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Abstract

A fast, analog implementation of the DFT/IDFT requires
solutions to the problems of I/O bottleneck encountered by
large, parallel input sequences, the slow execution time of
long sequential sequences, and the resultant error. We
present an architecture based on several modifications to
Goertzel's Algorithm that provides balances between input
serialization, circuit area, execution time, and output error.

1 Introduction

The potential speed advantages to Digital Signal
Processing (DSP) applications through the use of auxiliary
analog processing circuits encourage the development of
circuits for this purpose. Much of the theory behind DSP is
developed for discrete time signals, and often applies to
analog as well as to digital signal representations. In this
paper we propose a modular analog circuit architecture for
the calculation of Discrete Fourier Transforms and Inverse
Discrete Fourier Transforms (DFT/IDFTs) based on
Goertzel's Algorithm that allows for flexible design
compromises between circuit area, speed, resultant error,
and I/O requirements.

Though extremely fast and relatively accurate,
completely parallel implementations of a DFT/IDFT for
large input sequences are impractical because of circuit I/O
limitations, the extremely high interconnection of the input
signals' distribution, and the large silicon area necessary.
For Real input signals, each of the N output samples of such
an architecture would require N multipliers and an adder
with a fan-in of N. For an input sequence of length N=512,
and a conservative 100 square microns per multiplier, the
multipliers alone in a fully parallel implementation would
require an area a little over 5 mm? per output point.

Goertzel's Algorithm (GA) [1,2] provides a recursive
solution to complex vector multiplication under certain
conditions. DFTs and IDFTs meet the requirements of this
special case, each point of the DFT or IDFT requiring one
invocation of GA. When serially provided with the
components of a length N input vector, GA requires N
cycles of the recursion to produce the final result by
sequentially adding the current component of the input
vector to the accumulated results, and then rotating the total
in the complex plane by the angle of the primitive Nth root
of unity [Figure 1]. The desired result is the accumulated
value after the Nth cycle of recursion.
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Note that the most primitive root required using this
method for a DFT/IDFT calculation, ei2™N, can be used to
calculate each point of the output sequence by either
reordering the input sequence, or padding it with zeros and
extending the recursion appropriately. This allows an
individual implementation of GA to compute any of the N
output points in a DFT/IDFT calculation.

2 Architecture

Such an individual implementation of a DFT/IDFT
based on GA requires only four multipliers, three adders,
and two sample and hold (S/H) circuits [Figure 2]. In
contrast to the fully parallel implementation, which requires
O(N?) area and O(1) time to compute all output points of a
DFT/IDFT, a fully serial implementation using a single GA
circuit requires O(1) area and O(N2) time. In addition to
swapping concerns over circuit area and signal
interconnection for time, each step of the recursion is an
opportunity for error accumulation.

Re{o%}.

The most obvious engineering compromise between
these two extremes is to compute each of the N DFT/IDFT
output points in parallel using multiple instances of GA; for
example, all N output points could be computed using N
instances of GA, requiring O(N) area and O(N) time. Input
connectivity becomes a problem as the demand for different
input sequences increases. For the fully parallel case, this is
not a problem though since each of the N GA circuits use
the same input sequence Output connectivity remains a
consideration, but it is a problem inherent to the DFT/IDFT
calculation. One possible solution is to serialize the output
and step it out during the input of the next sequence.
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For a non prime N, the DFT/IDFT calculation for
each output sample can be factored using decimation in time
FFT techniques to produce an even further parallelized

version of GA [Figure 31{3]. The advantage to this
distributed architecture is that the overall circuit's speed is
no longer tied directly to individual GA circuits’ cycling
time. For example, if M is a factor of N, each point of an N
length DFT/IDFT can be calculated using 1+M GA circuits
in 1+M+N/M time steps (where a time step can be as little
as the storage capacitor's charging time in the S/H circuits).
Several layers of DFT/IDFT's can be built up this way to
reduce the circuit's execution time and both the degree of
recursion that each input sample is subjected to and the
consequent error accumulation.

Buffers between the multiple layers can pipeline the
calculation, reducing the effective calculation time even
further. This reduces the effective calculation time to 1+P
time-steps/result, where P is the largest factor of N that any
of the layers cycle. For the N=512 example, seventy three
identical 8-point GA circuits distributed across three layers
can compute an output point in an effective 9 time-
steps/result, with the highest degree of recursion any input
sample is subjected to being 24 cycles.

3 Implementation

Since the magnitude of each of the four
multiplication's in a GA circuit is less than unity, our
approach to their implementation has been to use voltage
dividers [Figure 4: Note that the location of the inverter(s) is
dependent on the output point, k]. The additions, which can
be built into the S/H circuits, are subsequently done by
sampling the voltage between the dividers, and using either
the stored value, its inverse, or both as necessary in the next
cycle of the recursion.

With reasonable resistance values in the voltage
dividers (as discussed three paragraphs below), the slowest
element in this architecture is the S/H circuit. A reasonable
estimate for its speed is low MHz, so for the preceding
example of a real time, Real valued input sequence and
N=512, results could be expected within 10 usec/result.

There are three considerable sources of error inherent
in this architecture. By far the most critical is the accuracy
of the voltage dividers. Additionally, the S/H circuits
introduce some non-linearity and offset during each cycle of
the recursion.
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Flgure 4: GA Implementaion Example

While active resistors require considerably less space
than poly resistors, they are also considerably less accurate
[4]. SPICE simulations indicated that voltage dividers
constructed of active resistors could be expected to have as
much as 10% error with +1V input [5]. Diffusion resistors
were eliminated from consideration primarily because of
their high capacitance, though it may be that the
consequential speed penalty isn't significant when compared
to the S/H circuit's speed. High process variability is
another negative feature.

The disadvantages to voltage dividers made from
large poly resistors are that, due to their size, they are
affected by distributed variations in process parameters, as
well as the inaccuracies in contact placement. Limiting the
S/H circuits to +1V signals and +100uA output current, at
least 10KQ of resistance is necessary. The typical MOSIS
2um Process poly resistance is 20Q/sq., so resistors around
500 sq. overall length are necessary [6]. With a 2um
minimum width and 2um minimum spacing between poly
sections, an area approximately 42um to a side is required
for each divider. Uncertainty in contact placement is within
0.5um, so the error due to it in the case of this example
resistor is in the range of 0.05%.

The S/H circuits can be expected to introduce both
offset and non-linearity error. Reasonable estimates for the
purpose of simulation are 3% error or less for the non-
linearity and an offset of less than 50mV. Methods using
EEPROMs currently exist that make it possible to make the
S/H circuit very compact and with much higher levels of
accuracy [7,8}. This same EEPROM technology may allow
the precision necessary to make use of four quadrant
multipliers instead of the larger resistive bridges [9,10].

4 Error Analysis

While closed form solutions to the resuitant error are
obtainable for a given input sequence, they don't give an
intuitive understanding into the behavior of the circuit for
different input sequences, nor is their acquisition easy. The
resultant error is limited, however, and has a maximum over
the finite space of all possible bounded input sequences.
The actual value of this maximum error provides some
measure of the circuit's performance.

Ignoring all but the divider uncertainty, the resultant
error at the end of the recursion can be modeled as:
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where rei®~1 models the magnitude and phase inaccuracies
in the complex multiplier [Figure 5a]. The magnitude of
each term in the summation's error is maximum when |x[n]|
is maximum [Figure 5b]. Asseming that the:iiput sequence
is bounded, for example restricting [x[n]|<1, then for some
sequence of x[n]'s with x[n]=t1, the complex error terms
constructively add to produce the maximum error.
Modeling the effects of the S/H circuit as,

f(x)=x-ax3+b ?

where b is the offset and a the coefficient of the most
prevalent term in the non-linearity, the maximum error
introduced per term is when [x| is maximum, with the
additional constraint that b is small. |x| will be largest
throughout the recursion when the sequence of x[n]'s is such
that its terms are as large as possible and constructively add
throughout the recursion. Again, for some sequence of
x[n]'s with x[n]=t1, the resultant error is at its maximum.

If it wasn't for the non-linearity in the S/H circuit, the
offset’s effect would not be related to the magnitude of the
input sequence, but would instead be an additive constant
that could conceivably be removed or compensated for at
the end of the recursion. The non-linearity's effect,

however, is altered depending on how the magnitude of the
result accumulates during the recursion, and this effect is at
its maximum when the accumulating result is at its
maximum as well. Our approach has been to determine its
effect through simulations.

5 Simulation

Since the maximum error lies somewhere on the edge
of the input space (i.e., when Ix[n]! is as large as possible),
there are only 2N candidate input sequences for the one that
produces the maximum error. For the example case of N=8,
there are 256 sequences that need to be considered in the
search for the maximum error.

as a Function of Sample Magnitude
®)
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A carefully optimized C program was written to scan
the edge of N=8 input space. The divider error was assumed
to be normally distributed, and we concentrated on standard
deviations in the range of 0.01% to 5.1%. The investigated
range of the 3™ order non linearity coefficient was also
0.0001 to 0.051, with offsets of 0 V, 1mV, and 50mV. At
each error combination, 1,000-10,000 circuits were
simulated, each circuit having different randomly generated
errors for all four of the voltage dividers In the GA circuit.
For each of the error- combinations, the immum error
along the edge of the input space over all 1,000-10,000 of
the randomly generated circuits was feund. The results for
the offset=50mV simulation are presented in Figure 6.

6 Results

In addition to the maximum error magnitude, the C
program retained that error's generating input sequence. As
predicted, the maximum error in each case corresponded to
an input sequence that maintained the accumulating result at
its maximum magnitude. As verification of the hypothesis
that this point of maximum accurnulation was on the edge of
the input space, an N=8 point simulation was also performed
that scanned the interior of the input space across 9 points
per input sample for each of the N inputs. The 168K fold
increase in search space necessitated limiting this simulation
to only 10 randomly generated circuits per error
combination. As expected, each of the maximum errors in
this simulation corresponded to a point where the
accumulating result maintained its maximum magnitude,
and as a direct consequence, was along the edge of the input
space as well.

Of note is that the largest errors in the simulation are
for the output points X[0] and X[4]. This is because these
two accumulations take place exclusively on the Real axis,
and as such have input sequences capable of the maximal
accumulation for non-Complex input sequences. This
suggests that the circuits that implement X[0] and X[4]
should not include the half that performs the Imaginary part
of the recursion.

The most noteworthy observation is that the resultant error
is essentially linear with respect to the simulated levels of
implementation error. This implies that a first order model
of the error may work well over this region. Also, as can be
seen in the figure, that in such a first order model, the
coefficient for the divider error will be larger than that for
non-linearity of the S/H circuits by roughly an order of
magnitude. Fortunately, the error of poly resistor based
dividers is expected to be very low (as discussed above), so
that the region our implementation is expected to operate in
is somewhere along the Standard Deviation of Divider
Error=0.001 line. Also, the S/H offset's contributing error
is substantial enough to warrant its minimization.

7 Outlook

Future steps in this research include resolving the
issues around the implementations of the S/H circuits and
the input adder (including any scaling factor), the fabrication
and testing of 8-point GA circuits, and the performance
analysis of larger GA based analog DFT/IDFTs such as the
three layer N=512 circuit proposed above.
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Figure 6: Maximum Error Magnitude for 10K Random Circuits



