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Abstract—Artificial neural networks (ANN’s), which have no
off-line pretraining, can be trained continually on-line to identify
an inverter-fed induction motor and control its stator currents.
Due to the small time constants of the motor circuits, the time
to complete one training cycle has to be extremely small. This
paper proposes and evaluates a new form of the random weight
change (RWC) algorithm, which is based on the method of
random search for the error surface gradient. Simulation results
show that the new form of the RWC, termed continually on-
line trained RWC (COT-RWC), yields performance very much
the same as conventional backpropagation with on-line training.
Unlike backpropagation, however, the COT-RWC method can
be implemented in mixed digital/analog hardware and still have
a sufficiently small training cycle time. The paper also proposes
a VLSI implementation which completes one training cycle in as
little as 8 �s. Such a fast ANN can identify and control the motor
currents within a few milliseconds and, thus, provide self-tuning
of the drive while the ANN has no prior information whatsoever
of the connected inverter and motor.

Index Terms—Induction motor, motor current regulator, neu-
ral network, on-line training.

I. INTRODUCTION

T HE induction motor is a nonlinear system, the parameters
of which vary with time and operating conditions. For

high-performance applications, such as vector control and
direct self control, it is necessary for the controller design
to be based on observers and estimation techniques [1], which
depend on a simplified model of the motor. Artificial neural
networks (ANN’s) provide an alternative method of observing
the input/output relationships of the motor. A previously
presented scheme [2] proposed that an ANN be trainedoff-
line, i.e., with data obtaineda priori to mimic existing stator
current controllers. Once sufficiently well-trained, the ANN
could replace the original current controller with the advantage
of increased speed of execution and fault tolerance. With this
approach, no further training of the network is possible, after
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the drive is commissioned. Therefore, the performance of such
an off-line trained ANN approach depends upon the amount
and quality of training data used, which in turn depends
on system complexity and the range of operating conditions
involved and is also sensitive to parameter variations.

Since the induction machine is a deterministic system for
which the equations are well known, training of an ANN
from a random initial condition is not necessarily required.
Reference [3] proposes a current regulator for induction ma-
chines which maps the electrical equivalent circuit equations
onto a feedforward neural network and does not require
training. However, like the off-line trained ANN scheme
[2], the approach in [3] is also prone to degraded perfor-
mance because of parameter variations. In order to account
for unknown parameter variations, an observer-based scheme
like [1] may be used, but unmodeled nonlinearities, such
as magnetic saturation, can only be accounted for using an
adaptive nonlinear-model-based controller, or by using an
ANN which is trained while the drive controller (including
the ANN) is operatingon-line. Such an ANN scheme was
proposed [4] which used continual on-line training (with
no off-line training) to identify and adaptively control the
currents and, therefore, the torque and, thus, the speed of
an induction machine. Simulated results showed that this
scheme could produce high dynamic performance similar to
that achieved with conventional vector control. With an on-
line trained scheme, custom tailoring of the ANN architecture
and weights to match the structure of the motor equations,
although possible, is not necessary.

The scheme in [4] incorporates three ANN’s which are
on-line trained using backpropagation, with two different
rates of execution; a relatively slow rate for the two ANN’s
which accomplishes the rotor speed identification and control
functions and a much faster rate for the ANN performing
the stator current regulation. The stator current loop control
scheme, illustrated in Fig. 1, must run at a high enough rate to
cope with the comparatively small electrical time constants
of the machine. In order to achieve on-line training at a
reasonable sampling frequency, e.g., 10 kHz, one epoch (one
ANN weights update cycle based on the training error) needs
to be completed in approximately 50s. Due to the lack of a
suitable ANN application specific integrated circuit (ASIC),
the adaptive on-line trained current controller ANN of [4]
was implemented in software [5], [6] on a transputer, but
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Fig. 1. Adaptive ANN stator current controller block diagram.

the sampling frequency was limited by the ANN computation
overhead to approximately 500 Hz.

This paper proposes and investigates the use of a new fast
on-line training algorithm for feedforward ANN’s suitable
for hardware implementation and which can meet the timing
constraints described above. As opposed to backpropagation,
this new method calledcontinually on-line trained random
weight change(COT-RWC) training, is designed to be robust
and insensitive to the nonidealities of analog VLSI circuits.

II. ANN CURRENT CONTROL METHOD

The stator current controller of [4] is based on continual
online training (COT) of an ANN to adaptively identify
the nonlinear autoregressive moving average with exogenous
(NARMAX) inputs model of the electrical dynamics of the
induction motor. This model, derived in [4], gives the value
of the next stator current sample as some function

of the present “state” of the machine and the present
voltage applied to the stator, i.e.,

(1)

where is called the voltage constant and the state vector,
, is a vector made up of present and delayed values of

stator current and shaft speed, , and a delayed value of
, i.e.,

(2)

From (1), it can be seen that there exists some voltage
which can be applied to the stator of the motor to produce
some desired value of stator current , i.e.,

(3)

Equation (3) can, thus, be rearranged to produce a nonlinear
control law:

(4)

Thus, the exact voltage required to produce the desired current
can be calculated if the value of and are known.

However, and depend on the electrical parameters of
the motor. Since these parameters are time-varying, both
and are implicitly time-varying [the time variation is not
explicit in the values of and ]. Nevertheless, Fig. 1 shows
how a COT ANN can be used to adaptively identify and

and produce approximate values and , respectively,
so that control (4) can be implemented as

(4)

III. COMMERCIALLY AVAILABLE ANN HARDWARE

Recently, a zero instruction set computer chip, ZISC036,
was introduced by IBM that uses radial basis functions
(RBF’s) as the training method [7]; a similar, but more
powerful chip using RBF for training, has also been developed
by Intel and Nestor Inc. [7]. The RBF neural networks are
not as powerful as the feedforward ones, when compared in
terms of extrapolation and generalization capabilities. Another
possibility explored by some researchers is to combine a
feedforward ANN ASIC like the Intel Electrically Trainable
Analog Neural Network (ETANN) with external high-speed
processors to implement the backpropagation [8]. The forward
pass is carried out in the ETANN and the weight update
computation is done on the external processor; although this
method can achieve considerably higher speeds than a software
implementation of the ANN, the achieved speed is still too
slow for the continual on-line training requirement of the
motor application considered in this paper.

A complete VLSI implementation of the feedforward neural
net using backpropagation or one of its variants for continual
on-line training has not been accomplished to date. The major
obstacle in this regard is the sensitivity of these gradient
descent training algorithms to the nonlinearities and offsets
present in hardware analog multipliers and adders. In contrast,
all-digital implementation takes up much larger chip areas
than the analog ones and, therefore, a fullyparallel digital
implementation can be realized, but only for small networks
and with lesser number of bits. However, backpropagation is
sensitive to the bit resolution and fails to converge if the
resolution is inadequate [9]. If, instead, the computation is
carried outserially in digital circuits, learning speed must
be sacrificed. Analog implementation of weight circuits and
multipliers, on the other hand, has the advantage of fast
operating speed and small chip areas, therefore allowing
larger circuits to be realized. However, the nonidealities of
these analog circuits, as mentioned above, render the use of
backpropagation or its modified versions impractical.

All the above-mentioned problems prompted the search, not
for faster hardware to implement continuous on-line training
using backpropagation, but, instead, for an alternate training
algorithm which is more robust and less complex and, there-
fore, would take much less time to execute on VLSI. Such an
algorithm is described in the next section.

IV. THE RWC TRAINING ALGORITHM

A practical variation of the previously reported ANN train-
ing algorithm called RWC [9] is proposed in this paper;
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Fig. 2. flowchart depicting one training epoch of the continuous on-line
trained random weight change (COT-RWC) training algorithm.

RWC updates the ANN weights based on a random search
for the gradient of the error surface, instead of calculating
this gradient with the complex backpropagation algorithm.
For applications with hundreds of weights and weight update
times in the microsecond range, the RWC algorithm can be
implemented on hardware which is lower in cost and simpler
than commercially available hardware, since compact analog
mixed signal circuitry can be used to perform the weight
updates and the forward propagation of the network. It is
important to note that with RWC, convergence does not take
place along steepest descent, however, convergence will still
take place sincethere is always a good probability that a
relatively small number of random trials will find a direction
in which the weights can be changed in order to reduce the
error. This paper will show that this type of convergence is
sufficiently fast to ensure good adaptive control of induction
motor currents.

The original RWC algorithm was designed for chip-in-the-
loop (CIL) training, i.e., training on real-time data where a
sample can be discarded in the event that the gradient is
not found; CIL-RWC is suitable for applications requiring
very fast off-line training on real-time data, such as speech
and image processing. However, CIL-RWC is not suitable
for continual on-line training of adaptive real-time ANN
controllers, since the gradient must be found in every sampling
period in order to eliminate the control error. In power
electronic applications, this amounts to changing the weights in
the correct direction once in every switching period to ensure
stability. Thus, CIL-RWC must be significantly modified to

Fig. 3. The RWC learning hardware schematic.

obtain a form that is suitable for COT. Fig. 2 illustrates how
CIL-RWC is modified to obtain COT-RWC.

While the practical form of the RWC algorithm works well
for the induction motor application, it is generic in nature
and is potentially useful for many other applications. During
each training cycle, orepoch, each of the network weights is
perturbed by a number which has a fixed magnitudeand
a random sign. The ANN output error is computed after the
weight change. This error is compared to the value of the
previous error before the weight change and, based on this
comparison, a decision is taken whether to keep the new
weights or not. Keeping the ANN input vector fixed, this
process is repeated a number of times (i.e.,trials) during each
epoch, and the final weights at the end of the epoch are chosen
to be the ones that result in the smallest error during that epoch.
The flowchart in Fig. 2 explains one training cycle or epoch in
more detail. The step sizeis a training parameter that needs
to be determined heuristically for a specific problem. This is
very similar to the gain coefficient in backpropagation and
is best thought of as the radius of a hypersphere in the-
dimensional error hypersurface, whereis the total number of
network weights. It has been observed during experimentation
that the value of affects the convergence speed and accuracy
and needs to be small, about two orders of magnitude less
than the weight magnitudes. As is clear from Fig. 2, each
epoch contains trials, therefore, the forward propagation
and the random weight change has to be donetimes during
each epoch. This appears to be a large amount of computation,
but, because of the fact that this scheme can be implemented
with fully parallel nodes, and the random numbers can be
generated very efficiently using shift registers, the all-hardware
implementation can achieve very high speeds.

V. RWC HARDWARE

A proposed hardware schematic for the RWC algorithm-
learning ANN is presented in Fig. 3. The hardware is con-
trolled by a conventional microcontroller which generates
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Fig. 4. Timing diagram for COT-RWC learning hardware.

the clock signals (ph1 and ph2) and several control sig-
nals [update, best, rand(), ]. These control signals can be
generated with a low-cost single-chip microcontroller. The
parallel mixed-signal analog-digital hardware carries out all
the parallel weight update and forward-propagation operations.
It is anticipated that with a 100-MHz digital clock, the training
epoch proposed in Fig. 3 would take 800 ns (20 RWC trials).
With a less aggressive 10-MHz clock, the epoch would take
8 ms.

Each weight circuit in the ANN contains three registers (R,
W, and B in Fig. 3) that store the random weight changes,
the current weight, and the best weight change for the current
epoch, respectively. The random weight changes are shifted
into the register R and used to update the weight register W.
Then, the opposite weight change is shifted into R and used
to return W to the original value. The timing of this process is
shown in Fig. 4. The step A1 represents the trial of the current
weight change, while A2 represents the return to the original
value of the weights. The external signal “best” is generated
externally from the hardware by calculating the output error
and indicates to the hardware that the current weight change is
the best so far among the completed trials in the current epoch.
This signal causes the current weight change to be saved in
the B (best) register. When one epoch is complete, the update
signal is raised and the best weight change is permanently
saved in the weight register (W). Referring to Fig. 4, in step B,
the external processor computes that the current weight change
is the best for the epoch. In step C, the value of the register B
[best(i)] is updated. In step D, the best overall weight change
is made permanent.

VI. RESULTS

In order to assess the suitability of the RWC algorithm to
identify and control the motor stator currents, the response
of the system in Fig. 1 is computed for several step changes
in the magnitude and the frequency of the demanded stator
currents; typical results from several case studies are presented.
The ANN in Fig. 1 consists of eight inputs and two outputs;
the number of middle layer neurons is varied from one

case study to the next. The middle layer outputs pass through
sigmoidal nonlinearities, while the final outputs are linear. The
equations for the system in Fig. 1 were given in [5], [6] and are
not presented here. During each epoch, the process in Fig. 3
is repeated for Noof Trials , while keeping the inputs
constant.

A. Case Study One: RWC Compared with Backpropagation

In order to compare the convergence properties of the RWC
and the backpropagation algorithms, the simulation of the
response of the system in Fig. 1 is repeated for both algo-
rithms. Fig. 5 shows the desired current and the actual current,
first using RWC [Fig. 5(a)] and then using backpropagation
[Fig. 5(b)]. No pretraining of the ANN takes place, and in each
of Fig. 5(a) and (b), the ANN is allowed to identify and control
the current from a random initial set of weights. From ,
initial conditions prevail, but the desired current magnitude
and frequency are both set to zero, and the ANN lies dormant
with initial weights. On-line training, current identification,
and control then all commence at ms when the first
of three step changes in current is demanded.

Step 1:

ms ms rad/s pu

Step 2:

ms ms rad/s pu

Step 3:

ms rad/s pu

The particular sequence and nature of the step changes
do not represent any particular mode of induction motor
operation, but are the same as the sequence used by [4] to
illustrate that convergence occurs each time, following any
rapid change.

Measurement noise is artificially introduced into the simu-
lations in order to more closely approximate the real system,
but the PWM and the inverter are not modeled. The results
in Fig. 5 show that both training methods allow the ANN
to quickly identify the stator currents from a random initial
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(a)

(b)

Fig. 5. Desired and actual current (d-axis). (a) Using COT-RWC training.
(b) Using backpropagation.

state and, thereafter, closely track all three steps of desired
response. The RWC results of Fig. 5(a) are at least as good
as those of backpropagation in Fig. 5(b). Thetraining error
(which is a variable in Fig. 1) for each method is shown in
Fig. 6 and confirms that RWC, in fact, converges at least as
well as backpropagation, although neither method has been
optimized for these results.

B. Case Study Two: Convergence of RWC

Both RWC and backpropagation in section VI-A started
with a random initial set of weights. In order to show that
the RWC convergence does not depend on the values of the
initial set, the RWC simulation in section VI-A is repeated
nine more times, each time starting with a different random
set of weights. This yields ten sets of curves like the ones in
Figs. 5(a) and 6(a), but with each one differing slightly from
the other, due to the random nature of the RWC algorithm.
Rather than overlaying ten such curves, only a single curve
which represents the average of the ten training errors is shown

(a)

(b)

Fig. 6. The training error used to make weight updates. (a) COT-RWC
method. (b) Backpropagation.

Fig. 7. Averagedtraining error over ten independent simulation runs using
the RWC method from arbitrary initial conditions.

in Fig. 7, and it clearly shows an average convergence as good
as the single result of Fig. 6(a). This means that the good
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(a) (b)

(c)

Fig. 8. Depicting the effect of number of nodes while using RWC training. Simulation results using: (a) 12 nodes, (b) 20 nodes, and (c) 30 nodes.

result in Fig. 5(a) is not the consequence of a “lucky break”
in choosing the initial weights, but that RWC converges each
time, irrespective of the initial values.

C. Case Study Three: Number of Inner Layer Nodes

The ANN in sections VI-A and VI-B used inner
layer nodes. In order to test whether the convergence properties
of the RWC algorithm depend on the value of, the test of
Fig. 5(a) is repeated in Fig. 8 for an ANN with ,
20, and 30 nodes, respectively. Obviously, the initial set of
weights for each number of nodes differs from that of the
other set, because of the different lengths of the weight vectors.
However, the same value of the step size is used
for all the results in Fig. 8.

The marked difference in the initial responses (from
ms to about 150 ms) of the 12, 20, and 30 node systems
is influenced very much by their different random starting
weights. After this initial period, it appears that the 20-node

ANN tracks the desired curve better than the 12-node ANN
and that the 30-node ANN tracks best of all three. Once the
desired current settles into a steady sinewave, the differences in
tracking ability become almost insignificant. When the second
and third transients occur, the 20- and 30-node systems seem
to track only slightly better than the 12-node system; this
is to be expected, since a 30-node system contains more
high-frequency training information than a 12-node system.
Nevertheless, the performance of the 12-node system appears
acceptable and has the advantage of being a smaller system
with a lower computational burden to implement.

D. Case Study Four: Influence of

In the previous case studies, the frequency of the current
was stepped to 30, then to 90, and then to 15 rad/s. Induction
motors often operate at frequencies higher than these and, so,
for the next case study, the frequency of the 12-node system
is stepped to 314 rad/s (50 Hz) in order to verify that the
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(a)

(b)

Fig. 9. The desired and actual currents showing the effect of� on learning.
(a) � = 0:005. (b) � = 0:02.

same system which previously converged [Fig. 8(a)] for the
slower frequencies will also converge at a higher frequency.
The simulation results appear in Fig. 9 and are repeated for
different values of , but each simulation now starts with the
same random set of initial weights, so that the differences in
the results are not due to different initial conditions.

The results of Fig. 9(a) [when which is the same
value as for Fig. 8(a)] show that the actual current needs a few
cycles to converge to the commanded sinewave. Thereafter, the
tracking is close, although a small steady-state error continues
to exist at the end. Further simulations with slightly larger
values of yield a smaller steady-state error, but soon result
in an oscillatory response; all these results are not shown,
except for a selected case when in Fig. 9(b), in order
to illustrate the oscillatory response whenis too large.

The results of Fig. 9 show that the influence of the training
step size is like the proportional gain of a traditional feedback
controller. In other words, small oscillations set in before the

steady-state error can be driven to zero by increasing. This
suggests that the step size should not be a fixed value, but
should also contain a term sensitive to the size of the error,
for example.

VII. CONCLUSIONS

Backpropagation has been previously used for identification
and control of the stator currents of an induction motor.
However, ANN hardware implementation of backpropagation
must be capable of executing one epoch in less than 50s,
a requirement imposed by the continual on-line training and
a sampling frequency of 10 kHz. An execution speed of this
order, using backpropagation, is not realizable with existing
VLSI technology. This paper has presented a practical form
of the fast on-line RWC training algorithm for feedforward
ANN’s with a potential for mixed signal (analog/digital)
VLSI realizability able to meet the above time constraint.
The RWC algorithm is based on the method of random
search, is computationally simple, and suitable for VLSI
implementation; moreover, it produces results comparable to
backpropagation.

Results have been presented to show that an ANN with 12
nodes in the inner layer can be trained to identify and control
the motor currents almost as well as one with 30 nodes, but the
12-node ANN is preferred because of its lower computational
requirement on the implementation hardware. The results also
show that the 12-node ANN system performs well both at low-
and high-frequency motor currents. Moreover, the value of the
training step size influences the system behavior in the same
way as the proportion gain of a traditional feedback controller.

An inverter-fed adjustable-speed induction motor could be
identified, and its stator currents controlled, within a few mil-
liseconds of the startup and, thus, provide self-commissioning,
while the ANN has no prior information whatsoever of the
inverter and the motor connected to it.
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