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Abstract — This paper addresses the problem of deadbeat
control in fully controlled high power factor rectifiers.
Improved deadbeat control can be achieved through the use of
neural network-based predictors for the input current
reference to the rectifier. In this application, on-line training
is absolutely required. In order to achieve sufficiently fast on-
line training, a new random scarch algorithm is presented
and evaluated. Simulation results show that this type of
network training yields equivalent performance to standard
backpropagation training. Unlike backpropagation, however,
the random weight change method, can be implemented in
mixed digital/analog hardware for this application. The
paper proposes a VLSI implementation which achieves a
training epoch as low as 8 psec.

INTRODUCTION

Rectifiers are an integral part of almost every power
electronic system that connects to the utility supplying AC.
In the industrial power range, mainly three-phase rectifiers
are employed with either one-way or bi-directional power
flow capabilities. In case of the three-phase bi-directional
rectifiers, the boost-derived six-switch topology has been
adopted by most researchers because of its advantages. The
most popular method of control for these rectifiers consists
of two nested control loops, a slower outer loop that
computes reference signals for the AC input currents and a
faster inner current regulator that forces the actual AC
input currents to follow these desired trajectories as
illustrated in Fig. 1. This control method guarantees
stability and also achieves high control bandwidth and good
steady state performance. The input current reference, / f,;f ,

is derived so as to balance the instantaneous AC input and
DC output powers and to keep the input currents
proportional to the corresponding input phase voltages.
The input power demand is computed as a combination of
the instantanecous output power and the DC bus voltage
error.
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Fig. 1. Rectifier control scheme using a neural net
predictor, illustrating the error to be minimized.

The current regulator typically falls into one of the
following two categories; a hysteresis current regulator or
one of its improved forms [1], or a predictive deadbeat
control [2]. Both techniques have their advantages and
disadvantages and the choi¢e of a particular technique
depends upon factors like the switching frequency used, the
ease of implementation etc. A number of deadbeat control
techniques have been presented previously with increasing
degrees of complexity and improved performance. One
such technique [2] with good controller performance was
subsequently improved [3] by using prediction schemes (see
Fig. 1) for the system states and the reference currents
which dramatically improved the performance particularly
with small DC bus energy storage. The input current
reference signals, 77, in the stationary dq frame of
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reference, are derived from a combination of the DC bus
voltage error feedback and the output power feedforward.
This I;;’ is fed to a current regulator that uses the system

model to compute the required voltage, vas., at the rectifier
side of the line inductors; v, is realized by space vector
pulse width modulation in the rectifier.

Because of the computation delay, by the time v, is
calculated, other system variables i.c., the input currents,
i, and voltages, e, have changed to new values. In
order to fully utilize the sampling time, T,, for PWM
purposes, this computed v, is applied at the beginning of
the following sampling interval. This results in a control
error since the computation of v,;,. was based on the actual
(old) sampled system variables. However, if one-sampling-
interval-ahead-predicted system variables are used in the
control computation, it is possible to eliminate or reduce
this error. Another source of error stems from the fact that

the I,;;f computation is based on instantaneous input power

demand to supply the outward flow of energy and to
compensate for any errors in the DC bus. Because of the
computation delay and the fact that the deadbeat control
drives the input currents to the reference values in exactly

one sampling interval, the input currents actually lag I3/
by 4nTs, where Tg is the sampling interval. This lag
results in input power being slightly less than the desired
power commanded by I;;f . If the DC bus energy storage is

small compared to the output power, this delay manifests
itself as small oscillations on the DC bus voltage. If the
sampling time Tg is large or the DC bus capacitor is too

small, these oscillations can cause instability. This error in
deadbeat control can be cured by using a 2Ts ahead

predicted value of 1 ;f,/ in the control computation. Because
the 7 ;;f calculation requires the output power and the input

voltages which can not be modeled because of their
statistical nature, this prediction of J, ;;f must use statistical

or Al methods. An Artificial Neural Net (ANN) based
predictor was used in reference [3] along with a state
predictor to greatly improve the performance of the rectifier
regulator. Fig. 2 shows a typical result where the impact of
the prediction schemes on the DC bus voltage ripple is
obvious.

The feedforward ANN in [3] was trained on-line using
standard backpropagation as opposed to most applications
of the feedforward neural nets where training is performed
off-line using pre-stored data. In general, each on-line
training epoch consists of propagating the ANN input
vector forward through the ANN to compute its output,
comparing of this output with some reference to compute
the training error, and finally modifying the. ANN weights
in such a way as to reduce the magnitude of this error.
Since the ANN input vector changes from one sampling

interval to the next, one training epoch has to be completed
in one sampling interval. The typical desired sampling
frequency is in the kHz range, the corresponding sampling
time being in hundreds of microseconds; in reference [3],
the sampling time was 128 ps. During this sampling time,
the processor has to sample, compute the control and do
housekeeping chores; the remaining time is available and
can be dedicated to ANN computations; a typical duration
being 50 us [3]. Due to the lack of a suitable ANN ASIC,
the ANN of [3] was originally implemented in software on
a microprocessor, but for a practical sized ANN (e.g. 20
inputs, 20 middle-layer nodes and two outputs), it was not
possible to complete all the computations involved in one
training epoch during this 50 micro-seconds.
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Fig. 2. Rectifier output DC voltage illustrating the
improvement in control performance due to statc and
reference signal prediction.

This paper proposes and investigates the use of a new
fast on-line training algorithm for feedforward ANNs
suitable for hardware implementation and which can meet
the timing constraints described above. As opposed to
backpropagation, this method is robust and insensitive to
the non-idealities of the analog VLSI circuits.

COMPARISON OF AVAILABLE HARDWARE

Although attempts have been made to implement the
feedforward ANN and its backpropagation algorithm in
software on single or multiple processor arrays [4], the
speed achieved is too slow for the real time application of
this rectifier regulator. Higher speeds may be possible
using parallel implementations on multiprocessor
architectures [5] but the cost of the system becomes
prohibitive. Another alternative is the use of ANN ASICs,
but to date, there is no commercial ASIC available that
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integrates the backpropagation training algorithm along
with the forward pass suitable for on-line training at these
speeds. More recently, a zero instruction set computer
chip, ZISC036 was introduced by IBM that uses radial
basis functions (RBF) as the training method [6]; a similar
but more powerful chip using RBF for training has also
been developed by Intel and Nestor Inc. [7]. The radial
basis function neural networks are not as powerful as the
feedforward ones when compared in terms of extrapolation
and generalization capabilities.” Another possibility
explored by some researchers is to combine a feedforward
ANN ASIC like the Intel Electrically Trainable Analog
Neural Network (ETANN) with external high speed
processors to implement the backpropagation [8]. The
forward pass is carried out in the ETANN and the weight
update computation is done on the external processor;
although this method can achieve considerably higher
speeds than a software implementation of the ANN, the
achieved speed is still too slow for the rectifier regulator
application considered in this paper.

A complete hardware implementation of the
feedforward neural net using backpropagation or one of its
variants for continuous on-line training has not been
accomplished to date. The major obstacle in this regard is
the sensitivity of these gradient descent training algorithms
to the non-linearities and offsets present in hardware
analog multipliers and adders. The all-digital
implementation takes up much larger chip areas than the
analog ones and therefore, a fully parallel digital
implementation can be realized only for small networks and
with lesser number of bits. Backpropagation is sensitive to
the bit resolution and fails to converge if the resolution is
inadequate. If, instead, the computation is carried out
serially in digital circuits, learning speed must be
sacrificed. Analog implementation of weight circuits and
multipliers, on the other hand, has the advantage of fast
operating speed and small chip areas, therefore allowing
larger circuits to be realized. However, the non-idealities of
these analog circuits, as mentioned above, render the use of
backpropagation or its modified versions unsuitable from a
practical standpoint.

All the above problems prompted the search, not for
faster hardware to implement continuous on-line training
using backpropagation, but instead for an alternate training
algorithm which is more robust and less complex and,
therefore, would take much less time to execute on VLSL
This is described in the next section.

THE RANDOM WEIGHT CHANGE TRAINING ALGORITHM

A new ANN training algorithm called Random Weight
Change (RWC) has been developed as a variation of a
previously proposed method of ANN training based on
random search for a minimum on the error surface [9]. As

opposed to the deterministic methods of weight training
like backpropagation, the RWC algorithm is a statistical or
probabilistic method. In very simple terms, during each
training cycle or epoch, each of the network weights is
perturbed randomly with a fixed magnitude, +delta, and the
ANN output error is computed after the weight change.
This error is compared to the value of the previous error
before the weight change, and based on this comparison, a
decision is taken whether to keep the new weights or not.
Keeping the ANN input vector fixed, this process is
repeated a number of times called Trials and the final
weights are chosen to be the ones that result in the smallest
error during one epoch. The flow chart in Fig. 3 explains
one training cycle or epoch in more details.
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Fig. 2. Flow chart depicting one training epoch of the
Random Weight Change training algorithm.

The step size, delta, is a training parameter that needs
to be determined heuristically, for a specific problem. This
is similar to the gain coefficient, B, in backpropagation and
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can be thought of as the radius of a hyper-sphere in the n-
dimensional error hyper-surface, where ‘n’ is the total
number of network weights. It was observed during
experimentation that the value of delta needs to be small,
about two orders of magnitude less than the weight
magnitudes. Also the final convergence is sensitive to delta
which must be determined heuristically for each problem.
As is clear from Fig. 3, each epoch contains N trials,
therefore the forward propagation and the random weight
change has to be done N times during each epoch. This
appears to be a large amount of computation, but, because
of the fact that this scheme can be implemented with fully
parallel nodes, and the random numbers can be generated
very efficiently using shift registers, the all-hardware
implementation can achieve very high speeds.

RANDOM WEIGHT CHANGE HARDWARE

The primary reason for using the RWC algorithm is
that the hardware required is significantly easier to
fabricate than for backpropagation. To implement
backpropagation training in hardware requires high
precision multiplication [9] and this limits the size and/or
speed of the hardware that can be fabricated. For
applications with hundreds of weights and weight update
times in the micro-seconds, the RWC algorithm hardware
is, therefore, superior in the cost and complexity of the
hardware required. This is because compact analog mixed
signal circuitry can be used to perform the weight updates
and the forward-propagation of the network.

A proposed hardware schematic for the RWC
algorithm learning ANN is presented in Fig. 4. - The
hardware is controlled by a conventional micro-controller
which generates the clock signals (phl and ph2) and a few
control signals (update, best, rand, delta). These control
signals are changed, at most, every weight update cycle (i.e.
epoch) and so do not present a challenge to even low cost
single chip micro-controllers. The parallel mixed signal
analog-digital hardware carries out all the paralle] weight
update and forward-propagation operations. It is
anticipated that with a 100 MHz digital clock the training
epoch, proposed in Fig. 4, would take 800 ns (20 RWC
trials). With a less aggressive 10 MHz clock, the epoch
would take 8 micro-seconds.

Each weight circuit in the ANN contains three
registers (R, W, and B in Fig. 4) that store the random
weight changes, the current weight, and the best weight
change for the current epoch. The random weight changes
are shifted into the register, R, and used to update the
weight register, W. Then the opposite weight change is
shifted into R and used to return W to the original value.
The timing of this process is shown in Fig. 5. The step Al
represents the trial of the current weight change, while A2
represents the return to the original value of the weights.
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Fig. 3. The Random Weight Change learning hardware
schematic.
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Figure 4. Timing diagram for RWC learning hardware.

The external signal “best” is computed externally from
the hardware and indicates that the current weight change
is the best so far among the completed Trials in the current
epoch. This signal causes the current weight change to be
saved in the B (best) register. When one epoch is complete,
the update signal is raised and the best weight change is
permanently saved in the weight register (W). In step B the
external processor computes that the current weight change
is the best for the epoch. In step C the value of the register
B (best(i)) is updated. In step D the best overall weight
change is made permanent.
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RESULTS

In order to assess the suitability of the RWC algorithm
for the rectifier regulator prediction problem, a computer
simulation was performed. The ANN used in the
simulation consists of 20 inputs, 20 middle layer neurons
and two outputs. The middle layer outputs pass through
sigmoidal non-linearities while the final outputs are linear.
The complete system of Fig, 1 consisting of the three-phase
rectifier along with the deadbeat controller and the ANN
predictor was simulated. The neural network, which serves
as a time-series predictor of the input current reference,

uses the previous ten values of / ;;f as ANN inputs for one

epoch. During each epoch, the process shown in Fig. 3 are
repeated for N=20 times keeping constant the inputs for
that epoch.

For comparison purposes, the simulation was repeated
with an identical rectifier system and the same ANN, using
backpropagation for training. Fig. 6 compares the output
errors produced by the two (RWC and backpropagation)
training methods as a function of the number of epochs.

Clearly, the RWC method converges faster than
backpropagation.
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Fig. 6. Absolute value of Output Error illustrating training
using (a) backpropagation and (b) using Random Weight
Change algorithm.

Fig. 7 shows the computed current reference /7 and

the predicted current reference signal [ffusing the two
training algorithms . Note in Fig. 7 that both the
backpropagation method and the RWC method predict
essentially the same current reference, and that the
predicted current reference leads the computed reference, as

expected. The good agreement between the results of Fig. 6
and Fig. 7 prove that the new fast on-line random training
method gives results which are as good as those obtained
using backpropagation. Figure 8 illustrates the effect of the
RWC-based predictor on the rectifier dc output voltage in
the presence of a load change, which causes the ANN to
retrain.
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Fig. 7. Computed current reference signal along with the
neural net predicted reference signal using backpropagation
and random weight change.

VORISR YTV VAR

volts/amps per unit

o5f ¥ Y : :
1t f ¥ ¥ J
DC load doubles at this point ]1

0 50 100 150 200 250 300 350
milliseconds

-15

Fig. 8. The DC bus voltage (upper trace) illustrating the
improvement in control performance using the predicted
current reference signal (using RWC ANN) with a step
change in DC load. Lower traces are the computed current

reference signal /7 <, and the predicted current

reference signal /77 <.
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The ANN size and the training parameter delta, are
chosen by trial and error. There is a minimum required
number of nodes determined by the problem complexity. A
network with smaller size cannot retain the information
necessary for determining the correct response.  This
number is determined through experiments. Similarly, the
convergence speed and the final resulting error are
functions of the training parameter delta and the number of
trials. These parameters were also determined through
experiments.

Though this paper does not include resuits for varying
network size and the effect of delta, a similar study was
performed on an induction motor control problem. Results
have been presented in [10] showing that an ANN with 12
nodes in the inner layer can be trained to identify and
control the motor currents almost as well as one with 30
nodes. Moreover, the value of the training step size, delta,
influences the system behavior in the same way as the
proportion gain of a traditional feedback controller.

CONCLUSIONS

A new fast on-line training algorithm for feedforward
artificial neural networks with a potential for hardware
realizability has been proposed for use in a rectifier control
scheme. The algorithm was demonstrated to produce
results comparable to backpropagation when applied to a
three-phase rectifier control problem. The algorithm is
based on the method of random search, is computationally
very simple and therefore, is suitable for VLSI
implementation.
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