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A CMOS Feedforward Neural-Network Chip
With On-Chip Parallel Learning for Oscillation
Cancellation

Jin Liu, Member, IEEEMartin A. Brooke Member, IEEEand Kenichi HirotsuMember, IEEE

Abstract—This paper presents a mixed signal CMOS feedfor- with serial operations. However, reported implementations of
ward neural-network chip with on-chip error-reduction hardware  neural networks do not always exploit the parallelism.
for real-time adaptation. The chip has compact on-chip weighs ca- A common principle for all hardware implementations is their

pable of high-speed parallel learning; the implemented learning al- . . . . .
gorithm is a genetic random search algorithm—the random weight simplicity. Mathematical operations that are easy to implement

change (RWC) algorithm. The algorithm does not require aknown in software might often be very burdensome in the hardware
desired neural-network output for error calculation and is suit- and therefore more costly. Hardware-friendly algorithms are es-
able for direct feedback control. With hardware experiments, we  sential to ensure the functionality and cost effectiveness of the
demonstrate that the RWC chip, as a direct feedback controller, paqyare implementation. In this research, a hardware-friendly
successfully suppresses unstable oscillations modeling combustion . . .
engine instability in real time. glgorlthm, called random-weight-change (RWC) algont_hm [;],

is implemented on CMOS processes. The RWC algorithm is a
fully parallel rule that is insensitive to circuit nonidealities. In
addition, the error can be specified such that minimizing the
error leads the system to reach its desired performance and it
is not necessary to calculate the error by comparing the ac-
. INTRODUCTION tual output of the neural network with the desired output of the

RIGINALLY, most neural networks are implemented‘eural network. This enables the RWC chip to operate as a di-
O by software running on computers. However, as neurgct feedback controller for real-time control applications. '
networks gain wider acceptance in a greater variety of applica" the last decade, research has demonstrated that on-chip
tions, it appears that many practical applications require hig?m'ng is possible on small problems, liker problems. In
computational power to deal with the complexity or real-timES Paper, a fully parallel learning neural-network chip is ex-
constraints. Software simulations on serial computers Cam;?&nmentally tested to operate as an output direct feedback con-

provide the computational power required, since they transfortml,ler suppressing oscillations modeling combustion instability,

the parallel neural-network operations into serial operation\g.hICh is a dynamic nonlinear real-time system.

When the networks become larger, the software simulation
time increases accordingly. With multiprocessor computers,
the number of processors typically available does not compare
with the full parallelism of hundreds, thousands, or millions Neural networks can be implemented with software, digital
of neurons in most neural networks. In addition, softwareardware, or analog hardware [2]. Depending on the applica-
simulations are run on computers, which are usually expensti@n nature, cost requirements, and chip size limitations due to
and cannot always be affordable. manufacturability, each of the implementation techniques has its

As a solution to the above problems, dedicated hardwaredidvantages and disadvantages. The implementations of on-chip
purposely designed and manufactured to offer a higher levell@grning neural-network hardware differ in three main aspects:
parallelism and speed. Parallel operations can potentially pfge learning algorithm, the synapse or weigh circuits, and the
vide high computational power at a limited cost, thus, can potegtivation function circuits.

tially solve a complex problem in a short time period, compared . .
A. Learning Algorithm

Index Terms—Analog finite impulse response (FIR) filter, direct
feedback control, neural-network chip, parallel on-chip learning,
oscillation cancellation.

Il. ISSUES ON THEDESIGN OF LEARNING
NEURAL-NETWORK HARDWARE

_ _ _ The learning algorithms are associated with the specific
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sitive to analog circuit nonidealities, thus, it is not suitabls e .
for compact mixed signal implementation. Learning rules lik ™
serial-weight-perturbation [3] (or Madaline Rule IIl) and the |3 \ LU s - 'F"E_"'IIEHI
chain perturbation rule [4] are very tolerant of the analog circu..,\ _ By N - HFEREERRAE N ]
nonidealities, but they are either serial or partially paralle * [
computation algorithms, thus are often too slow for real-tim*]
control. In this research, we use the RWC algorithm [1], whic [}
is a fully parallel rule that is insensitive to circuit nonidealities ™=
and can be used in direct feedback control. The RWC algorith
is defined as follows.

For the system weights
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w;(n+1)=w;(n)+ Aw,; (n+ 1)
If the error is decreased Aw; (n + 1) = Aw; (n) =7
If the error is increased Aw; = Rand (n) -

whereRand(n) is either+6 or —§ with equal probability,s

is a small quantity that sets the learning rate, ap¢h) and e
Aw;(n) are the weight and weight change:tif synapse atthe
nth iteration. All the weights adapt at the same time in eac”
weight adaptation cycle.

Previously, it has been shown with simulations that a mod #
fied RWC algorithm can identify and control an inductor motor
[5]. Further simulation-based research has shown that the RWig 1. Chip photo.
algorithm is immune to analog circuit nonidealities [6]. An ex-
ample of analog circuit nonidealities is the nonlinearity an

x
=

Vddd

offset in the multiplier, as will be shown in the following sec- Lastoap p°""-E
tion. Replacing the ideal multiplier with the nonlinear multiplie! Ph1 Ph2 Ph3 P%L
constructed from the measurement result of an integrated (™" ,_[I 1 Viand ,Ir “T&T

cuit implementation of the multiplier, we redo the simulation L.._
on identifying and controlling an inductor motor. The results ¢ ce

both conditions are almost identical, with minor difference i
initial the learning process [6].

Vsss

Shift Register Welght Storage and Learning Multiplier

N Fig. 2. Schematic of a weight cell.
B. Synapse Circuits 9 9

Categorized by storage types, there are five kinds of syna
circuits: capacitor only [1], [7]-[11], capacitor with refreshmen
[12]-[14], capacitor with EEPROM [4], digital [15], [16], and Research [11], [18] shows that the nonlinearity used in
mixed D/A [17] circuits. neural-network activation functions can be replaced by multi-

Capacitor Weights are Compact and easy to program, mlmer nonlinearity. In this work, since the Weight multiplication
they have leakage problems. Leakage current causes the wedisuit has nonlinearity, we uses a linear current to voltage
charge stored in the capacitor to decay. Usually, the capaciteggiverter with saturation to implement the activation function.
have to be designed large enough (around 20 pF for room
temperature decay in seconds) to prevent unwanted weight lll. CIrcuIT DESIGN
value decay. Capacitor weights with refreshment can solxe
leakage problem, but they need off chip memory. In addition,
the added A/D and D/A converters either make the chip large orThe chip was fabricated through MOSIS in Orbit:21 n-well
result in slow serial operation. EEPROM weights are compadfocess. Fig. 1 shows a photomicrograph of the 2 mm on a side
nonvolatile memories (permanent storage), but they are procégi. It contains 100 weights in a 3010 array and has ten
sensitive and hard to program. Digital weights are usually larggputs and ten outputs. The input pads are located at the right
requiring around 16-bit precision to implement BP learningide of the chip, and the output pads are located at the bottom
The mixed D/A weight storage is a balanced solution wheside of the chip. The pads at the top and left sides of the chip are
permanent storage is necessary. used for voltage supplies and control signals. This arrangement

For this research, the chip is to operate in conditions whemgkes it possible for the chip to be cascaded into multilayer
the system changes continuously and so weight leakage progtworks.
lems are mitigated by continuous weight updates. Thus, the chiprhe schematic of one weight cell is shown in Fig. 2. The left
described here uses capacitor as weight storage. The weighpit is a digital shift register for shifting in random numbers.
tention time is experimentally found to be around 2 s for loosinbhe right part is a simple multiplier. The circuits in the middle
1% of the weight value at room temperature. are the weight storage and weight modification circuits.

€ Activation Function Circuits

Chip Architecture



1180 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002

5,01 - - seight. o gy o
F : : : 1 smins :
s o weignt
v — :
{ 3
. Shift_in
i ' A :
n ! .| L Bt . s
1 ! .
W ST LN : : Weight Value
- L ) N o3 AR e e e e T . . PR ARAR SRR AT,
0. FLoome 200. 0y G 400, om iﬁloo,o.-. 500.0m T 0. Om : R .
o. v time (1m 1 800.0m
! i 1y :
Shift_in="1" Shift_in= ‘0" Weight value sdiv

Fig. 3. HSPICE simulation result on the adjustment of a weight value.

i

The shift registers of all the cells are connected as a Chai'not‘ﬁ' B
therefore, only one random bit needs to be fed into the chip e
a time. At a given time, each cell sees a random number at t m
output of the shift register, being either “1” or “0.” If it is “1,”

the voltageV;..q is equal toVyyg; if it is a “0,” the voltage is o

equal toV,.

B. Weight Sttage andAdaptation Circuits -2y L : ‘ ‘
-436ms 28@ms div 1.564s

The weight charge is stored in the larger capaditgt with
V., representing the weight value. Switching cloBk3 on, Fig. 4. Measured result on the adjustment of a weight value.
while clock permis off, loads the smaller capacitéf, with a
small amount of charge. Then, connectifig in parallel with are shown in the figure, the rest of the cycles are identical to the
the smaller capacito€’, changes the weight value. Suppossecond cycle.
that the voltage across, is V, and the voltage across,, is The weight increment and decrement rates are determined by
V.. before connecting them in parallel, after connecting thethe values of/yqq, Viss, andLastcap as mentioned earlier. In
in parallel for charge sharing, the final voltages across theiis simulation,Vyqq is 5 V, Vi is 0 V, andLastcapis 2.5
are the same, supposed to Bg,.... The total charge carried V. When a “0” is shifted in,V;.nq €quals to 0 V; when a “1”
over the two capacitors does not changgy, + C,V, = is shifted in,V;.,q4 equals to 5 V. However, the voltage at the
(Cs 4+ Cu)Vinew, thus the new voltage across,, V.., bPottom plate of”; does not always equal #..,q exactly, due
will be V. new = (C.)/(C, + C)V, + (CW)/(Cs + Cy,)V,.  to the NMOS switching gate controlled #h3 which is 5 V.

In this implementation, the”,, is 100 times ofC,, thus Suppose the threshold voltage of the switching gate is 0.7 V, the
Veonew = 0.01V, 4+ 0.99V,. So, every time, the weight valuevoltage at the bottom plate &, equals to 4.3 V whe¥,ana
changes approximately by 1% of the voltage acidssHow- equalsto 5V, and equals to 0 V wh&n,,q equals to 0 V. Thus,
ever, the change is nonlinear, due to the weight decay tering increment step is approximately 0.018 V while the decre-
0.99V,. in the above equation. The bottom plate@f will be  ment step is 0.025 V, corresponding to about/2-bit resolu-
charged toV;..q, Which will be eitherVy,q or V.. The top tion.

plate of C, is connected to a bias voltag@stcap The values  Fig. 4 shows the measurement result of the weight increment
of Vaaa, Vess, and Lastcaptogether control the step size ofand decrement, for comparison with the simulated result shown
weight change. Th&pp, is an external biasing to set the rangé Fig. 3. The shiftin data are series of “0s” and “1s.” In this

of the actual weight value, which is the sum of the valu&gy measurement, the three voltages controlling the weight incre-
and the charge acros%,. Clock perm2has a complementary ment and decrement step size are adjusted so that the up slope
phase of cloclperm and the down slope are almost symmetrical.

An individual weight will have its value either increased or The following scheme implements the RWC learning. If the
decreased every time the cloBk3is activated. When the datacalculated error decreases, cloéksl andPh2stop. The same
shifted into the weight cell is a “1” (5 v), the weight is increasedandom number, representing the same weight change direction,
and when the data shifted in is a “0” (0 v), the weight is dewill be used to load’; with the charge, thus, the weights change
creased. Fig. 3 shows the results of an HSPICE simulationiofthe same direction. If the error is increased, cloekd and
the weight changing with time. In the simulation, from the tim&h2are turned on, a new random bit will be shifted in, resulting
0 to 200 ms, a series of “1s” are shifted into the cell. CIBti8 a random change of the weight values.
is activated to allow the random number to be added to the per- o o
manent weight change; clogermtumns on and off to make C- Multiplier Circuits
permanent change on the weight value. CloekS8 andperm The operation of the multiplier, whose schematic is shown in
have complimentary phases with period of 2 ms. As a result, tR&. 2, is as follows. The voltagg,,,;, is the substrate voltage,
weight keeps on incrementing for 100 times during the 200 mich is the most negative voltage among all the biasing volt-
period. From time 200 to 400 ms, a series of “0’'s” are shifted tges. In the simulation and experiments, we use complimentary
the cell, so the weight keeps on decrementing. The same progesser supplies, i.e.V;w = —Vu.w. The output of the multi-
repeats for several cycles in the simulation. The first two cyclesier is a current flowing into a fixed voltage, which should be



LIU etal: ACMOS FEEDFORWARD NEURAL-NETWORK CHIP 1181

1 wer
F N 20utl,su0
: R . . - % “ilvout
80.0u : : - : — PC

60.0u

M E
b 40.0u : ! - g - - EEREE R -

1 zo.ouf e - - i = o 3
h £

2024—» = e :“*" Multiple Input/Output Card
—40.0u§ Offset : : ER
~60.0uf— S . . feos T 8 wwe3sv A .
O: T R S e : 09 d Analog Input | Digital Output Digital Qutput
Fig. 5. HSPICE simulation result on the multiplication function. 5 :‘; oo 2
1 E =
10 Chip Control 5 M Chip Input
80 SIgndls lilllllll .
o e ¥ Chip Output
" // [Currem to Voltage Conversion ’
2 2 —— lout+
§ o / +:ou:-‘ Fig. 7. Test setup for the inverter experiment.
- 04 08 12 2 24 28 32 36 4 44 48
20
0 \k-\'*-\- makes the error to increase, the weights keep this change, and
0 try on a different change for the next iteration.
- The test setup shown in Fig. 7 is used to demonstrate the
e random-weight-change learning process. The task is to train a

two-input—one-output network to implement an inverter. It is
configured so that one inputis always held high as the reference,

. . o . while the second one alternates between high and low. The de-
in the middle ofV},,, and V,,; in this case, it is ground. The gjqq output is the inverse of the second inpu.

weight voltageV,, is added at the gate of M2. Fig. 5 shows the |, the test, the high and low are set to two voltage values for
HSPICE simulation result of the multiplier. The horizontal axighe network outputs to reach. The network then is trained to min-
is the input voltageVin), the vertical axis is the output currentmize an error signal, which is calculated as follows. Suppose
(Zou:), and different curves represent different weight voltag@at the desired output values of high and low Bgand D;,
values(V,,). The multiplier attempts to produce a multiplyingand the actual output values of high and low @gandO;, the
relationship as followsZ,,.; = Vi, * V... WhenV,, is about 2 grror is calculated asrror = \/(Dh — On)2 + (D — O)2.
V, the drain of M2V, is about 0 V; wher¥/,, is below 2 V.V Thus, when the error is small enough, the network implements
is positive and wheii,, is above 2 ViV, is negative. The range an inverter. The error is not calculated on current chip. Rather,
of V is small to ensure that M3 is operated in the nonsaturatigns calculated on PC in the test setup and is sent to the chip, as
region, thus the output current of M3 is approximately propog: 1-bit digital signal. However, the error calculation can be in-
tional to drain-source voltag&pss. Depending on the polarity corporated on the same chip, with additional digital circuits for
of V,, the output currenk,,; can flow in both directions and is error calculation.
defined as follows: The desired low and high output voltages, in this experiment,
( B(Vin = Vi)V, V>0 are 1 and 2 V. So, the desw_ed output shou_ld oscillate between 1
Tout = (Vi — Vi = Vie)Wa, Va <0 and 2 V. Fig. 8 shows a typical initial learning process captured
PV =Va=Vr)Va, Vas from the oscilloscope. The figure shows that, within 0.8 s, the

where Vi is the threshold voltage of M3. The above equaﬁoﬂetwork is trained to behave as an inverter with the specified

explains why the simulated multiplier has both offset and nofigh and low output voltages. _

linearity. The nonlinear relationship is actually desirable as jt Aftér the initial training, the network converges to the inverter
eliminates the need for a nonlinear stage following the mulfidnction. Then, the network tries to maintain the performance
pliers, as discussed earlier. as an inverter by continuously adjusting itself. Fig. 9 shows a

Hardware test results, presented in Fig. 6, show that the m&20-ms time slice of the continuously adjusting process; the de-
sured multiplier function is close to the HSPICE simulation rexred high and low ou_tput vqltages are 1.5 and 0.5 V for this
sult. The two lines are constructed from the measured poi e The_re are two signals in the plo_t. One of thgm '59“39
when the weight is programmed to be at its maximum and miﬁ—OCk’ which is represented by the spikes shown in the figure.

imum. The horizontal axis is input voltage, with units of V an(ﬁ Z'th_c’f ‘t)hzmetaphs that a r:ev;/ r?n_dom numt_ﬁr 'Sti'ﬁed. n |
the vertical axis is current, with units i, and indicates that the error starts to increase. The other signa

is the inverter output. It oscillates between high and low, since
the input alternates between low and high. The two horizontal
markers indicate the desired high and low voltages.

In the learning, a permanent change is made every time a nevistarting from point A (time 0), indicated by the trigger arrow,
pattern is shifted in. If the change makes the error decreaskck ph2is high, thus, a new random pattern is introduced.
the weights will keep on changing in the same direction in tHerom point A to point B, the output signal oscillates between
following iterations, until the error is increased. If the changeigh and low, converging to the desired high and low values.

Fig. 6. Measured result on the multiplier output current range.

IV. LEARNING PROCESS
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Fig. 8. Oscilloscope screen capture of the initial learning process for the FEEDBACK CONTROL

inverter experiment, with the desired low and high voltages as 1 and 2 V. The combustion system is a dynamic nonlinear system, with
randomly appearing oscillations of different frequencies and un-
v e 1 . : stable damping factors. When no control is applied, this system
N nverter Output is unstable and eventually reaches a bounded oscillation state.
Error The goal of the control is to suppress the oscillation. There are
Decreasing several well-known passive approaches for reducing the insta-

PP e vy € Desiearen | DIlitiEs [19], [20]. However, the implementation of such passive
| H "H "~ approaches is high cost and time consuming, and they often fail

: l L to adequately damp the instability. The effort of developing ac-
d - Decired Low tive control systems for damping such instabilities has increased
i | in recent years. Since the combustion system is a nonlinear
£ system, the system parameters vary with time and operating
i conditions. The active controllers that developed to suppress the
oscillation in fixed modes cannot deal with the unpredicted new
A (Time 0) B C ' oscillation modes. In addition, the actuation delay presented in

the control loop also causes difficulties for the control.

In this research, we use the neural-network chip for direct

i Tone are o feedback control [21] of the oscillation. The RWC chip has

on-chip learning ability; the weights on the chip are adjusted in

Fig. 9. Oscilloscope screen capture of the detailed learning process of Hﬁrallel, which enables the chip to adapt fast enough for many
Inverter expenment. real-time control applications. The adaptation time of each
weight update is about 2 ns. Fig. 10 shows the direct feedback

According to the error calculation equation, the error decreasesntrol scheme with the neural-network chip as controller. The
During this process, clocRh2 stops to let the network keeptapped delay line in control setup is used to sample the plant
on using the weight change, which is consistent with the algoutput (combustion chamber pressure). In general, a period of
rithm. The error decreases until point B, when the error statise plant output of the lowest signal frequency is to be covered.
to increase. Thus, the network stops using this weight changethe same time, the sampling rate of the tap delay line should
direction and tries a new pattern, indicated by a spiket¥at also be faster than the Nyquist sampling rate of the highest
point B. Unfortunately, this pattern cause the error to increaggsquency component of the plant output. The rule is that the

the network gives up this direction pattern and tries a new onfsural network should be provided enough information on

indicated by another spike at point C. As this process goes @ffe plant dynamics. Software simulation [22], [23], using the
the network dynamically maintains its performance as an igetup in Fig. 10, suggests that it is possible to suppress the
verter by continuously adjusting its weights. combustion oscillation with the direct feedback control scheme

The above experimental results show that the recordgding the neural-network controller with the RWC algorithm.
hardware learning process complies with the random weight

change algorithm and the weights of neural-network chip can
be trained in real time for the neural network to implemerH,'

. . : ar
simple functions. Next, we apply the chip to a more compli-
cated application—direct feedback control for combustion In this simulation, the combustion process is modeled by the
oscillation cancellation. limit cycle model:& + 2¢w(x? — b)/(b)i + w?x = u, where

"
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Combustion Model With Continuously Changing
ameters
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ously changing parameters.
A
‘Analog Input | Digitat Output Analog Output
u 1s the input to the engine; is the outputw is the oscillation o
frequency( is the damping factor, arfdis limit cycle constant. 5 f | 18
The simulation runs with a sampling rate of 8 kHz. The feed- 1 o E}
. . . ot -y 4——
forward neural network had eight inputs, three hidden neurons, Chip Control & § Chip Input
and one output. The combustion engine output is tap delayed; Signals rrrrrera.
the original engine output and the tap-delayed signals are the ¥ Chip Output

inputs of the neural-network controller. The model parameters |Current to Voltage Conversion |
of the combustion process change with time and with prefixed
ranges: 400-600 Hz for frequency, 0-0.008 in damping factéig. 13. Experimental test setup.
and 1-100 in limit cycle constant.

Fig. 11 shows the simulation result when the parameter VI. EXPERIMENTAL RESULTS
change rate is 1 point/s. It means that every second, a new

. L . Test Setup

set of plant model parameters are randomly picked within the
parameters’ predefined range and the value of the parameter§he hardware test setup is shown in Fig. 13. To test the hard-

between these randomly picked pointed is defined by lineat§A"e chip, we simulate the oscillation process on a PC, which
nly provides digital outputs. The analog-to-digital converter

interpolating between the two neighbor points. In the ﬁguﬁb\DC 2 .
; N ) and the digital-to-analog converter (DAC) cards provide
:Jh:rar:r?gtzeorrs]tavlvr?ixclﬁ ::Shgrr?gz \-/Ttﬁ t?rgeﬂ;r?g v%liﬁtiair:eﬂ;is[i‘l':\kg[rl]t[erface between the o_sci_llating process and the _hardware c_hip.
I ' . : e neural-network chip itself requires several interface pins
oscillations for_the. engine. The bottom plot is the enging e power supply, two nonoverlapping clocks to synchronize
output, the engine is stabilized around 2 s. The error signaly, |eaming process, a random bit, and one-bit error increase or

the low-passed signal of the engine output. decrease signal. Most of the interface signal can be generated
_ by standard circuits available in the literature, except the one-bit
B. Noise Tolerance error increase or decrease signal, which has to be desahed

This section presents the simulation result of the neural-ng@¢depending on the application. _ _
work control of the simulated limit cycle single frequency !N the test, the chip and the PC simulating the combustion

combustion instability with 10% random noise. The purpos%l(otgessforT;closedblootp.The compute(rjrunsthetpro?r:am sim-
of these simulations is to determine the noise tolerance %famg unstablé combustion process and generates he engine

the system. The 10% noise is a fair estimation of the re&%gpm' The tap-delayed engine outputs are sent to the chip in

busti ; The olant ¢ follows: rallel through the DAC. The chip functions as a direct feed-
combustion system. The plant parameters were as Tollows: Pl controller and generates a control signal for the combus-

frequency was 400 Hz, the damping factor was 0.005, and &, engine. The chip output is a current, it is first transformed
limit cycle constant was one. The initial engine pressure wgs 5 voltage and then read into the computer by the ADC. The
0.1, without control it eventually enters a limit cycle that With/veights of the chip are updated every time an error is calcu-
an amplitude of 2 in about 400 ms as shown in the top plgfted. Due to system delay (mainly combustion actuator delay),
in Fig. 12. The bottom plot shows the engine output with thge have to wait for about two cycles to calculate the error based
control of the neural network; only the additive noise remairen the previous weight update. Within these two cycles, the
in the engine output after about 5 s. combustion simulation process keeps on generating outputs, and
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In this experiment, the combustion process is simulate
using the limit cycle model. The frequeneyis 400 Hz and
the damping factot is zero. The run time for the simulation
is 10 s. Assigned an initial state with the oscillation magnitud§
of 0.5, the process will reach a fixed oscillation magnitud: g
of one, if no control is applied. The error signal is specifie(§>,1 54 -
to be proportional to the magnitude of the oscillation and i
calculated by low-passing the rectified engine output oscillatic
signal. Thus, minimizing the error signal will minimize the 25,
oscillation magnitude, which in turn suppress the oscillatio
appeared at the engine output.

F|g 14 shows one of the test results. The first plot inthe f|guF@ 16. Experimental result on the suppression of an unstable oscillation with
is the engine output and the second plot is the error-decrem@RE"P @ & feedback controllar £ 0.001).
signal. A “1” of the error-decrement signal means that the error .
decreases and a “0” means the error is increased. At around &5 Unstable Oscillations
the oscillation magnitude is greatly reduced and the oscillationThe above experimental test shows the chip suppressing a
is limited to a small magnitude afterwards. Fig. 15 shows tteable oscillation, in this section, we present the experimental
details of the learning process. At the beginning of the learnimgsult of the chip suppressing unstable oscillations. The os-
process, the chip explores weight changes in different direglation frequency is 400 Hz and limit cycle constant is one.
tions, the error-decrement signal oscillates and the output m&gg. 16 shows the result with damping factor of 0.001. The
nitude increases slowly. At about 0.6 s, the chip finds a goatlip suppresses the oscillation within around 1 s and limits
weight change direction, it then keeps on changing the weighii® magnitude to be within 0.3. Fig. 17 shows the result with
in this direction. As a result, the error-decrement signal remaidamping factor of 0.002. The chip suppresses the oscillation
to be “1” for this period and the magnitude of the oscillation iwithin around 1 s. There are two big reoccurred blowups with
greatly reduced. For the rest of the process, the weights adjustgnitude of 1.8 and 0.7, after which the engine output is
to stay around the optimal value; the error-decrement signal finited to the magnitude to be within 0.5.
qguently oscillates between “0” and “1” and the oscillation mag- In both experiments, the weights are adjusted continuously
nitude fluctuates, within a small range. after the initial oscillation suppression. It is observed that as

The above results show that the RWC chip is able to suihve damping factor increases, the chip has harder time to limit
press the oscillation to a small magnitude. It takes about 1 sth@ engine output within a small magnitude, the reason is that a
suppress the oscillation initially. After which, the oscillation isarger damping factor results in an oscillation with larger magni-
limited to a small magnitude. tude. In addition, the I/O card delay and the software simulation

400Hz, b

{F

-1

10 20 30 40 50 60
time(s)
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Fig. 18(c) shows that at certain time, the weight change can cause
the controller output to be in phase with the engine oscillation
and the amplitude of the engine oscillation increases. Fig. 18(d)
shows that the neural network finds a weight change direction
that suppressing the oscillation and the oscillation amplitude is
decreasing. The neural-network controller output and the engine
outputalmost have complementary phases. As mentioned in Sec-
tionV, there is actuator delay in the combustion engine model, so
the controller output signal cannot be exactly 180t of phase

with the engine oscillation in order to suppress the oscillation.
Fig. 18(e) shows that the engine oscillation is further suppressed
to very small amplitude. After the neural network controller is
trained, the engine outputis limited to a small residue oscillation,
as shown in Fig. 18(f). The result shown in Fig. 18 is for
unstable limit cycle oscillation with damping factor of 0.001.

VII. CONCLUSION AND FUTURE WORK
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Fig. 17. Experimental result on the suppression of an unstable oscillation with

the chip as a feedback controllér £ 0.002).
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Fig. 18. Video capture of the neural-network controller suppressing the

oscillation.

time of the engine cause the weights to decay and drive thent®!

away from the learned values.

We presented a mixed signal CMOS integrated circuit imple-
mentation of feedforward type neural networks; all the weights
on the chip are adjusted on-chip in parallel for fast real-time
control. The implemented RWC learning algorithm enables the
chip to function as a direct feedback controller for real-time
control applications. Through hardware experiments, we have
demonstrated the successful oscillation cancellation using the
chip as a direct feedback controller. Future work includes ad-
justable learning step size proportional to the error signal and
nonvolatile weight storage.
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