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Abstract - A neural network using the Random
Weight Change algorithm is shown able to be
trained to perform on-line control of the current
of an induction motor stator, despite analog
circuit nonidealities. The induction motor is a
complex nonlinear electromechanical system, with
rapidly time-varying system parameters. Due to
the small time constant of this power clectronic
system, the neural network must be able to finish
each training cycle in less that S0 microscconds,
which is only pessible when controlled by
specifically designed hardware circuits. An
analog circuit is preferred for its ability to
implement a reasonable size of network on one
integrated chip. The analog circuit nonidealitics
are overcome by the Random Weight Change
(RWC) algorithm. RWC is based on the method
of random searching, and achicves similar
performance to the back-propagation (BP)
algorithm. The back-propagation algorithm is
very difficult to implemented in analog hardware
due to its sensitivity to offset and nonlincarity
errors, the RWC algorithm is simulated with
analog circuit nonidealities, and is shown immune
to these problems, thus the RWC algorithm is
found ideally suited for the high speed analog
circuit neural network implementation.

I. INTRODUCTION

In this paper, we present research in
controlling nonlinear, rapidly time-varying physical
systems, using analog hardware neural networks.

Neural networks have been successfully
applied in many control areas, such as controlling
robot arms, chemical process control, continuous
production of high-quality parts, and acrospace
applications [1]. The application we present in this
paper is the nonlinear adaptive control of induction
motor drives, which will be explained in more detail
in section IV. In order to control such systems, the
control action must be taken at least every 100 psec.
The requirement of high speed nonlinear adaptation
is typical in many other power electronic
applications, as well as in the area of engine control.
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This means that these control applications are
difficult or impossible to implement by current
methods. Excellent work by [2] [3] [4] etc., show
that neural networks can be used to model and
control complex nonlinear physical systems with
unknown or slowly varying plant parameters. This
is because neural networks have the ability to learn
complex input-output mappings without a detailed
analytical model of the system. However, the
application of our interest has an extra feature, that
is rapidly time-varying plant parameters. It thus
requires a very fast adaptive neural network system
to control it on-line.

To achieve fast adaptation on-line, a
hardware implementation is preferred. Because
control done by a software program on a computer is
usually not fast enough to keep up with the systems
considered here, and thus cannot offer meaningful
control. There are certainly some advantages of
software control, like precise implementation of the
algorithms. However it is not always convenient to
install computers (fast enough computers are very
expensive, and have a large volume) everywhere, or
to carry them around an aircraftt So analog
hardware circuit implementation of the neural
network is proposed to offer fast speed and compact
size.

Again, there are digital circuits and analog
circuits.  Digital circuits have the advantage of
implementing precise computation via adders and
shifters, which are basically the same as a compauter,
running software control. While analog circuits [5]
[6] [7] I8] experience the nonidealities, like one-side
non-linear multipliers, leakage of the weight storage,
etc. On the other hand, a neural network of
sufficient size can be implemented on a single
integrated chip using an analog circuit, [11] while
to implement the same size neural network, it
requires a lot more area to achieve the desired bits of
precision in a digital implementation. As we know,
the bigger the chip size, the lower the yield factor,
the more expensive the product will be.

An Analog circuit is preferred because
using the Random Weight Change algorithm[9], the



learning is insensitive to the analog circuit
nonidealities, while achieving similar performance
to back-propagation. Back-propagation is almost
impossible to be implemented with an analog circuit,
because it requires precise computations of
derivatives, and multiplication. Also, the RWC
algorithm tends to escape from the trap of local
minimums by changing the weights in different
random directions. Trapping in a local minimum is
one drawback of the back-propagation algorithm.

The Random Weight Change Algorithm
will be presented in section II, with some simulation
results. In section III, the induction motor drive
system is presented, software simulation of neural
network control without any analog circuit
nonidealities are show. These simulations use a
modified version of the RWC algorithm. In section
IV, analog circuit nonidealities are added to the
neural network controller of the induction motor
drive. The simulation result shows that the RWC
neural network is insensitive to these analog circuit
nonidealities. In the last section, we present the
conclusion, and propose future work.

II. RANDOM WEIGHT CHANGE ALGORITHM

In this section, we describe the Random
Weight Change algorithm and show that it is
insensitive to nonlinearity in the neural network
weights. This algorithm is a learning algorithm for
multilayer neural networks similar to the well known
back-propagation algorithm.  Unlike the back-
propagation algorithm, which makes the error
function of the network decrease in the direction of
the steepest descent, the RWC algorithm makes sure
that the error function decreases on average, but it
may go up or down at any one time. So the
minimum point is reached without tracing the
steepest slope of the error function. The learning
defined by RWC is as follows:

w; (nt1) = w; (n) + Aw; i(n+1);

if error decrease,

Aw; (n+1) = Aw; (n);
if error increase,
Aw; = rand(n) ,

where rand(n)= + 3 or - 8 with equal opportunities.

Three applications: XOR gate; 3 bit A/D
conversion; and Target localization were simulated
in software, using a nonlinear multiplier. The
multiplier is characterized by y = x * (1-x/3)*w,
where y is the product, w is the weight, and x is the
input.

The result of these simulations with BP and
the RWC algorithm are reproduced on Table 1. It
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shows that RWC learns slower than BP, for the first
two applications. For the third application, which is
more complicated, BP fails to learn, while RWC still
learns. From these results, we can see that precisely
computed derivatives, and ideal multipliers are
necessary for BP but not for the RWC algorithm.

Table 1. Simulation of BP and RWC with nonlinear
multipliers

Problems BP RWC
XOR
Gate 1240 3100
3 bit A'D
conversion 117400 | 325000
no
r | learning| 397000
Target Analog o
Localization 6 | learning| 449000
8 bits no
Digital |0 | learning| 492000

Also, due to the randomly changed weights,
this algorithm has the advantage over back-
propagation, in that it tends to escape from a local
minimum if trapped in them.

We have given an overview of the RWC
algorithm in this section, in next section, RWC is
applied to learning the control of induction motor
system.

HI. INDUCTION MOTOR SYSTEM AND

CONTROL
The induction motor is a complex, multi-
variable nonlinear dynamic electromechanical

system. The objective of controlling an induction
motor is to control the flow of power into the motor,
so as to produce a torque on the rotor shaft, which
will result in a desired shaft speed. In order to
produce the desired torque, the stator current is first
calculated. Based on the required stator current, the
applied voltage is then calculated. The relationship
between the applied voltage, resultant current, torque
and speed is as shown in Figure 1.

[Volta ge HCurrent I——blTorque HSpeed ]

Figure 1. Relationship between the stator voltage,
current, shaft torque and speed. The applied current
is the input, and the generated speed is the output.




The relationship between the applied stator
voltage and the resultant stator current vector is
nonlinear, with respect to the speed of the motor
shaft. This relationship is also implicitly time
varying due to electrical parameter variations, For
example, the inductance can vary significantly and
rapidly due to significant and rapid changes in
current magnitudes, the AC resistance of conductors
is frequency dependent and can vary rapidly with
rapid changes in current frequency, and the
relatively slow changes in resistance due to heating
effect.

In addition, the relationship between the
stator current and the mechanical torque is also
nonlinear and affected by time varying parameters.
The shaft speed is determined not only by the net
torque applied, but also the mechanical load .

Therefore, the dynamic performance of the
motor depends on how well the controller can adapt
to the parameter variations. The two layer neural
network controller developed by Burton etc. [10]
successfully controlled the induction motor to
produce the desired current, using a modified version
of the RWC algorithm.

The modified algorithm makes twenty
random trials to change the weight in twenty
different directions, and calculates the error for each
trial. One trial is in the direction of the previous
round. However, each change is not permanent, the
permanent change is made in the direction of the
trial with the least error. The underlining idea is the
same as the algorithm explained in the previous
section.  The modified version improves the
algorithm by making more trials, but takes a longer
time for each trail.

The simulation of the neural network in
[10] was based on ideal multipliers, and did not
include any nonidealities of the analog circuit. One
of the results of using the RWC algorithm in that
work is shown in Figure 2. The horizontal axes is
time in seconds, and the vertical axes is the current.
In less than 0.1 second, the neural network learns to
follow the desired current output. In this case, the
simulation is carried out with ideal two sided
multipliers. In the next section, we are going to
show the performance of the neural network with
non-ideal one-sided multipliers.

IV. ANALOG CIRCUIT NONIDEALITIES
Based on the fabricated circuit in [11], we
now test the neural network controller for the
induction motor with the one-sided non-linear
multipliers. An ideal multiplier is expressed as
y=w *x * f(x).
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It is two-sided, which means x can be positive or
negative, and is linear, which means f(x)=1.
However, in the condition of nonlinear, one-sided
multipliers, as implemented buy the analog circuits
in [11], x can only be positive, and f(x) is a
nonlinear function of x. The ideal multiplier and the
nonlinear, one-sided multiplier with offset are shown
in Figure 3. The nonideal multiplier is defined by y
=w* x * (1-x7/3).
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Figure 2. Simulation result of induction motor using
RWC algorithm, the dotted line is the desired
current, and the solid line is the actual current
generated. Ideal multiplier is used in the simulation.
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Figure 3. Ideal multiplier and the one-sided
nonlinear multiplier. The dotted line characterizes
the ideal two-sided multiplier, and the solid line is
the nonideal multiplier typical for analog circuit
implementation in [11].

Substituting the ideal multiplier with the
non-ideal multiplier in Figure 3, we simulated the
performance of the neural network controller stated
in the previous section. The result of the generated



current is shown as the solid curve in Figure 4, the
dotted curve is the generated current using an ideal
multiplier. It is the same current as shown in Figure
3, and is redrawn here for comparison.
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Figure 4. Comparison of generated current using
ideal multipliers and the nonideal multipliers typical
for analog circuit implementation.

As we can see, the current generated using
the non-ideal multiplier is almost the same as that
using the ideal multipliers. It shows that the neural
controller using the RWC learning algorithm is
immune to the nonideality of the multipliers, which
was the major problem of BP learning when applied
to learning neural networks built from analog
circuits.

V. CONCLUSION AND FUTURE WORK

The Random Weight Change algorithm is
suitable for analog hardware implementations of
neural networks that can control rapid time-varying
physical systems, despite the analog circuit
nonidealities.

Future work now involves that following
steps. (1) Test a prototype analog neural network
chip with a software simulation of an induction
motor system, make appropriate adjustments on the
chip according to the test result. (2) Test the chip

with a real physical system and make appropriate
adjustments.
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