A Fully Parallel Learning Neural Network Chip for Real-time Control

Jin Liu and Martin Brooke
Georgia Institute of Technology
791 Atlantic Drive, MiRC, Atlanta, GA 30332, USA
Emails: jliu@ee.gatech.edu and martin. brooke@ee.gatech.edu

Abstract

Presented in this paper is a parallel learning neural
network chip, which is used to perform real-time output
feedback control on a nonlinear dynamic plant. The
controlled plant is a simulated unstable combustion
process. Neural networks provide an adaptive sub-optimal
control that does not need any prior knowledge of the
system. In addition, the hardware neural network
presented here utilizes parallelism to achieve speed
independent of the size of the network, enabling real-time
control. On-chip learning ability allows the hardware
neural network to learn on-line as the plant is running and
the plant parameters are changing. Also described is the
experimental setup used to obtain the results.

1. Background Review

The goal of our research is to implement a learning neural
network chip to control real-time systems. Real-time
systems require that the processing occur within a short
period. The real-time system considered here is the
combustion in jet or rocket engines, for which the plant
time constants are associated with the combustion process
and the fuel injection delay. Because of this, neural
networks operating in a few milliseconds are required.

Neural networks have been successfully applied in many
areas, from engineering to economics, from forecasting to
control. In the control area, they have been applied to
control robot arms, chemical processes, continuous
productions of high-quality parts, and aerospace
applications [1]. Previous research [2] [3] [4] showed that
neural networks could be used to model and control
complex nonlinear physical systems with unknown or
slowly varying plant parameters.

Our research is part of the Multidisciplinary University
Research Initiative (MURI) on Intelligent Turbine Engines
(MITE) project, supported by DOD-Amy Research Office,
under Grant No. DAAH04-96-1-0008.

0-7803-5529-6/99/$10.00 ©1999 IEEE 2323

A neural network controller can be a general-purpose
controller. The same neural network can be reconfigured
for dissimilar applications. In conventional control
methods, an extensive study and understanding of a system
is required to build a controller, especially for that system.
A peural network can control a system without previous
knowledge of the system, and an on-line learning neural
network can adjust on-line to unexpected conditions,
which is very difficult with traditional control methods.

Another potential advantage of the neural network is its
parallelism. Human neural systems solve complicated
problems with parallel operations of many neurons. The
parallel operations make it possible to solve a complex
problem in a short time period, compared with serial
operations. However, reported implementations of neural
networks do not all exploit parallelism fully.

Criginally, most neural networks are implemented by
software running on computers. However, as neural
networks gain wider acceptance in a greater variety of
applications, it appears that many practical applications
require high computational power to deal with the
complexity or real-time constraints [9]. Software
simulations on serial computers can not provide the
computational power required, since they transform the
parallel neural network operations into serial operations.
When the networks get bigger, the software simulation
time increases accordingly. With multiprocessor
computers, the number of processors typically available
does not compare with the full parallelism of hundreds,
thousands, or millions of neurons in most neural networks.
In addition, software simulations are run on computers,
which are usually expensive and can not always be
affordable.

As a solution to the above problems raised by software
simulation, dedicated hardware is purposely designed and
manufactured to offer a higher level of parallelism and
speed. It can potentially provide high computational
power at a limited cost.

A common principle for all hardware implementations is
their simplicity. Mathematical operations that are easy to
implement in software might often be very burdensome in
the hardware and therefore more costly. Hardware-
friendly algorithms are essential to ensure the functionality
and cost effectiveness of the hardware implementation.

In this research, a fully parallel learning analog neural
network chip that implements a hardware-friendly
algorithm, called random weight change (RWC), is used to
successfully control a simulated dynamic, nonlinear real-
time system.

2. Proposed Real-time Control Scheme with
Neural Network
A general direct feedback scheme [5], as depicted in

Figure 1, is proposed for real-time nonlinear system
control, using learning neural network chips.

Control signal Output
Plant

NN C

Figure 1: A Neural Network Controller

In Figure 1, the plant is a dynamic nonlinear system.
Unlike static systems, whose inputs and outputs are
uniquely mapped, the outputs of dynamic nonlinear
systems depend on internal states, system parameters, and
inputs. Moreover, for nonlinear systems, their system
parameters vary with the time and operating conditions.
The tapped delay line is used to sample the plant output
history; it should be long enough for the neural network to
infer the state of the plant. In general, a period of the plant
output of the slowest signal frequency is to be covered. At
the same time, the tap delay line should be faster than the
Nyquist sample frequency of the highest signal frequency.
The rule is that the neural network should be provided
enough information about the plant dynamics.

3. Issues for On-chip Neural Network
Implementation

There are two general categories of hardware neural
networks: digital hardware and analog hardware.

2324

Digital hardware has the advantage of implementing
precise computation units like adders, shifters, and
multipliers. Analog hardware experiences circuit
nonidealities, like nonlinear multipliers and the weight
leakage. On the other hand, the analog circuit is much
more compact than the digital circuit. Because of the size
difference, most analog neural chips are implemented by a
parallel matrix of neural cells, while most digital neural
chips need to share computation units.

The degree of parallelism for the digital hardware varies
with different implementations. One category of the
digital chips is general-purpose digital processors (i.e.,
DSP chips) and digital logic arrays (i.e., FPGAs). They
are the same circuits as in a computer. However, they are
more cost effective and faster than computers. For this
category of hardware, the degree of parallelism is either
serial, or partially parallel. Another category of digital
chips is dedicated chips, designed to implement neural
networks. They are similar to analog chips, but use digital
circuits instead of analog circuits. They can be made fully
parallel. However, since digital computation units are
much larger than analog units, a fully parallel digital chip
would be very large [6] [7] [8], thus very expensive.

On the other hand, a fully parallel neural network of useful
size can be implemented on a single integrated chip using
analog circuits. The analog implementation is a more
efficient implementation compared with the digital
implementation. As mentioned before, there are
difficulties for the analog implementation: the need for
hardware-friendly leamning algorithm with full parallelism,
the added hardware on-chip learning ability, and the
difficulty with long-term storage, etc. If the analog
implementation can overcome these design difficulties, it
can provide fully parallel neural networks, which would
offer a higher degree of the performance than digital
systems.

Full parallelism is desirable, but its advantage is obvious
only when the neural network size is large. When the
neural network size is small, there may not be a big
difference among software networks, partially parallel
hardware, and fully parallel hardware. However, when the
size of the network increases by several orders of
magnitude, the difference in speed between the fully
parallel hardware and other networks can increase

proportionally.

The major drawback of all hardware implementations is
that they must often be designed for a specific application.
Therefore, their use can be justified only for either very
large quantities or very high-performance requirements
[9]- General-purpose digital hardware has an advantage in
this perspective. It is available in the market, and only
software configurations are needed. In addition, digital

hardware is generally easier to design than analog
hardware. Analog hardware is more costly to design.
However, if the analog design overcomes the design
difficulties, and is in mass production, the cost would be
much smaller. As mentioned before, neural network
controllers can be general-purpose controllers. Once a
good design is ready, it can be reconfigured with minor
effort for dissimilar applications.

In summary, there are advantages and disadvantages for
both digital and analog hardware. When the computation
power is not high, it is cost efficient to use software and
digital solutions. Only when high computation power is
required is the analog circuit preferable, given a good
analog implementation.

There are mainly three issues for building parallel on-chip
learning hardware neural networks: the chip architecture,
the activation function circuit, and the synapse circuit.

We choose the feed forward architecture for the network.
The algorithms associated with this type of architecture are
the well-known back propagation algorithm (BP), the
chain perturbation rule etc. However, BP algorithm
requires that the output of the neural network be known
and so cannot be directly used in the neural network
control scheme proposed above. In addition, the BP
algorithm has proven sensitive to analog circuit non-
idealities, thus it is not a good choice for this work.

Leaming rules like serial-weight-perturbation [10], or
Madaline Rule Il (MRIII) are very tolerant of the analog
circuit non-idealities, but as they are slow serial
computation algorithms, the speed advantage of the
paraliel hardware is lost. The Chain Perturbation Rule
[11] is based on the serial-weight-perturbation learning
rule. It is tolerant for nonlinear analog multipliers, but it
uses partially parallel learning, still is not a fully parallel
algorithm.

The random-weight-change algorithm [12] is more suitable
for the industrial control applications. It is tolerant to
sever analog circuit nonidealites. The error to be reduced
is not specified in the algorithm, instead it can be any
error. For the control scheme shown in Figure 1, the error
can be at the plant output as desired. The disadvantage of
the random-weight-change algorithm is that it takes longer
to learn than the back propagation algorithm.

A linear current to voltage converter with saturation is
used to implement the activation function [13] [14].

There are five kinds of synapse circuits currently used.
They are categorized by storage-type. They are capacitor
only [14] [15] [16] [17] [18] [19], capacitor with

2325

EEPROM [11], capacitor with refreshment [20] [21] [22],
digital [23] [24], and mixed digital/analog circuits [25].

Digital weight circuits are large, requiring 16-bit precision
to implement BP learning. EEPROM weights are very
compact nonvolatile memory, but are process sensitive,
and extra compensation circuits are required. Capacitors
with weight refreshment need off chip memory, which is
not a compact solution, and the added A/D and D/A
circuits either make the chip large or result in serial
operation. Capacitor weights are easy to use, and compact.
However, they have leakage problems. To prevent
leakage, the capacitor may have to be large, a 20pF
capacitor is around the same size as an eight-bit digital
weight. However, for the application for which leakage is
not a problem, capacitor weights are a good solution. The
mixed digital/analog type weight storage is a balanced
solution when nonvolatile memory is necessary.

The random weight chip described here uses capacitor
weight storage. Potentially, there will be a leakage
problem, and a nonvolatile weight may be desirable
eventually. However, for the current research, the
controlled plant is a dynamic system, which changes fast
with time. The weights continue to adjust on-line, so that
the leakage is compensated for and is not a problem.

4. The Random Weight Change Algorithm

The Random Weight Change (RWC) algorithm is defined
as follows for weights w;

w; (0+1) = w; (n) + Aw; (nt+1);

if error decrease, Aw; (n+1) = Aw; (n);
if error increase, Aw; = rand(n);
rand(n) = + & or - 8 with equal opportunities, and
0 = a small enough quantity,

where w; (n) and Aw; (n) are the weight and weight change
of i neuron, at the n® iteration respectively.

Software simulations using modified RWC algorithm to
identify and control an inductor motor [26] was successful.
Further research proved that the RWC algorithm is
immune to the analog circuit non-linearity [27].

5. Software Simulation of Combustion
Instability

The dynamic nonlinear system we seek to control is
combustion instability. When no control is applied, this
system is unstable and eventually reaches a bounded
oscillation state. The goal of our control is to suppress the
oscillation.

There are several well-known passive approaches for
reducing the instabilities [28]. However, the
implementation cost of such approaches is high and the
design process time consuming, and they often fail to
adequately damp the instability. The effort of developing
active control systems for damping such instabilities has
increased in recent years. However, since the combustion
system is a nonlinear system, the system parameters vary
with time and operating conditions. Thus active controllers
that are developed to suppress the oscillation in fixed
modes cannot deal with unpredicted new oscillation
modes. Also the actuation delay present in the control
loop also causes difficulties for the control.

We have carried out extensive combustion instability
control with the random-weight-change algorithm. The
models used are the simple oscillators and limit cycle
oscillators. The simulation performed includes single
frequency, multi frequency, continuously changing system

Figure 2: Chip Layout

parameters, and added noise. They are all successful. - st vﬁ;’_w W
Ll f,j Ph2 l:! Ph3 };T‘_' - Vo1 L ot
6. Neural Network Hardware Control of s %L_L = A T 5.15 1,
Combustion Instability e L—:.——‘ Vo
The chip layout is shown in Figure 2. It consists of 10x10
Shift Register Weight Storage and Leamning Multiplier

arrays of weight cells. The schematic of a weight cell is
shown in Figure 3. The left part is a shift register for Figure 3: Weight Cell Schematics
shifting in random numbers. The right part is a simple
multiplier. The circuits in the middle are the weight
storage and weight modification circuits. The weight is
stored in the capacitor, and it is changed by charge sharing.

To control the computer simulated combustion plant with
the real neural network chip, the test setup shown in Figure
4 was used. The computer runs a program that simulates
the unstable limited-cycle engine. The RWC and the
computer are connected by two data acquisition cards to
form a closed loop. The engine output generated by
differential equation models is tap-delayed and sent to the
input of the chip through the analog output card (AT-AO- Rveievi Naions! Jnsmament
10). These inputs are forward propagated through the

neural network chip, and an output is generated. The
weights are adjusted according to the random weight
change algorithm in order to minimize the magnitude of
the engine output. The chip output is current, it is
transformed to voltage and read in to the computer by the
analog input card (AT-MIO-16E).

| Analog Output

Figure 4: Test Setup

The result of the neural network chip controlling computer
simulated combustion instability is shown in Figure S.
The run time is 10 seconds. The first plot of the results is

2326

the engine output under the control of the RWC chip. The
second plot of the results is the error signal used to control
the learning. A '1' means the error is decreasing, thus the
weights should keep the last good change, a '0' means the
error is increasing, thus the weights should change to
another random number. The plots show that when the
chip finds a good set of weight changes, it keeps on using
them to decrease the magnitude of the engine output. It
happens when the error signal remains at '1' for a period of
time, shown by the big gaps in the error signal plot.
Otherwise, the chip randomly searches for the right weight
change, the emor sometimes decreases, sometimes
increases. This happens when the error signal frequently
oscillates between '0' and '1', indicated by the dark blocks
in the error signal plot.

Figure 6 shows the details of the initial learning process

and Figure 7 shows more details of the continuously
adjusting process.

2 —r

o o oo

efror, 1:e-dec, 0:em-Inc

time (second)

Figure 5: Hardware Neural Network Controlling Computer
Simulated Combustion Instability

AR
R O IR AR

*5 AR i

onging output with error signat

02 04 06 08 1
time (s)

Figure 6: Details of the Initial Learning Process

2327

08 1

06

C4H

engine output with error signal

Figure 7: Details of the Continuously Adjusting Process

The result shows that the RWC chip can successfully
suppress the initial instability of the engine within about
0.8 second. After which, the chip continuously adjusts on-
line to limit the engine output to be within a small
magnitude.

7. Conclusion and Future Work

The above result shows that the RWC chip is able to
control a simulated combustion engine tc the desired
performance.

An improved version of the chip in 0.35-um CMOS
process is being fabricated. It contains two layers of
neural networks, with 720 weights. The new chip has
varying learning step size proportional to the error signal.
When the error is small, the weights make small
adjustments around the current learned value. Thus, a
wrong adjustment will not drive the weights far from the
learned value, which is relatively good when the error is
already small.

8. References

[1] Werbos, P.J., “Neurocontrol and elastic fuzzy logic:
capabilities, concepts, and applications,” IEEE Transactions
on Industrial Electronics, vol. 40, no. 2, pp. 170-80, April
1993.

[2] Ahmed, R.S., Rattan, K.S. and Khalifa, 1H., “Real-time
tracking control of a DC motor using a neural network,”
Proceedings of the IEEE National Aerospace and
Electronics Conference, vol. 2, pp. 593-600, 1995.

[3]1 Shaffner, and C., Schroder, D., “An application of general
regression neural network to nonlinear adaptive control,”
Fifth European Conference on Power Electronics and
Applications, vol. 4, pp. 219-24, September 1993.

[4] Kalanovic, V.D. and Tseng, W.-H., “Back-propagation in
feedback error leaming,” Proceedings of Neural, Parallel
and Scientific computations, vol. 1, pp. 239-42, might 1995.

[5] Thomas Kailath, Linear Systems, p. 188, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 07632, 1980.

[6] Yuzo Hirai, “Recent VLSI Neural Networks in Japan”,
Journal of VLSI Signal Processing, 6, 7-18, 1993.

[71 H. Eguchi, T. Furuta, H. Horiguchi, S. Oteki, and T.
Kitaguchi, “Neural Network LSI Chip with On-Chip

Proceedings of the International Joint
Conference on Neural Networks, Vol. 1, pp. 453-6, 1991.

{8] Akira Masaki, Yozo Hirai, and Minoru Yamada, “Neural
Networks in CMOS: a Case Study”, IEEE Circuits and
Device Magazine, Vol. 6, No. 4, P.12-17, July 1990.

[9] L. M. Reyneri, "Neuro-Fuzzy Hardware: Design,
Development and Performance”, Private Communications.

[10] M. Jabri and B. Flower, “Weight Perturbation: An Optimal
Architecture and Learning Technique for Analog VLSI
Feedforward and Recurrent Multilayer Networks”, IEEE
Transaction on Neural Networks, Vol.3, No.1, January 1992.

[11] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, “An Analog
'VLSI Neural Network with On-Chip Perturbation Learning”,
IEEE Journal of Solid-State Circuits, Vol.32, No.4, April
1997.

[12] K. Hirotsu and M. Brooke, “An analog neural network chip
with random weight change leaming algorithm”,
Proceedings of the International Joint Conference on Neural
Networks, pp. 3031-3034, October 1993.

[13] P. W. Hollis and J. J. Paulos, “A Neural Network Leaming
Algorithm Tailored for VLSI Implementation”, IEEE
Transaction on Neural Networks, Vol.5, No.5, September
1994.

[14] C. Schneider and H. Card, “Analog CMOS Synaptic
Leamning Circuits Adapted from Invertebrate Biology”,
IEEE Transaction on Circuits and Systems, Vol.38, No.12,
December 1991.

[15] T. Morie and Y. Amemiya, “An All-Analog Expandable
Neural Network LSI with On-Chip Backpropagation
Learning”, IEEE Journal of Solid-state Circuits, Vol.29,
No.9, September 1994.

[16] K. Hirotsu and M. Brooke, “An analog neural network chip
with random weight change learning algorithm”,
Proceedings of the International Joint Conference on Neural
Networks, pp. 3031-3034, October 1993.

[177C. R. Schneider and H. C. Card, “Analog CMOS

" Deterministic Boltzmann Circuits”, IEEE Journal of Solid-
state Circuits, Vol.28, No.8, August 1993.

[18] Y. He and U. Cilingirogiu, “A Charge-Based On-Chip
Adaptation Kohonen Neural Network”, IEEE Transactions
on Neural Networks, Vol.4, No.3, May 1993.

[191Y. K. Choi and S. Y. Lee, “Subthreshold MOS
Implementation of Neural Networks with On-Chip Error
Back-Propagation Learning”, Proceedings of International
Joint Conference on Neural Networks, pp.849-852, 1993.

[20] J. A. Lansner and T. Lehmann, “An Analog CMOS Chip Set
for Neural Network with Arbitrary Topologies”, IEEE
Transactions on Neural Networks, Vol.4, No.3, May 1993.

[21]1J. B. Lont and W. Guggenbuhl, “Analog CMOS
Implementation of a Multilayer Perceptron with Nonlinear
Synapses”, IEEE Transaction on Neural Networks, Vol.3,
No.3, May 1992.

2328

[22] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-
Vazquez, and J. L. Huertas, “ A CMOS Analog Adaptive
BAM with On-Chip Leamning and Weight Refreshing”,
IEEE Transactions on Neural Networks, Vol.4, No.3, May
1993.

[23] T. Shima, T. Kimura, Y. Kamatani, T. Itakura, Y. Fujita, and
T. Iida, “Neuro Chips with On-Chip Back-Propagation
and/or Hebbian Leaming”, JEEE Journal of Solid-State
Circuits, Vol.27, No.12, December 1992.

[24] P. W. Hollis and J. J. Paulos, “Artificial Neural Networks
Using MOS Analog Multipliers”, IEEE Journal of Solid-
State Circuits, Vol.25, No.3, June 1990.

[25] T. Lehmann, E. Bruun, and C. Dietrich, “Mixed
Analog/Digital Matrix-Vector Multiplier for Neural Network
Synapses.” Analog Integrated Circuits and Signal
Processing, 9, pp. 55-63, 1996.

[26] B. Burton, F. Kamran, R. G. Harley, T. G. Habetler, M. A
Brooke; R. Poddar, “Identification and control of induction
motor stator currents using fast on-line random training of a
neural network”, IEEE [Transactions on Industry
Applications, Vol.33, No.3, p.697-704, May 1997.

[27] J. Liu, B. Burton, F. Kamran, M. A. Brooke, R. G Harley, T.
G. Habetler, “High Speed On-line Neural Network Control
of an Induction Motor Immune to Analog Circuit Non-
idealities”, Proceedings of the IEEE International
Symposium on Circuits and Systems, 1997.

[28] Y. Neumeier, N. Markopoulos, and B. T. Zinn, “A
Procedure for Real-Time Mode Decomposition,
Observation, and Prediction for Active Control of
Combustion Instabilities”, IEEE Conference on Control
Applications, Oct 5-7, 1997.

