output

In this section, the control signal generated by the neural-net-
work controller is presented and analyzed. At the beginning,
the neural-network controller is not trained and the engine
output starts to oscillate, as shown in Fig. 18(a). As a result,
the amplitude of the engine oscillation increases, as shown in
Fig. 18(b). The neural network tries on random weight changes,

Fig. 18(c) shows that at certain time, the weight change can cause
the controller output to be in phase with the engine oscillation
and the amplitude of the engine oscillation increases. Fig. 18(d)
shows that the neural network finds a weight change direction
that suppressing the oscillation and the oscillation amplitude is
decreasing. The neural-network controller output and the engine
outputalmost havecomplementary phases.Asmentioned inSec-
tion V, there is actuator delay in the combustion engine model, so
the controller output signal cannot be exactly 180out of phase
with the engine oscillation in order to suppress the oscillation.
Fig. 18(e) shows that the engine oscillation is further suppressed
to very small amplitude. After the neural network controller is
trained, the engine output is limited to a small residue oscillation,
as shown in Fig. 18(f). The result shown in Fig. 18 is for
unstable limit cycle oscillation with damping factor of 0.001.

VII. CONCLUSION AND FUTURE WORK

We presented a mixed signal CMOS integrated circuit imple-
mentation of feedforward type neural networks; all the weights
on the chip are adjusted on-chip in parallel for fast real-time
control. The implemented RWC learning algorithm enables the
chip to function as a direct feedback controller for real-time
control applications. Through hardware experiments, we have
demonstrated the successful oscillation cancellation using the
chip as a direct feedback controller. Future work includes ad-
justable learning step size proportional to the error signal and
nonvolatile weight storage.

REFERENCES

[1] K. Hirotsu and M. Brooke, “An analog neural network chip with random
weight change learning algorithm,” inProc. Int. Joint Conf. Neural Net-
works, Oct. 1993, pp. 3031–3034.

[2] G. Cauwenbergh and M. A. Bayoumi,Learning on Silicon: Adaptive
VLSI Neural Systems. Amsterdam, The Netherlands: Kluwer, 1999.

[3] M. Jabri and B. Flower, “Weight perturbation: An optimal architecture
and learning technique for analog VLSI feedforward and recurrent mul-
tilayer networks,”IEEE Trans. Neural Networks, vol. 3, Jan. 1992.

[4] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, “An analog VLSI neural
network with on-chip perturbation learning,”IEEE J. Solid-State Cir-
cuits, vol. 32, Apr. 1997.

[5] B. Burton, F. Kamran, R. G. Harley, T. G. Habetler, M. A. Brooke, and
R. Poddar, “Identification and control of induction motor stator currents
using fast on-line random training of a neural network,”IEEE Trans.
Ind. Applicat., vol. 33, May 1997.

[6] J. Liu, B. Burton, F. Kamran, M. A. Brooke, R. G. Harley, and T. G.
Habetler, “High speed on-line neural network control of an induction
motor immune to analog circuit nonidealities,” inProc. IEEE Int. Symp.
Circuits Syst., June 1997, pp. 633–636.

[7] T. Morie and Y. Amemiya, “An all-analog expandable neural network
LSI with on-chip backpropagation learning,”IEEE J. Solid-State Cir-
cuits, vol. 29, Sept. 1994.

[8] C. R. Schneider and H. C. Card, “Analog CMOS deterministic Boltz-
mann circuits,”IEEE J. Solid-State Circuits, vol. 28, no. 8, Aug. 1993.

[9] Y. He and U. Cilingiroglu, “A charge-based on-chip adaptation Kohonen
neural network,”IEEE Trans. Neural Networks, vol. 4, May 1993.

[10] Y. K. Choi and S. Y. Lee, “Subthreshold MOS implementation of neural
networks with on-chip error back-propagation learning,” inProc. Int.
Joint Conf. Neural Networks, July 1993, pp. 849–852.

[11] C. Schneider and H. Card, “Analog CMOS synaptic learning circuits
adapted from invertebrate biology,”IEEE Trans. Circuits Syst., vol. 38,
Dec. 1991.

[12] J. A. Lansner and T. Lehmann, “An analog CMOS chip set for neural
network with arbitrary topologies,”IEEE Trans. Neural Networks, vol.
4, May 1993.

[13] J. B. Lont and W. Guggenbuhl, “Analog CMOS implementation of a
multilayer perceptron with nonlinear synapses,”IEEE Trans. Neural
Networks, vol. 3, May 1992.

1186 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

[14] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and
J. L. Huertas, “A CMOS analog adaptive BAM with on-chip learning
and weight refreshing,”IEEE Trans. Neural Networks, vol. 4, May 1993.

[15] T. Shima, T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita, and T. Iida,
“Neuro chips with on-chip back-propagation and/or Hebbian learning,”
IEEE J. Solid-State Circuits, vol. 27, Dec. 1992.

[16] P. W. Hollis and J. J. Paulos, “Artificial neural networks using MOS
analog multipliers,”IEEE J. Solid-State Circuits, vol. 25, June 1990.

[17] T. Lehmann, E. Bruun, and C. Dietrich, “Mixed analog/digital matrix-
vector multiplier for neural network synapses,”Analog Integrated Cir-
cuits Signal Processing, vol. 9, 1996.

[18] P. W. Hollis and J. J. Paulos, “A neural network learning algorithm tai-
lored for VLSI implementation,”IEEE Trans. Neural Networks, vol. 5,
Sept. 1994.

[19] Y. Neumeier, N. Markopoulos, and B. T. Zinn, “A procedure for
real-time mode decomposition, observation, and prediction for active
control of combustion instabilities,” presented at the IEEE Conf.
Control Applications, Oct. 5–7, 1997.

[20] D. Harjee and F. Reardon, Eds.,Liquid Propellant Rocket Combustion
Instability, 1972, NASA SP 194.

[21] T. Kailath,Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980,
p. 188.

[22] J. Liu and M. A. Brooke, “A fully parallel learning neural network chip
for combustion instability control,” inProc. Int. Joint Conf. Neural Net-
work, July 1999, pp. 2323–2328.

[23] J. Liu, Ph.D. dissertation, Georgia Inst. Technol., Atlanta, June 1999.

Jin Liu (S’96–M’99) received the B.S. degree in electronics and information
systems from Zhongshan University, P.R. China, in 1992, the M.S. degree in
electrical and computer engineering from University of Houston, Houston,
TX, in 1995, and the Ph.D. degree in electrical and computer engineering from
Georgia Institute of Technology, Atlanta, in 1999.

Since 1999, she has been an Assistant Professor of Electrical Enginering at
the University of Texas at Dallas, Richardson. Her research interests include
high-speed adaptive signal processing involving analog and mixed signal in-
tegrated circuit design, low-noise equalization for Gb/s data transmission in
CMOS technology, high-speed current mode driver, wide-dynamic range op-
tical sensor interface circuits, delta modulation technique for test and automatic
adjustment of high-frequency waveform rise/fall time, and power management
circuits for batteryless wireless sensors.

Martin A. Brooke (S’85–M’86) received the B.E.(elect.) degree with first-class
honors from Auckland University, New Zealand, in 1981. He received the M.S.
and Ph.D. degrees in electrical engineering from The University of Southern
California, Los Angeles, in 1984, and 1988, respectively.

He is currently Associate Professor of Electrical Engineering at the Georgia
Institute of Technology, Atlanta. He has four U.S. patents. He has published
more than 100 articles in technical jurnals and proceedings, and articles on his
work have appeared in several trade publications. His interests include high-
speed high-performance signal processing, learning neural-network hardware
development, neural-network prediction of turbulent flow, focal plane image
processing hardware development, 1–20 Gb/s digital CMOS transceiver cir-
cuits for low-cost fiber optic communication, nonlinear filtering algorithms for
telecommunications, nonlinear analog to digital converter design, accurate mod-
eling of high-speed circuit parasitics, and statistically relevant device models for
accurate prediction of high-performance integrated circuit yield.

Dr. Brooke won a National Science Foundation Research Initiation Award in
1990, and the 1992 IEEE Midwest Symposium on Circuits and Systems, Myril
B. Reed Best Paper Award.

Kenichi Hirotsu , photograph and biograpy not available at the time of publica-
tion.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

