Solution of Massively Parallel Systems of Nonlinear Equations Using Analog Circuits
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Abstract

A parallel analog puting scheme is presented which finds solutions to
very large sets of coupled equations using a massively parallel analog com-
puting structure. The viability of the proposed scheme, is demonstrated
by solving the power flow (load flow) equations for a power system. The
proposed scheme will solve the power flow equations for a large system at
least four orders of magnitude faster than digital computers currently be-
ing used by utilities. The added speed will make the solution of the power
flow equations a viable method of determining power system stability on-
line in utility control centers. The proposed parallel analog architecture will
employ intergrators, pliers, and feedback to find the solution of the
nonlinear, algebraic power flow equations as the the steady state solution of
a dynamical analog circuit.
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Because of their size and complexity, power systems have always been a
prime candidate for computer based analysis and simulation [1, 2]. One
of the fund tal lysis and pl tool used by power utilities is
the solution of the power flow equations. The power flow, or load flow,
equations are a set of nonlinear algebraic equations whose solution represents
the steady state operating point of the system [3]. The power flow equations
are coupled, nonlinear, and of high order. For a power system with n buses
there will be 2n — 2 equations. The traditional method of solving the power
fiow equations is by an iterative search technique, such as Gauss-Seidel or
Newton-Raphson. Currently, utilities solve these equations on work stations.
For a typical power system with 2500 buses and 4000 lines, the solution
requires about 15-30 cpu seconds. In a planning environment, where the
analyst is looking for solutions to future needs of the utility, the time of
solution is not a primary concern. However, the power flow solution is also
of use to power system operators, the personnel who actually operate the
system on a minute to minute basis. For system operators the power flow
would be most useful if the solution can be done in a matter of milliseconds,
rather than tens or hundred of seconds as is currently the case with digital
computers.

If the power flow could be solved in milliseconds, then the system operator
could very quickly investigate how the system wnll react to a set of potential

blems or disturb , called ‘conti > (4] If the system is stable
for most of the contmgen(:les, then the operator feels confident that the
system is operating in a satisfactory fashion.

In this paper we will show that the power flow equations can be rewritten
so that they can be solved in parallel using a combination of analog and
digital circuitry. The emphasis will be on the analog portion of the proposed
hardware, but it is worth emphasizing that the overall approach is a hybrid
technology that provides the necessary flexibility to model any power system
topology. In particular, this mean the flexibility to reconfigure the busses and
lines of the power system arbitrarily and to adjust all system parameters and
variables such as line impedances and real and reactive generation and load.
In short, the proposed computing technology will have the same capabilities
as current digital systems.

The clear advantage of the proposed approach is that it will be many
times faster than current single digital, or even parallel, digital computer
systems. The reason is that the power flow equations are solved totally in
parallel. Thus, no matter what the size of the power system, the solution
time will be essentially the same. Even a parallel digital computing system
cannot offer this level of parallelism.

The success of this approach, as demonstrated by both SPICE [16] simu-
lations and an actual realization of the circuitry using discrete components,
results from the following properties of the power flow equations. First, the
dynamic range of the power system problem matches that of current ana-
log circuitry. Second, it is possible to realize the power flow equations in
terms of mathematical operations than can be done quickly with minimum
analog circuitry. Basically, this means writing the power flow equations in
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Cartesian coordinates instead of the usual polar coordinates, thereby elimi-
nating the evaluation of sine and cosine functions, operations that cannot be
done efficiently with analog circuits. In Cartesian coordiates the power flow

tions can be evaluated using only summing and muitiplying operations
tlmt can be realized with simple, analog circuits that do not require much
space on an integrated circuit. As an example of analog circuit density, Intel
currently offers a single chip with 10,240 analog six bit precision multipliers
{13].

It should be emphasized that even though the solution is achieved by
the analog part of the system, the initial configuration of the topology, the
setting of all system parameters and variables and the retrieval of the solution
is done digitally. In a typical scenario a ‘case,” consisting of a topology, the
system parameters and known variables would be retrieved from the memory
of a digital computer and used to initialize the analog circuitry. The analog
circuitry would then solve the power flow; the solution would be retrieved
by the digital computer.

The analog scheme is the source of the potential increases in speed, and
is the main topic of this paper. Three main issues will be addressed: sta-
bility, accuracy, and speed. The primary concern is stability. The analog
circuit which will be used to solve the power flow equations finds a solution
through the application of analog feedback [14]. That is, we create an analog
dynamical system whose steady state solutions are the solution of the power
flow equations. Although we can easily guarentee that the critical points of
such a circuit are solutions to the power flow equations, it is not assured
that these solution points are stable equilibrium points of the analog circuit.
This is because some of the solution points may be unstable equilibria.

Due to the particular architecture employed, the proof of stability of the
analog circuit remains an open issue, currently being studied. However, as
pointed out in the sequel, extensive testing has shown the analog circuit to
be remarkably stable. A more practical and important aspect of stability, is
the introduction of circuit parasitics when the circuit is actually fabricated.
As discussed later, this issue has been addressed by building a prototype
circuit using discrete components.

Also of concern is the accuracy of the individual processors. Accuracy
will be limited mostly by the quality of the multipliers, which form the heart
of the circuit topologies employed. Current technology realizes analog mul-
tipliers with accuracies of 0.3% and bandwidths of 30 Mhz in 100 square
microns of chip area. For our purposes, fifty multipliers with adequate ac-
curacy may be easily realized on a single chip. While superior performance
could be obtained with bipolar circuitry, CMOS technology was used to take
advantage of the cheaper price and lower power consumption.

2 Parallel Analog Solution of the power flow
Equations

The power flow equations are a set of algebraic equations that balance the
power consumed by known loads and transmission line losses against the
power produced by the generators.

These algebraic equations are determined by the toplogy of the power
system network, that is the transmission lines and transformers that inter-
connect the loads and generators, through a collection of nodes, or busses,
and six quantities at each bus k. The six quantities are: real and reactive -
load, PLy and QLy; real and reactive generation, PG and QGj; and the
bus voltage magnitude and angle, |Vi| and ;. Of the six quantities, four are
specified and two are left unspecified, and for an n-bus power system there
will be 2n — 2 load flow equations, since the the voltage angles at the buses
are all referenced to one bus, called the slack [5, 3].

Of the six quantities at each bus, PGy, PL;, and QL are always known,
or specified. Of the three remaining quantities 6; is always treated as an
unknown. If QG; is specified, then the bus is called a PQ-bus and the
solution of the load flow equations yields the |V;| and 8;. If, |V |y is specified,
than the bus is called a PV-bus and the solution yields PQ; and 8.

As we remarked in the introduction, the power flow equations have tra-
ditionally been solved on a digital computer using some iterative search
technique. There have been a number of advances in the algorithms used on
digital machines. Of particular importance has been the work on so-called
fast decoupled power flows [6, 7], and sparsity techniques [8, 9, 10]. However,
this work is mainly a refinement of previous iterative techniques. Further,
the fast decoupled algorithm can experience convergence problems [11, 12].

Our approach is to solve these equations completely in parallel using
a specialized analog circuit, that is digitally programmable so that is can
accomodate changes in the power system topology, parameter values and



variables. As stated earlier, the idea is to design a dynamical analog circuit
whose steady state solutions are also the solutions of the algebraic power
flow equations. The matter of constructing a circuit whose equilibrium
points correspond to the solutions of a specific nt of dgebruc equations
is straightforward. The difficulty is. tered t that the
equilibrium points of the analog circuit are stable. Tlmt is, the dynamlcal
equations of the analog circuit can be written as

#(t) = f(z(1)), )]

where z(t) is a vector of the states of the dynamical system, and f a vector
function. Then, the equilibrium ‘points’ are the values of z(t) for which

() = 0,

or

fz(t)=0 2

X

f(x)

Figure 1: Implementation of Z(t) = f(z(t))

An implementation of equation 1 is shown in Figure 1.

The important question, of course, is whether the system in Figure 1 will
converge to a stable solution. That is, given some initial state zo = z(to),
does z(t) — z,, where z,, is a constant value, i.e. an equilibrium point?

There are two basic approaches to determining the stability of a system
represented by equation 1. One is to find a Lyapunov function V(t) for
the system, and then show that V(t) < 0 {15). I the stability points are
known, a second approach is to linearize the system about a stability point
and look at the stability of the ting linear syst Initially, we studied
the stability properties of the dynamical system that solves some low order
power flow equations, where it is feasible to do eigenvalue analysis, and the
results uniformly confirm that the system is stable. More recently we have
shown that the dynamic equation for the circuit can be written

& = Az + N(z), 3)
where A is a constant matrix whose entries can be written explicitly in terms
of circuit parameters and N is a nonlinear term. The goal is to show that by
proper choice of circuit values, the circuit is locally stable about any viable
power flow solution.

3 Application to the Solution of the power
flow Equations

We have already discussed the general form of the power flow equations. We
now discuss in more detail two specific power systems of low order. Figures 2
and 3 represent, respectively, the topologies of two and fourteen bus power
systems.
We include the diagram of the fourteen bus system, because we will
tly present simulation results for this system. For an n-bus power
system, we choose the slack bus to be bus n. We first decompose the complex
current Iy, flowing bewteen busses k and £ into its real and imaginary parts:

Iie = Re{lie} + jIm{Ixe}, (C)]

where Re{ } and Im{ } signify the real and imaginary part of Iy;. Then the
real and imaginary parts of the current in the line can be expressed in terms
of the conductance g, and susceptance b, of the line as follows.

h

Re{I} = —gie(Re{V2} ~ Re{V1}) + bee(Im{V2} — Im{V1}) (%)
and
Im{l12} = —bee(Re{V2} — Re{W1})) — gre(Im{V;} — Im{V1})  (6)
The voltage at bus £ is given by:
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Ve = Re{Ve} + jim{Ve} )
The complex power at Bus £, S;, can then be written
n-1
Re{Sc} = Re{V;} | Y Re{lie}| +Im{V2} Zlm{lu) (®)
it izl
Buss1 ~ Bue2
vV V.
Figure 3: Fourteen Bus Power System
and
n-1 n—-1
Im{S;} = Im{Vz} | 3_ Re{Tuc}| - Re{V2} | 3 Im{ie} 9

k=1 =1

k£l kL

As noted before, the voltage at the slack bus is taken to be 120’
Equations 8 and 9 constitute a set of 2n — 2 real equations in 2n — 2

unknowns. As noted earlier, the choice of fixed and free variables at each

bus can vary, but we always have exactly 2n — 2 free, or unknown variables.

4 Experimental Results

We present simulation results for the IEEE 14—Bus system. A circuit to
solve this system has been simulated on SPICE to demonstrate the stability
of the proposed architecture when modeling a large syst This si
has been used to demonstrate that for any reasonable starting point, the
parallel analog computer will be stable, and will find an accurate solution.
In constructing the SPICE simulation, we used ‘bus’ and ‘line’ sub-circuits
that allow the topology to be reconfigured as desired by the user. This choice
also makes it possible to accomodate off-nominal tap transformers that may
appear in the network.

Figure 4 shows the results of a simulation in which the initial values of
Re{V¢} and Im{V}, £ = 1...14, were set to 1 and 0, respectively. Fig-
ure 4(a) and (b) show the real and imaginary parts of the fourteen bus
voltages. Figure 4(c) shows the error currents being integrated by the ana-
log circuit. As can be seen, these error currents all approach zero when the
solution is found, indicating that the solution of the SPICE simulations are
equal to the solutions computed by con | power flow method:

5 Parasitic Considerations

Having demonstrated the stability of the circuit empirically, it remains to
show that parasitics in the fabricated circuit will not lead to instability. For
this reason, a dedicated hardware implementation of the two bus system was
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Figure 4: Results for SPICE Simulation of IEEE 14-Bus System (a) Real
Voltages (b) Imaginary Voltages (c) Error Currents

built using discrete components to determine the effect of parasitic elements
on the performance of the parallel computer. The actual multipliers em-
ployed were manufactured by Burr-Brown (MPY534). The stated precision
of these devices is +0.25% maximum error.

In the implementation, the errors are limited to local feedback loops and
show up as an error in the local computed bus power. It is estimated that the
parasitic capacitances of the prototype circuit were two orders of magnitude
smaller than the actual circuit elements used in the implementation. The
parasitic resistances in the circuit were too small to measure.

The results obtained for the implementation are validated by accompa-
nying SPICE simulations of each test. As a first step, a static solution was
run, to demonstrate that the system would remain settled when given the
correct solution initially.

Next, progressively worse inital guesses of the solutions were used to
determine the system’s capability to find the correct solution. The computer
failed to find a solution only for cases of very bad initial guesses. It is

worth noting that a conventional power flow solution executed on a digital
computer will behave similarly. That is, it will not converge for very poor
initial guesses.

Three progressively worst guesses, for which the system does converge,
are shown in Figures 6, 7, and 8
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Figure 5: Schematic of Transconductance Multiplier

Note in the case of Figure 8 there is an obvious difference in implemen-
tation and simulation results due to the fact that the initial guess of the
solution was very close to instability, emphasizing the small differences be-
tween the dynamics in the hardware and the simulated system. However,
the steady state solutions are correct. The final values of the implementation
and the simulation are almost exactly the same.

6 VLSI Fabrication Issues

Based on the results of the SPICE simulations and the discrete component
validation, work in now underway on fabricating small, precise and suffi-
ciently fast multipliers that will allow the topologies of large interconnected
systems, such as a power system, with VLSI technology. In other words,
the goal is to develop digitally reconfigurable ‘chip sets’ that could solve a
large scale problem. Initially we will concentrate on using the multiplier to
develop ‘line’ and ‘bus’ subcircuits to solve the power flow problem, but the
ideas are clearly generalizable to other large scale dynamic systems.

The multiplier is based on a linear transconductance cell, and has differ-
ential inputs and a‘current output [17, 18]. The design differs from that in
[18] in that cascaded current mirrors are used for improved current tracking.
Also, cascaded current sources have been employed to allow a wider voltage
swing range. Figure b is a schematic of the mulitplier

To achieve the necessary precision in the fabricated mulitpliers, EEP-
ROMs will be used as pre-emphasis devices [19]. The effectiveness of this
approach has been explored in [20]. The EEPROM devices make it possi-
ble to use very compact multiplier cells which otherwise would not have the
necessary accurcay.

7 Conclusions

A new approach to the solution of the power flow equations has been pre-
sented that can increase the speed of solution by many orders of magnitude
over current approaches. Both stability and parasitic influences involved in
realizing the necessary circuitry in CMOS technology have been investigated.
It has been demonstrated that the proposed method may be constructed in a
manner which will be superior to existing hardware in cost, speed, and size.
The development of parallel analog processors to solve systems of equations
representing large scale power systems has been investigated using the IEEE
14-Bus system via SPICE simulation. The viability of the simulation is sup-
ported by test results on a dedicated hardware implementation for a two bus .
system. Current efforts are being focused of the construction of a dedicated

CMOS circuit to perform these calculations for large scale systems.
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