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This paper presents the technology and design philosophy for low-cost application-specific neural
network implementations through MOSIS. The advantage of applying a low-cost custom-made special
purpose network for a given problem over the application of available general purpose networks is
discussed. The special purpose networks use floating gate devices for weight storage. The presented
design approach allows the designer to implement any knowledge about the problem to be solved into
bardware, thus reducing circuit complexity and training time. The example of a simple network for linear
and non-linear voltage-to-current conversion illustrates the technique.

Introduction

Various neural-network designs have been presented, that offer a general purpose architecture with a
certain number of fully interconnected neurons, resulting in enormous numbers of synapses and weights
[1). Often signal processing problems do not require the complexity of a general purpose network.
Symmetries in pattern recognition problems for example allow a reduction of connectivity. Also most
networks found in biology are not fully connected. The circuit complexity that comes with the general
purpose approach bas some significant drawbacks: the number of weights is much higher than required,
causing long training times and potentially convergence problems in training. The connectivity is much
higher than necessary, causing reduced speed compared to an application-specific network. Furthermore
the chip area and power consumption are not optimized due to the number of unnecessary neurons and
synapses. Knowledge about the signal processing problem cannot be implemented.

But the implementation and fabrication of application-specific neural networks poses serious problems:
Implementations with fixed weights do not achieve the accuracy of trained circuits and have a very
limited range of applications because they cannot adapt to variations in the environment. Floating gate
devices or EEPROMs are the best adjustable weight storage devices available when compactness and
accuracy are considered. Usually the fabrication of EEPROMs requires special processing to obtain thin
oxide to build tunneling injectors. Specialized EEPROM fabrication processes are expensive, not
generally accessible for the research community and not economical for small batch sizes. We present an
EEPROM device in a process with general access and low fabrication cost even for small quantities. This
is crucial to make application-specific networks economically feasible.

The application-specific neural network we suggest, offers floating gate weight storage in a user designed
network that is optimized for a certain application at the low cost and fast tum-around that is offered by
MOSIS [3]. The network connections and weights and the extent of trainability can be specified by the
user. Often the connectivity and the weights of a neural network can be derived in a different way than a
training simulation of a fully connected network with a back-propagation algorithm. For certain
applications analytic and intuitive methods will yield useful networks that will rarely be fully connected.
The paper will explain the EEPROM device and its layout and characteristics, and show the design
example of a simple one-dimensional network for linear and non-linear voltage-to-current conversion.
The example circuit will show how custom design can improve the performance of a network vastly. It
consists of 15 neurons, each with offset and weight adjustment possibilities. The offsets and weights are
preset roughly to obtain a linear conversion but can be changed to either improve the linearity or
approximate nonlinear functions. The presetting of weights allows a very simple training procedure.
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Floating Gate Device In Standard Technology

A special layout in the ORBIT 2um double polysilicon CMOS process allows the fabrication of a floating
gate device with tunneling injector without additional processing steps [2]. The device layout is shown in
fig. 1. Tunneling occurs at a crossover of two polysilicon lines due to field enhancement and oxide
thinning when voltages of above 12V are applied. While the properties of this device are not optimized in
terms of compactness, read/write endurance and programming voltage, the parameters significant for
analog circuits applications, such as the achievable accuracy and the charge retention over time are very
promising. A charge loss of less than 0.1% in 10 years has been reported, and achievable accuracy is
limited by the programming algorithm and measurement accuracy. The yield is at 99.85%. Since the
device is based on a parasitic effect, the parameters for the tunneling injector vary significantly. This
requires consideration in the programming algorithm. Programming has to be done with a variable
programming voltage for fast approximation with higher voltages in the beginning and lower
programming voltage later to achieve high accuracy. The size of the programming voltage will differ for
each device by up to 2V.

The layout technique was also successfully applied in the ORBIT 2uum low-noise analog CMOS process.
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i injector
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Fig. 1: Layout of the floating gate device with tunneling injector
The Voltage-To-Current Conversion Problem

Linear voltage-to-current conversion becomes a problem when the device modeling is complex or
insufficient, because conventional approaches rely on simple device modeling equations. Here the
problem is addressed by application of neural network design ideas. For this network the necessary
weights, offsets and active ranges of each neuron could be determined analytically. Also, the number of
required neurons could be determined from accuracy specifications. The knowledge about the active
range of each neuron led to three slightly different neuron designs each for a different range of input
values so that the circuit can exceed the input range possible with a conventional analog circuit design or
a general purpose neural network. An implementation has to include trainability although the weights are
known, because the technology does not provide sufficient accuracy with geometry-based weights.

Weight And Neuron Circuits

The neuron for voltage-to-current conversion is a differential transconductance, that has the input voltage
and a tunable offset voltage as inputs (fig.4). Neurons for input values near the power supply rails include
level shifter circuits. The transconductance output gets clipped by two unidirectional current mirrors to a
region of high linearity around the center point of the curve. The current output is shown in figure 3. The
tail-current I;,;; controls the weight, which in this case is the transconductance g, according to

#m=2*(B*Lai) /2
The weight and offset storage circuit is a programmable bi-directional current source. The circuit
diagram is shown in fig. 2. The floating gate device is part of a differential pair. In this arrangement,
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thermal variation of the current is minimized. The current flow is limited by the tail-current of the
differential pair to avoid damage during a positive programming pulse.

The circuit implementation already includes an approximation of the weights and offsets for a linear
conversion. The weight current is added to the tail-current to adjust the weight gr,. Changing the offset

requires a voltage shift of the approximate offset. A transconductance in a feedback configuration can
generate a voltage difference depending on the input current (fig.5). With the input current being
programmable from the offset storage circuit above, offset adjustment is possible. The advantages of
starting the training from an approximation will be discussed later.

The Complete Network And Its Training

This simple network consists of 15 peurons in one layer, one input and one output variable. 30 floating
gate current sources are implemented to adjust 15 weights and 15 offsets. Circuitry is included to
generate approximate weights and offsets for a linear conversion. These circuits are based on simple
device models and geometry and do not provide sufficient accuracy to achieve low error. But an
approximate generation of offset voltages and weights is important because it facilitates training. Instead
of starting without any knowledge, the network is already close to its optimum state at the start of the
training procedure. In the case of this network, it is known, which weight must be changed to reduce the
error in a certain area. It requires only one or two data-points to determine the incorrect weight and the
direction of change. Thus the number of iterations to find the solution reduces dramatically. This is an
important issue when dealing with the poorly modeled floating gate devices that are used here. Any
training algorithm has to be robust enough to converge in spite of the unpredictability of the size of a
weight change. Training will become much more complex if the target of a weight change has to be
determined, too. Furthermore the approximation of weights and offsets will improve accuracy, since the
effect of charge loss from a floating gate is reduced. Only the amount of correction will change, not an
absolute value.

Programming is done in the following manner: first all offset voltages are programmed to approximately
the right position. Since the offset voltages are arranged in a chain, the order of programming is fixed.
Then the weights of the individual modules are adjusted. Finally the offset voltages are finely tuned to
their correct value. The accuracy of the offset voltages is most crucial to the overall accuracy of the
transfer curve. The programming algorithm for the individual device has two steps: First, the
programming voltage is ramped up and down to find suitable voltages for significant weight changes in
both directions. Second, the programming voltages are reduced slowly to achieve high accuracy with
small weight changes. A typical programming sequence is shown in fig. 6.
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Fig. 2: Circuit diagram of the programmable Fig. 3: Output current of several neurons: separately
current source with floating gate device (top) and added (bottom)
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Fig. 4: Circuit diagram of the complete system: 15
peurons, level shifter circuits and the reference
generation circuit
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Fig. 5: The reference-generation circuit
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programming voltage [V}

Experimental Results

The circuit was implemented in a 2pum double polysilicon p-well process. All devices have minimum
drawn channel length of 2um. This implementation consisted of fifteen neurons. With a tail-current of
304LA and a cutoff current of SHA an input range of the full power supply voltage swing from 0 to 5V was
achieved. The circuit was programmed to a transfer curve of

Logt= 110 pA - 36 pA [V * Vi

with tolerances of 1HA/V in transconductance and 200nA for reference outputs. The transfer curve before
and after trimming is shown in figure 7. The deviation from the desired curve is shown in fig. 8. The
accuracy observed was 0.5uA or 0.3% of the output swing. The output resistance is in the order of
100k The output dynamic range is 0.5V to 4.5V. The measured 3dB frequency for operation into a 50
Ohm load is about 15MHz.

The same circuit was then programmed to a nonlinear function given by

Iout = 20 PA - 70 pA * arctan (( Vip - 2.5 V) /1.6 V).

The parameters were chosen to fit the input and output ranges of the given bias point. The error AV was
calculated from application of the inverse function to the output.

AV =V -25V+1.6V=*tan (Lo - 20pA)/T0pA)

A deviation of 50 mV or 1% of the input swing was measured (fig. 9). In addition to the programming
tolerances an error is inherent in the piecewise linear approximation approach. It strongly depends on the
shape of the function and is least for low variations in the first derivative. It can be reduced by increasing
the number of modules.
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Fig. 6: Output value and programming voltage for Fig. 7: Output current and error for a linear
a typical programming sequence of a single device transfer-function
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Discussion

To solve this simple signal processing problem to the accuracy and speed presented, there is currently no
alternative to custom design. Custom design is the only method to achieve the input range. Any general
purpose network will be too complex to match the input-range and speed specifications achieved with
this design. The example shown is a fairly simple, so a generalization to more complex problems seems
appropriate. To the user, that is interested in the best performance of a network for a given problem, a
general purpose approach can never be optimal. The design approach presented here can implement all
knowledge the designer has about the problem such as zero weights, results from a training simulation,
analytically derived weights etc.. The designer can build in the trainability that he thinks is required to
bandle the uncertainty inherent in any implementation. The trade-in is a reduced flexibility of the
petwork, reduced fault tolerance, and reduced correction possibilities. Furthermore does the floating-gate
device and its parameter-spread introduce a new difficulty to the training process. The device itself
requires more area than a special process device. A decision on which approach is advantageous will
have to be made based on how much the required network differs from a fully connected general purpose
implementation. Given the suitable requirements the application specific approach will be a significant
performance improvement. The technology presented here will make this approach economical.

Conclusion

A low-cost application-specific neural network design technique and philosophy is presented. It offers
floating gate weight storage and user specified connectivity to avoid the disadvantages of general purpose
neural network implementations. Its main advantages are the reduced complexity, reduced training time,
and improved speed. Disadvantages are reduced fault tolerance and the use of a poorly modeled floating
gate device, that requires a robust training algorithm. The design example of a one-dimensional network
for voltage-to-current conversion with 30 weights achieved an error of less than 1% and a speed of 15
MHz
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