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Abstract — Artificial Neural Networks (ANNs) which have no
off-line pre-training, can be trained continually on-line to
identify an inverter fed induction motor and control its stator
currents. Due to the small time constants of the motor circuits,
the time to complete one training cycle has to be extremely
small. This paper proposes and evaluates a new, fast, on-line
training algorithm which is based on the method of random
search training, termed the Random Weight Change (RWC)
algorithm. Simulation results show that RWC training of an
ANN yields performance very much the same as conventional
backpropagation training. Unlike backpropagation, however,
the RWC method can be implemented in mixed digital/analog
hardware, and still have a sufficiently small training cycle
time.. The paper also proposes a VLSI implementation which
one training cycle in as little as 8 psec. Such a fast ANN can
identify and control the motor currents within a few
milliseconds and thus provide self-tuning of the drive while the
ANN has no prior information whatsoever of the connected
inverter and motor.

INTRODUCTION

The induction motor is a nonlinear system whose
parameters vary with time and operating conditions. For
high performance applications, such as vector control and
direct self control, it is necessary for the controller design to
be based on observers and estimation techniques[1], which
depend on a simplified model of the motor. Artificial
Neural Networks (ANNs) provide an alternative method of
observing the input/output relationships of the motor. A
previously presented scheme [2] proposed that an ANN be
trained off-line, i.e., with data obtained apriori to mimic
existing stator current controllers. Once sufficiently well-
trained, the ANN could replace the original current
controller with the advantage of increased speed of
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execution and fault tolerance. With this approach no further
training of the network is possible, after the drive is
commissioned. Therefore, the performance of such an off-
line trained ANN approach depends upon the amount and
quality of training data used which in turn depends on
system complexity and the range of operating conditions
involved and is also sensitive to parameter variations.

Since the induction machine is a deterministic system
for which the equations are well-known, training of an ANN
from a random initial condition is not necessarily required.
Reference [3] proposes a current regulator for induction
machines which maps the electrical equivalent circuit
equations onto a feedforward neural network and does not
require training. However, like the off-line trained ANN
scheme [2], the approach in [3] is also prone to degraded
performance because of parameter variations. In order to
account for unknown parameter variations, an observer-
based scheme, like [1] may be used, but unmodeled non-
linearities, such as magnetic saturation, can only be
accounted for using an adaptive non-linear model based
controller or by using an ANN which is trained while the
drive controller (including the ANN) is operating on-line.
Such an ANN scheme was proposed [4] which used
continual on-line training (with no off-line training) to
identify and adaptively control the currents and therefore
the torque, and thus the speed of an induction machine..
Simulated results showed that this scheme could produce
high dynamic performance similar to that achieved with
conventional vector control. With an on-line trained
scheme, custom tailoring of the ANN architecture and
weights to match the structure of the motor equations,
although possible, is not necessary.

The scheme in [4] incorporates 3 ANNs that are on-line
trained using backpropagation, with two different rates of
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execution; a relatively slow rate for the 2 ANNs which
accomplishes the rotor speed identification and control
functions, and a much faster rate for the ANN performing
the stator current regulation. The stator current loop control
scheme illustrated in Fig. 1, must run at a high enough rate
to cope with the comparatively small electrical time
constants of the machine. In order to achieve on-line
training at a reasonable sampling frequency, e.g. 10 kHz,
one epoch (one ANN weights update cycle based on the
training error) needs to be completed in approximately
50us. Due to the lack of a suitable ANN ASIC, the adaptive
on-line trained current controller ANN of [4] was
implemented in software [5,6] on a transputer, but the
sampling frequency was limited by the ANN computation
overhead to approximately 500 Hz.
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Fig. 1. Adaptive ANN stator current controller block
diagram.

This paper proposes and investigates the use of a new
fast on-line training algorithm for feedforward ANNs
suitable for hardware implementation and which can meet
the timing constraints described above. As opposed to
backpropagation, this new method called Random Weight
Change (RWC) training, is robust and insensitive to the
non-idealities of analog VLSI circuits.

COMMERCIALLY AVAILABLE ANN HARDWARE

Recently, a =zero instruction set computer chip,
ZISC036 was introduced by IBM that uses radial basis
functions (RBF) as the training method [7]; a similar but
more powerful chip using RBF for training has also been

developed by Intel and Nestor Inc. [8]. The radial basis
function neural networks are not as powerful as the
feedforward ones when compared in terms of extrapolation
and generalization capabilities. Another possibility
explored by some researchers is to combine a feedforward
ANN ASIC like the Intel Electrically Trainable Analog
Neural Network (ETANN) with external high speed
processors to implement the backpropagation [9]. The
forward pass is carried out in the ETANN and the weight
update computation is done on the external processor;
although this method can achieve considerably higher
speeds than a software implementation of the ANN, the
achieved speed is still too slow for the continual on-line
training requirement of the motor application considered in
this paper.

A complete VLSI implementation of the feedforward
neural net using backpropagation or one of its variants for
continual on-line training has not been accomplished to
date. The major obstacle in this regard is the sensitivity of
these gradient descent training algorithms to the non-
linearities and offsets present in hardware analog multipliers
and adders. The all-digital implementation takes up much
larger chip areas than the analog ones and therefore, a fully
parallel digital implementation can be realized only for
small networks and with lesser number of bits.
Backpropagation is sensitive to the bit resolution and fails to
converge if the resolution is inadequate [10]. If, instead, the
computation is carried out serially in digital circuits,
learning speed must be sacrificed. Analog implementation
of weight circuits and multipliers, on the other hand, has the
advantage of fast operating speed and small chip areas,
therefore allowing larger circuits to be realized. However,
the non-idealities of these analog circuits, as mentioned
above, render the use of backpropagation or its modified
versions impractical.

All the abovementioned problems prompted the search;
not for faster hardware to implement continuous on-line
training using backpropagation, but instead for an alternate
training algorithm which is more robust and less complex
and, therefore, would take much less time to execute on
VLSI. Such an algorithm is described in the next section.

THE RANDOM WEIGHT CHANGE TRAINING ALGORITHM

A new ANN training algorithm called Random Weight
Change (RWC) is proposed as a variation of a previously
reported method of ANN training based on random search
for a minimum on the error surface [10]. For applications
with hundreds of weights and weight update times in the
micro-seconds, the RWC algorithm can be implemented on
hardware which is lower in cost and simpler than
commercially available hardware since compact analog
mixed signal circuitry can be used to perform the weight
updates and the forward-propagation of the network. While
the RWC algorithm works well for the induction motor
application, it is generic in nature and is potentially useful
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for many other applications. During each training cycle or
epoch, each of the network weights is perturbed by a
number which has a fixed magnitude, &, and a random sign.
The ANN output error is computed after the weight change.
This error is compared to the value of the previous error
before the weight change, and based on this comparison, a
decision is taken whether to keep the new weights or not.
Keeping the ANN input vector fixed, this process is
repeated a number of times (i.e., trials) during each epoch,
and the final weights at the end of the epoch are chosen to
be the ones that result in the smallest error during that
epoch. The flow chart in Fig. 2 explains one training cycle
or epoch in more details.
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Fig. 2. Flow chart depicting one training epoch of the
Random Weight Change training algorithm.

The step size, 8, is a training parameter that needs to be
determined heuristically for a specific problem. This is very
similar to the gain coefficient, 3, in backpropagation and is
best thought of as the radius of a hyper-sphere in the n-
dimensional error hyper-surface, where n is the total
number of network weights. It has been observed during
experimentation that the value of & effects the convergence
speed and accuracy and needs to be small, about two orders
of magnitude less than the weight magnitudes. As is clear
from Fig. 2, each epoch contains N trials, therefore the

forward propagation and the random weight change has to
be done N times during each epoch. This appears to be a
large amount of computation, but, because of the fact that
this scheme can be implemented with fully parallel nodes,
and the random numbers can be generated very efficiently
using shift registers, the all-hardware implementation can
achieve very high speeds.

RANDOM WEIGHT CHANGE HARDWARE

A proposed hardware schematic for the RWC algorithm
learning ANN is presented in Fig. 3. The hardware is
controlled by a conventional micro-controller which
generates the clock signals (phl and ph2) and several
control signals (update, best, rand(i), 3). These control
signals can be generated with a low cost single chip micro-
controllers.  The parallel mixed signal analog-digital
hardware carries out all the parallel weight update and
forward-propagation operations. It is anticipated that with a
100 MHz digital clock the training epoch, proposed in Fig.
3, would take 800 ns (20 RWC trials). With a less
aggressive 10 MHz clock, the epoch would take 8 micro-
seconds.
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Fig. 3. The Random Weight Change learning hardware
schematic.

Each weight circuit in the ANN contains three registers
(R, W, and B in Fig. 3) that store the random weight
changes, the current weight, and the best weight change for
the current epoch, respectively. The random weight
changes are shifted into the register, R, and used to update
the weight register, W. Then the opposite weight change is
shifted into R and used to return W to the original value.
The timing of this process is shown in Fig. 4. The step Al
represents the trial of the current weight change, while A2
represents the return to the original value of the weights.
The external signal “best” is generated externally from the
hardware by calculating the output error and indicates to the
hardware that the current weight change is the best so far
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among the completed trials in the current epoch. This
signal causes the current weight change to be saved in the B
(best) register. When one epoch is complete, the update
signal is raised and the best weight change is permanently
saved in the weight register (W). Referring to Fig. 4, in step
B, the external processor computes that the current weight
change is the best for the epoch. In step C the value of the
register B (best(i)) is updated. In step D the best overall
weight change is made permanent.
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Figure 4. Timing diagram for RWC learning hardware.

RESULTS

In order to assess the suitability of the RWC algorithm
to identify and control the motor stator currents, the
response of the system in Fig. 1 is computed for several step
changes in the magnitude and the frequency of the
demanded stator currents. Typical results from several case
studies are presented here. The ANN in Fig. 1 consists of 8
inputs and 2 outputs; the number of middle layer neurons,
m, is varied from one case study to the next. The middle
layer outputs pass through sigmoidal non-linearities while
the final outputs are linear. The equations for the system in
Fig. 1 were given in [5, 6] and are not presented here.
During each epoch, the process in Fig. 3 is repeated for the
number of trials, N=20, while keeping the inputs fixed.

Case Study One: RWC compared with backpropagation

In order to compare the convergence properties of the
RWC and the Backpropagation algorithms, the simulation
of the response of the system in Fig. 1 is repeated for both
algorithms. Fig. 5 shows the desired current and the actual
current, firstly using RWC (Fig. 5(a)) and then using
Backpropagation (Fig. 5(b)). No pre-training of the ANN
takes place and in each of Figs. 5(a) and (b), the ANN is

allowed to identify and control the current from a random
initial set of weights.

200 400 600 800 1000
time (milliseconds)

200 400 600 800 1000
time (milliseconds)

Figure 5. Desired and actual current (d-axis). (a) Using
RWC training. (b) Using backpropagation.

From t=0 , initial conditions prevail, but the desired
current magnitude and frequency are both set to zero and
the ANN lies dormant with initial weights. On-line training,
current identification and control then all commence at
t=100 ms when the first of three step changes in current is
demanded.

step 1: 100ms<t<600 ms, ®=30rad/s, I=0.7 pu,
step 2: 600ms<t<800 ms, w=90rad/s, 1=03pu
step 3: t>800 ms, o=15rad/s, I=1.0pu

The particular sequence and nature of the step changes
do not represent any particular mode of induction motor
operation, but are the same as the sequence used by [4] to
illustrate that convergence occurs each time following any
rapid change.
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Figure 6. The training error used to make weight updates.
(a) For the RWC method. (b) For the backpropagation.

Measurement noise is artificially introduced into the
simulations in order to more closely approximate the real
system, but the PWM and the inverter are not modeled. The
results in Fig. 5 show that both training methods allow the
ANN to quickly identify the stator currents from a random
initial state and thereafter closely track all three steps of
desired response. The RWC results of Fig. 5(a) are at least
as good as those of backpropagation in Fig. 5(b). The
training error (Which is a variable in Fig. 1) for each
method is shown in Fig. 6 and confirms that RWC, in fact,
converges at least as well as backpropagation, although
neither method has been optimized for these results.

Case Study Two: Convergence of RWC

Both RWC and Backpropagation in Case Study One started
with a random initial set of weights. In order to prove that
the RWC convergence does not depend on the values of the
initial set, the RWC simulation of Case Study One is
repeated nine more times, each time starting with a different

random set of weights. This yields ten sets of curves like
the ones in Figs. 6(a and b), but with each one differing
slightly from the other due to the random nature of the
RWC algorithm. Rather than overlaying ten such curves,
only a single curve which represents the average of the ten
training errors is shown in Fig. 7. The plot clearly shows an
average convergence as good as the single result of Fig.
6(a). This means that the good result in Fig. 5(a) is not the
consequence of a “lucky break” in choosing the initial
weights, but that RWC converges each time, irrespective of
the initial values.
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Figure 7. Averaged training error over ten independent
simulation runs using the RWC method from arbitrary
initial conditions.

Case Study Three: Number of Inner Layer Nodes

The ANN in Case Studies One and Two used m=12
inner layer nodes. In order to test whether the convergence
properties of the RWC algorithm depend on the value of m,
the test of Fig. 5(a) is repeated in Fig. 8 for an ANN with
m=12, 20 and 30 nodes respectively. Obviously the initial
set of weights for each number of nodes differs from that of
the other set, because of the different lengths of the weight
vectors. However, the same value of the step size §=0.005
is used for all the results in Fig. 8.

The marked difference in the initial responses (from
t=100 ms to about 150 ms) of the 12, 20 and 30 node
systems is determined maninly by their different random
starting weights. After this initial period it appears that the
20 node ANN tracks the desired curve better than the 12
node ANN, and that the 30 node ANN tracks best of all
three. Once the desired current settles into a steady
sinewave, the differences in tracking ability become almost
insignificant. When the second and third transients occur
the 20 and 30 node systems seem to track only slightly
better than the 12 node system. This is to be expected since
a 30 node system contains more high frequency training
information than a 12 node system Nevertheless, the
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Figure 8. Depicting the effect of number of nodes while
using RWC training. (a) Simulation results using 12 nodes.
(b) Using 20 nodes and (c) using 30 nodes.

performance of the 12 node system appears acceptable and
has the advantage of being a smaller system with a lower
computational burden to implement.-

Case Study Four: Influence of Step Size, §

In the previous case studies the frequency of the current
was stepped to 30, then to 90 and then to 15 rad’s.
Induction motors often operate at frequencies higher than
these and so for the next case study the frequency of the 12
node system is stepped to 314 rad/s (50 Hz) in order to
verify that the same system which previously converged
(Fig. 8(a)) for the slower frequencies will also converge at a
higher frequency. The simulation results appear in Fig. 9
and are repeated for different values of 8, but each
simulation now starts with the same random set of initial
weights so that the differences in the results are not due to
different initial conditions.

4

(a)
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Figure 9. The desired and actual currents showing he effect
of 8 on learning. (a) 8 = 0.005 and (b) 8 = 0.02.

The results of Fig. 9(a) (when 6=0.005 which is the
same value as for Fig. 8(a)) show that the actual current
needs a few cycles to converge to the commanded
sinewave. Thereafter the tracking is close although a small
steady state error continues to exist at the end. Further
simulations with slightly larger values of § yield a smaller
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steady state error but soon result in an oscillatory response;
all these results are not shown except for a selected case
when 6=0.02 in Fig. 9(b) in order to illustrate the oscillatory
response when § is too large.

The results of Fig. 9 show that the influence of the
training step size & is like the proportional gain of a
traditional feedback controller. In other words, small
oscillations set in before the steady state error can be driven
to zero by increasing 8. This suggests that the step size
should not be a fixed value 3, but might also contain a term
sensitive to the size of the error.

CONCLUSIONS

Backpropagation has been previously used for
identification and control of the stator currents of an
induction motor. However, ANN hardware implementation
of backpropagation must be capable of executing one epoch
in less than 50 ps, a requirement imposed by the continual
on-line training and a sampling frequency of 10 kHz. An
execution speed of this order, using backpropagation, is not
realizable with existing VLSI technology. This paper has
propose a new fast on-line Random Weight Change (RWC)
training algorithm for feedforward ANNs with a potential
for mixed signal (analog/digital) VLSI realizability able to
meet the above time constraint. The RWC algorithm is
based on the method of random search, is computationally
simple and suitable for VLSI implementation; moreover, it
produces results comparable to backpropagation.

Results have been presented to show that an ANN with
12 nodes in the inner layer can be trained to identify and
control the motor currents almost as well as one with 30
nodes, but the 12 node ANN is preferred because of its
lower computational requirement on the implementation
hardware. The results also show that the 12 node ANN
system performs well both at low and high frequency motor
currents. Moreover, the value of the training step size &
influences the system behavior in the same way as the
proportion gain of a traditional feedback controller.

An inverter fed adjustable speed induction motor could
be identified and its stator currents controlled within a few
milliseconds of the startup and thus provide self-
commissioning while the ANN has no prior information
whatsoever of the inverter and the motor connected to it.
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