Recent Papers

 

S. Varshney, V.K. Verma, P. K. Srijith, L. Carin and P. Rai, CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks, Neural Information Processing Systems (NeurIPS), 2021

 

J. Chen, Z. Xiu, B. Goldstein, R. Henao, L. Carin, and C. Tao, Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer, Neural Information Processing Systems (NeurIPS), 2021

 

S. Yuan, Y. Li, D. Wang, K. Bai, L. Carin and D. Carlson, Learning to Weight Filter Groups for Robust Classification, IEEE Winter Conference on Applications of Computer Vision (WACV), 2022

 

Q. Yang, J. Zhang, W. Hao, G.P. Spell and L. Carin, FLOP: Federated Learning on Medical Datasets using Partial Networks, Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining, 2021

 

W. Hao, M. El-Khamy, J. Lee, J. Zhang, K.J. Liang, C. Chen and L. Carin, Towards Fair Federated Learning with Zero-Shot Data Augmentation, IEEE Conf. Computer Vision Pattern Recognition (CVPR), 2021

 

V. Kumar Verma, K.J. Liang, N. Mehta, P. Rai and L. Carin, Efficient Feature Transformations for Discriminative and Generative Continual Learning, Supplemental Material, IEEE Conf. Computer Vision Pattern Recognition (CVPR), 2021

 

S. Dai, Z. Gan, Y. Cheng, C. Tao, L. Carin and J. Liu, APo-VAE: Text Generation in Hyperbolic Space, Annual Conf. North American Chapter Association for Computational Linguistics (NACCL), 2021

 

W. Hao, P. Cheng, S. Yuan , S. Si and L. Carin, FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders, Int. Conf. Learning Representations (ICLR), 2021

 

W. Hao, K.J. Liang, D. Shen, Y. Zhou, W. Chen, C. Chen and L. Carin, MixKD: Towards Efficient distillation of Large-Scale Language Models, Int. Conf. Learning Representations (ICLR), 2021

 

S. Yuan, P. Cheng, R. Zhang, W. Hao, Z. Gan and L. Carin, Improving Zero-Shot Voice Style Transfer via Disentangled Representation Learning, Int. Conf. Learning Representations (ICLR), 2021

 

N. Mehta, K.J. Liang, V.K. Verma and L. Carin, Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2021

 

S. Assaad, S. Zeng, C, Tao, S, Datta, N, Mehta, R, Henao, F, Li and L. Carin, Counterfactual Representation Learning with Balancing Weights, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2021

 

P. Chapfuwa, C. Tao, C. Li, I. Khan, K.J. Chandross, M.J. Pencina, L. Carin and R. Henao, Calibration and Uncertainty in Neural Time-to-Event Modeling, IEEE Transactions on Neural Networks and Learning Systems, 2021

 

R.L. Draelos, D. Dov, M.A. Mazurowski, J.Y. Lo, R. Henao, G.D. Rubin and  L. Carin, Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes, Medical Image Analysis, Jan 2021

 

 

2020

 

C.E. Wisely, D. Wang, R. Henao, D.S. Grewal, A.C. Thompson, C.B. Robbins, S.P. Yoon, S. Soundararajan, B.W. Polascik, J.R. Burke, A. Liu, L. Carin and S. Fekrat, Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging, British J. Ophthamology, Nov. 2020.

 

R. Zhang, C. Chen, X. Zhang, K. Bai and L. Carin, Semantic Matching for Sequence-to-Sequence Learning, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2020

 

D. Sundararaman, S. Si, V. Subramanian, G. Wang, D. Hazarika and L. Carin, Methods for Numeracy-Preserving Word Embeddings, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2020

 

R. Wang, S. Si, G. Wang, L. Zhang, L. Carin and R. Henao, Integrating Task Specific Information into Pretrained Language Models for Low Resource Fine Tuning, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2020

 

G.P. Spell, B. Guay, D.S. Hillygus and L. Carin, An Embedding Model for Estimating Legislative Preferences from the Frequency and Sentiment of Tweets, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2020

 

D. Lu, C. Tao, J. Chen, F. Li, F. Guo and L. Carin, Reconsidering Generative Objectives For Counterfactual Reasoning, Neural Information Processing Systems (NeurIPS), 2020

 

Y. Cong, M. Zhao, J. Li, S.Wang and L. Carin, GAN Memory with No Forgetting, Neural Information Processing Systems (NeurIPS), 2020

 

P. Singh, V.K. Verma, P. Mazumder, L. Carin and P. Rai, Calibrating CNNs for Lifelong Learning, Neural Information Processing Systems (NeurIPS), 2020

 

N. Inkawhich, K.J. Liang, B. Wang, M. Inkawhich, L. Carin and Y. Chen, Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability, Neural Information Processing Systems (NeurIPS), 2020

 

H. Zhang, Y. Li, Z. Deng, X. Liang, L. Carin, E.P. Xing, AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning, Neural Information Processing Systems (NeurIPS), 2020

 

S. Dai, Y. Cheng, Y. Zhang, Z. Gan, J. Liu, and L. Carin, Contrastively Smoothed Class Alignment for Unsupervised Domain Adaptation, Asian Conference on Computer Vision (ACCV), 2020

 

S. Yuan, K. Bai, L. Chen, Y. Zhang, C. Tao, C. Li, G. Wang, R. Henao and L. Carin, Weakly Supervised Cross-Domain Alignment with Optimal Transport, British Machine Vision Conference (BMVC), 2020

 

Y. Yang, K.J. Liang and L. Carin, Object Detection as a Positive-Unlabeled Problem, Supplementary Material, British Machine Vision Conference (BMVC), 2020

 

S. Dai, K. Sohn, Y.-H. Tsai, L. Carin, and M. Chandraker, Adaptation Across Extreme Variations using Unlabeled Bridges, Supplementary Material, British Machine Vision Conference (BMVC), 2020

 

S. Si, R. Wang, J. Wosik, H. Zhang, D. Dov, G. Wang, R. Henao and L. Carin, Students Need More Attention: BERT-based Attention Model for Small Data with Application to Automatic Patient Message Triage, Machine Learning in Healthcare (MLHC), 2020

 

M. Zhao, Y. Cong and L. Carin, On Leveraging Pretrained GANs for Generation with Limited Data, Int. Conf. Machine Learning (ICML), 2020

 

H. Xu, D. Luo, R. Henao, S. Shah and L. Carin, Learning Autoencoders with Relational Regularization, Int. Conf. Machine Learning (ICML), 2020

 

L. Chen, Z. Gan, Y. Cheng, L. Li, L. Carin and J. Liu, Graph Optimal Transport for Cross-Domain Alignment, Int. Conf. Machine Learning (ICML), 2020

 

J. Zhang, Y. Zhao, R. Zhang, L. Carin and C. Chen, Variance Reduction in Stochastic Particle-Optimization Sampling, Int. Conf. Machine Learning (ICML), 2020

 

P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan and L. Carin, CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information, Int. Conf. Machine Learning (ICML), 2020

 

R. Zhang, C. Chen, Z. Gan, W. Wang, D. Shen, G. Wang, Z. Wen and L. Carin, Improving Adversarial Text Generation by Modeling the Distant Future, Conf. Association for Computational Linguistics (ACL), 2020

 

P. Cheng, M.R. Min, D. Shen, C. Malon, Y. Zhang, Y. Li and L. Carin, Improving Disentangled Text Representation Learning with Information-Theoretic Guidance, Conf. Association for Computational Linguistics (ACL), 2020

 

Y. Lu, Y. Jia, J. Wang, B. Li, W. Chai, L. Carin and S. Velipasalar, Enhancing Cross-Task Black-Box Transferability of Adversarial Examples with Dispersion Reduction, IEEE Computer Vision and Pattern Recognition (CVPR), 2020

 

W. Hao, C. Li, X. Li, L. Carin, and J. Gao, Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training, IEEE Computer Vision and Pattern Recognition (CVPR), 2020

 

J. Zhang, R. Zhang, L. Carin and C. Chen, Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory, Artificial Intelligence and Statistics (AISTATS), 2020

 

R. Zhang, C. Chen, Z. Gan, Z. Wen, W. Wang and L. Carin, Nested-Wasserstein Self-Imitation Learning for Sequence Generation, Artificial Intelligence and Statistics (AISTATS), 2020

 

P. Chapfuwa, C. Li, N. Mehta, L. Carin and  R. Henao, Survival Cluster Analysis, ACM Conference on Health, Inference, and Learning (CHIL), 2020

 

S. Lobel, C. Li, J. Gao and L. Carin, RACT: Towards Amoritized Ranking-Critical Training for Collaborative Filtering, Int. Conf. Learning Representations (ICLR), 2020

 

N. Inkawhich, K.J. Liang, L. Carin and Y. Chen, Transferable Perturbations of Deep Feature Distributions, Int. Conf. Learning Representations (ICLR), 2020

 

D.E. Range, D. Dov, S.Z. Kovalsky, R. Henao, L. Carin and J. Cohen, Application of a Machine Learning Algorithm to Predict Malignancy in Thyroid Cytopathology, Cancer Cytopathol, Feb. 2020

 

M. Zhao, Y. Cong, S. Dai and L. Carin, Bridging Maximum Likelihood and Adversarial Learning via α-Divergence, Proc. American Association of Artificial Intelligence (AAAI), 2020

 

L. Chen, K. Bai, C. Tao, Y. Zhang, G. Wang, W. Wang, R. Henao and L. Carin, Sequence Generation with Optimal-Transport-Enhanced Reinforcement Learning, Proc. American Association of Artificial Intelligence (AAAI), 2020

 

P. Cheng, Y. Li, X. Zhang, L. Chen, D. Carlson and L. Carin, Dynamic Embedding on Textual Networks via a Gaussian Process, Proc. American Association of Artificial Intelligence (AAAI), 2020

 

W. Wang, H. Xu, Z. Gan, B. Li, G. Wang, L. Chen, Q. Yang, W. Wang and L. Carin, Graph-Driven Generative Models for Heterogeneous Multi-Task Learning, Proc. American Association of Artificial Intelligence (AAAI), 2020

 

Y. Li, C. Li, Y. Zhang, X. Li, G. Zheng, L. Carin and J. Gao, Complementary Auxiliary Classifiers for Label-Conditional Text Generation, Proc. American Association of Artificial Intelligence (AAAI), 2020

 

 

2019

 

C. Tao, L. Chen, S. Dai, J. Chen, K. Bai, D. Wang, J. Feng, W. Lu, G. Bobashev and L. Carin, On Fenchel Mini-Max Learning, Neural and Information Processing Systems (NeurIPS), 2019

 

R. Zhang, T. Yu, Y. Shen, H. Jin, C. Chen and L. Carin, Text-Based Interactive Recommendation via Constraint-Augmented Reinforcement Learning, Neural and Information Processing Systems (NeurIPS), 2019

 

B. Li, C. Chen, W. Wang and L. Carin, Certified Adversarial Robustness with Additive Noise, Neural and Information Processing Systems (NeurIPS), 2019

 

K.J. Liang, G. Wang, Y. Li, R. Henao and L. Carin, Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods, Neural and Information Processing Systems (NeurIPS), 2019

 

H. Xu, D. Luo and L. Carin, Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching, Neural and Information Processing Systems (NeurIPS), 2019

 

W. Wang, C. Tao, Z. Gan, G. Wang, L. Chen, X. Zhang, R. Zhang, Q. Yang, R. Henao and L. Carin, Improving Textual Network Learning with Variational Homophilic Embeddings, Neural and Information Processing Systems (NeurIPS), 2019

 

Q. Yang, Z. Huo, W. Wang, H. Huang and L. Carin, Ouroboros: On Accelerating Training of Transformer-Based Language Models, Neural and Information Processing Systems (NeurIPS), 2019

 

Q. Yang, Z. Huo, D. Shen, Y. Cheng, W. Wang, G. Wang, and L. Carin, An End-to-End Generative Architecture for Paraphrase Generation, Empirical Methods in Natural Language Processing (EMNLP), 2019

 

D. Dov, S.Z. Kovalsky, J. Cohen, D.E. Range, R. Henao and L. Carin, Thyroid Cancer Malignancy Prediction From Whole Slide Cytopathology Images, Machine Learning in Healthcare (MLHC), 2019

 

P. Cheng, D. Shen, D. Sundararaman, X. Zhang, Q. Yang, M. Tang, A. Celikyilmaz and L. Carin,  Learning Compressed Sentence Representations for On-Device Text Processing, Association for Computational Linguistics (ACL), 2019

 

D. Shen, A. Celikyilmaz, Y. Zhang, L. Chen, X. Wang, J. Gao and L. Carin, Towards Generating Long and Coherent Text with Multi-Level Latent Variable Models, Supplementary Material, Association for Computational Linguistics (ACL), 2019

 

L. Chen, G. Wang, C. Tao, D. Shen, P. Cheng, X. Zhang, W. Wang, Y. Zhang and L. Carin, Improving Textual Network Embedding with Global Attention via Optimal Transport, Association for Computational Linguistics (ACL), 2019

 

X. Zhang, Y. Yang, S. Yuan, D. Shen and L. Carin, Syntax-Infused Variational Autoencoder for Text Generation, Association for Computational Linguistics (ACL), 2019

 

C. Tao, S. Dai, L. Chen, K.Bai, J. Chen, C. Liu, R. Zhang, G. Bobashev and L. Carin, Variational Annealing of GANs: A Langevin Perspective, Supplementary Material, Int. Conf. Machine Learning (ICML), 2019

 

N. Mehta, L. Carin and P. Rai, Stochastic Blockmodels Meet Graph Neural Networks, Supplementary Material, Int. Conf. Machine Learning (ICML), 2019

 

Z. Song, R.E. Parr and L. Carin, Revisiting the Softmax Bellman Operator: New Benefits and New Perspective, Supplementary Material, Int. Conf. Machine Learning (ICML), 2019

 

H. Xu, D. Luu, H. Zha and L. Carin, Gromov-Wasserstein Learning for Graph Matching and Node Embedding, Int. Conf. Machine Learning (ICML), 2019

 

C. Liu, J. Zhuo, P. Cheng, R. Zhang, J. Zhu and L. Carin, Understanding and Accelerating Particle-Based Variational Inference, Int. Conf. Machine Learning (ICML), 2019

 

Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin, D. Carlson and J. Gao, StoryGAN: A Sequential Conditional GAN for Story Visualization, IEEE Computer Vision and Pattern Recognition (CVPR), 2019

 

H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz and L. Carin, Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing, Annual Conf. North American Chapter of the Assoc. Computational Linguistics (NAACL), 2019

 

W. Wang, Z. Gan, H. Xu, R. Zhang, G. Wang, D. Shen, C. Chen, and L. Carin, Topic-Guided Variational Autoencoders for Text Generation, Annual Conf. North American Chapter of the Assoc. Computational Linguistics (NAACL), 2019

 

B. Li, C. Chen, H. Liu, L. Carin, Towards More Practical Stochastic Gradient MCMC in Differential Privacy, Artificial Intelligence and Statistics (AISTATS), 2019

 

R. Zhang, Z. Wen, C. Chen, C. Fang, T. Yu, and L. Carin, Scalable Thompson Sampling via Optimal Transport, Artificial Intelligence and Statistics (AISTATS), 2019

 

C. Li, K. Bai, J. Li, G. Wang, C. Chen and L. Carin, Adversarial Learning of a Sampler Based on an Unnormalized Distribution, Artificial Intelligence and Statistics (AISTATS), 2019

 

L. Chen, Y. Zhang, R. Zhang, C. Tao, Z. Gan, H. Zhang, B. Li, D. Shen, C. Chen and L. Carin, Improving Sequence-to-Sequence Learning via Optimal Transport, Int. Conf. Learning Representations (ICLR), 2019

 

Y. Cong, M. Zhao, K. Bai and L. Carin, GO Gradient for Expectation-Based Objectives, Int. Conf. Learning Representations (ICLR), 2019

 

C. Li, C. Chen, Y. Pu, R. Henao and L. Carin, Communication-Efficient Stochastic Gradient MCMC for Neural Networks, Supplemental Material, Proc. American Association of Artificial Intelligence (AAAI), 2019

 

 

2018

 

L. Carin and M. Pencina, On Deep Learning for Medical Image Analysis, J. Am. Medical Association (JAMA), Accompanying Video, Sept. 18, 2018

 

X. Zhang, R. Henao, Z. Gan, Y. Li and L. Carin, Multi-Label Learning from Medical Plain Text with Convolutional Residual Models, Machine Learning in Healthcare (MLHC), 2018

 

H. Xu, W. Wang, W. Liu and L. Carin, Distilled Wasserstein Learning for Word Embedding and Topic Modeling, Neural and Information Processing Systems (NeurIPS), 2018

 

X. Zhang, Y. Li, D. Shen and L. Carin, Diffusion Maps for Textual Network Embedding, Neural and Information Processing Systems (NeurIPS), 2018

 

L. Chen, S. Dai, C. Tao, D. Shen, Z. Gan, H. Zhang, Y. Zhang and L. Carin, Adversarial Text Generation via Feature-Mover’s Distance, Neural and Information Processing Systems (NeurIPS), 2018

 

D. Shen, X. Zhang, R. Henao, L. Carin, Improved Semantic-Aware Network Embedding with Fine-GrainedWord Alignment, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2018

 

D. Shen, M.R. Min, Y. Li, L. Carin, Learning Context-Aware Convolutional Filters for Text Processing, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2018

 

C. Tao, L. Chen, R. Zhang, R. Henao and L. Carin, Variational Inference and Model Selection with Generalized Evidence Bounds, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

R. Zhang, C. Chen, C. Li and L. Carin, Policy Optimization as Wasserstein Gradient Flows, Int. Conf. Machine Learning (ICML), 2018

 

P. Chapfuwa, C. Tao, C. Li, C. Page, B. Goldstein, L. Carin and R. Henao, Adversarial Time-to-Event Modeling, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

C. Chen, C. Li, L. Chen, W. Wang, Y. Pu and L, Carin, Continuous-Time Flows for Efficient Inference and Density Estimation, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

H. Xu, L. Carin and H. Zha, Learning Registered Point Processes from Idiosyncratic Observations, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

C. Tao, L. Chen, R. Henao, J. Feng and L. Carin, Chi-Squared Generative Adversarial Net, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

Y. Pu, S. Dai, Z. Gan, W. Wang, G. Wang, Y. Zhang, R. Henao and L. Carin, JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets, Supplementary Material, Int. Conf. Machine Learning (ICML), 2018

 

G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao and L. Carin, Joint Embedding of Words and Labels for Text Classification, Association for Computational Linguistics (ACL), 2018

 

D. Shen, G. Wang, W. Wang, M.R. Min, Q. Su, Y. Zhang, C. Li, R. Henao and L. Carin, Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms, Supplemental Material, Association for Computational Linguistics (ACL), 2018

 

D. Shen, Q. Su, P. Chapfuwa, W. Wang, G. Wang, L. Carin and R. Henao, NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing, Association for Computational Linguistics (ACL), 2018

 

H. Xu, D. Luo and L. Carin, Online Continuous-Time Tensor Factorization Based on Pairwise Interactive Point Processes, Int. Joint Conference on Artificial Intelligence, 2018

 

X. Zhang, X. Yuan and L. Carin, Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration, IEEE Computer Vision and Pattern Recognition (CVPR), 2018.

 

R. Hultman, K. Ulrich, B.D. Sachs, C. Blount, D.E. Carlson, N. Ndubuizu, R.C. Bagot, E.M. Parise, M.-A. T. Vu, N.M. Gallagher, J. Wang, A.J. Silva, K. Deisseroth, S.D. Mague, M.G. Caron, E.J. Nestler, L. Carin and K. Dzirasa, Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability, Cell, March 2018.

 

H. Xu, D. Luo, X. Chen and L. Carin, Benefits from Superposed Hawkes Processes, Artificial Intelligence and Statistics (AISTATS), 2018.

 

R. Zhang, C. Li, C. Chen and L. Carin, Learning Structural Weight Uncertainty for Sequential Decision-Making, Artificial Intelligence and Statistics (AISTATS), 2018.

 

Y. Pu, L. Chen, S. Dai, W. Wang, C. Li and L. Carin, Symmetric Variational Autoencoder and Connections to Adversarial Learning, Artificial Intelligence and Statistics (AISTATS), 2018.

 

W. Wang, Z. Gan, W. Wang, D. Shen, J. Huang, W. Ping, S. Satheesh and L. Carin, Topic Compositional Neural Language Model, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2018.

 

D. Shen, Y. Zhang, R. Henao, Q. Su and L. Carin, Deconvolutional Latent-Variable Model for Text Sequence Matching, Proc. American Association of Artificial Intelligence (AAAI), 2018.

 

W. Wang, Y. Pu, V.K. Verma, K. Fan, Y. Zhang, C. Chen, P. Rai and L. Carin, Zero-Shot Learning via Class-Conditioned Deep Generative Models, Proc. American Association of Artificial Intelligence (AAAI), 2018.

 

Y. Pu, M.R. Min, Z. Gan and L. Carin, Adaptive Feature Abstraction for Translating Video to Text, Proc. American Association of Artificial Intelligence (AAAI), 2018.

 

Y. Li, M.R. Min, D. Shen, D. Carlson and L. Carin, Video Generation from Text, Proc. American Association of Artificial Intelligence (AAAI), 2018.

 

 

2017

 

C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao and L. Carin, ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching, Software, Neural and Information Processing Systems (NIPS), 2017

 

Q. Wei, K. Fai, K.A. Heller and L. Carin, An Inner-Loop Free Solution to Inverse Problems Using Deep Neural Networks, Neural and Information Processing Systems (NIPS), 2017

 

Q. Su, X. Liao and L. Carin, A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks, Supplementary Material, Neural and Information Processing Systems (NIPS), 2017

 

Y. Li, M. Murias, S. Major, G. Dawson, K. Dzirasa, L. Carin and D.E. Carlson, Targeting EEG/LFP Synchrony with Neural Nets, Neural and Information Processing Systems (NIPS), 2017

 

Y. Zhang, D. Shen, G. Wang, Z. Gan, R. Henao, and L. Carin, Deconvolutional Paragraph Representation Learning, Neural and Information Processing Systems (NIPS), 2017

 

Y. Pu, W.Wang, R. Henao, L. Chen, Z. Gan, C. Li and L. Carin, Adversarial Symmetric Variational Autoencoder, Supplementary Material, Neural and Information Processing Systems (NIPS), 2017

 

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han and L. Carin, VAE Learning via Stein Variational Gradient Descent, Supplementary Material, Neural and Information Processing Systems (NIPS), 2017

 

Z. Song, Y. Muraoka, R. Fujimaki and L. Carin, Scalable Model Selection for Belief Networks, Supplementary Material, Neural and Information Processing Systems (NIPS), 2017

 

Z. Gan , L. Chen , W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li and L. Carin, Triangle Generative Adversarial Networks, Neural and Information Processing Systems (NIPS), 2017

 

N.M. Gallagher, K. Ulrich, A. Talbot, K. Dzirasa, L. Carin and D.E. Carlson, Cross-Spectral Factor Analysis, Neural and Information Processing Systems (NIPS), 2017

 

Z. Gan, Y. Pu, R. Henao, C. Li, X. He and L. Carin, Learning Generic Sentence Representations Using Convolutional Neural Networks, Conf. on Empirical Methods in Natural Language Processing (EMNLP), 2017

 

C. Hu, P. Rai and L. Carin, Deep Generative Models for Relational Data with Side Information, Supplementary Material, Int. Conf. Machine Learning (ICML), 2017

 

Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen and L. Carin, Adversarial Feature Matching for Text Generation, Supplementary Material, Int. Conf. Machine Learning (ICML), 2017

 

Y. Zhang, C. Chen, Z. Gan, R. Henao and L. Carin, Stochastic Gradient Monomial Gamma Sampler, Supplementary Material, Int. Conf. Machine Learning (ICML), 2017

 

Z. Xing, S. Hillygus and L. Carin, Evaluating U.S. Electoral Representation with a Joint Statistical Model of Congressional Roll-Calls, Legislative Text, and Voter Registration Data, Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining, 2017

 

Z. Gan, C. Li, C. Chen, Y. Pu, Q. Su, and L. Carin, Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling, Association for Computational Linguistics (ACL), 2017

 

Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin and L. Deng, Semantic Compositional Networks for Visual Captioning, Supplementary Material, IEEE Conf. Computer Vision & Pattern Recognition (CVPR), 2017

 

S. Sun, C. Chen and L.Carin, Learning Structured Weight Uncertainty in Bayesian Neural Networks, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2017

 

A. Stevens, Y. Pu, Y. Sun, G. Spell and L. Carin, Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2017

 

Q. Su, X. Liao, C. Li, Z. Gan and L. Carin, Unsupervised Learning with Truncated Gaussian Graphical Models, Supplementary Material, Proc. American Association of Artificial Intelligence (AAAI), 2017

 

 

2016

 

Y. Zhang, Y. Zhao, L. David, R. Henao and L. Carin, Dynamic Poisson Factor Analysis, IEEE Int. Conf. Data Mining (ICDM), 2016

 

Y. Pu,  Z. Gan,  R. Henao, X. Yuan,  C. Li,  A. Stevens and  L. Carin, Variational Autoencoder for Deep Learning of Images, Labels and Captions, Supplementary Material, Neural and Information Processing Systems (NIPS), 2016

 

Y. Zhang, X. Wang, C. Chen, R. Henao and L. Carin, Towards Unifying Hamiltonian Monte Carlo and Slice Sampling, Supplementary Material, Neural and Information Processing Systems (NIPS), 2016

 

Z. Song, R. Parr, X. Liao, L. Carin, Linear Feature Encoding for Reinforcement Learning, Supplementary Material, Neural and Information Processing Systems (NIPS), 2016

 

C. Chen, N. Ding, C. Li, Y. Zhang, and L. Carin, Stochastic Gradient MCMC with Stale Gradients, Supplementary Material, Neural and Information Processing Systems (NIPS), 2016

 

F. Renna, L. Wang, X. Yuan, J. Yang, G. Reeves, R. Calderbank, L. Carin, and M.R..D. Rodrigues, Classification and Reconstruction of High-Dimensional Signals from Low-Dimensional Noisy Features in the Presence of Side Information, IEEE Trans. Information Theory, 2017

 

Q. Su, X. Liao, C. Chen, L. Carin, Nonlinear Statistical Learning with Truncated Gaussian Graphical Models, Int. Conf. Machine Learning (ICML), 2016

 

J. Song, Z. Gan and L. Carin, Factored Temporal Sigmoid Belief Networks for Sequence Learning, Int. Conf. Machine Learning (ICML), 2016

 

C. Li, A. Stevens, C. Chen, Y. Pu, Z. Gan and L. Carin, Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification, Supplementary Material, Computer Vision & Pattern Recognition (CVPR), 2016

 

L. Wang, M. Chen, M. Rodrigues, D. Wilcox, R. Calderbank and L. Carin, Information-Theoretric Compressive Measurement Design, IEEE Trans. Pattern Analysis Machine Intelligence, 2016

 

Y. Zhang, R. Henao, C. Li and L. Carin, Bayesian Dictionary Learning with Gaussian Processes and Sigmoid Belief Networks, Int. Joint Conference on Artificial Intelligence (IJCAI), 2016.

 

C. Hu, P. Rai and L. Carin, Non-negative Matrix Factorization for Discrete Data with Hierarchical Side-Information, Artificial Intelligence and Statistics (AISTATS), 2016

 

C. Hu, P. Rai and L. Carin, Topic-Based Embeddings for Learning from Large Knowledge Graphs, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

S. Han, X. Liao, D.B. Dunson and L. Carin, Variational Gaussian Copula Inference, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

Z. Song, R. Henao, D. Carlson and L. Carin, Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

C. Chen, D. Carlson, Z. Gan, C. Li and L. Carin, Bridging the Gap Between Stochastic Gradient MCMC and Stochastic Optimization, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

Y. Pu, X. Yuan, A. Stevens, C. Li, L. Carin, A Deep Generative Deconvolutional Image Model, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

Y. Kaganovsky, I. Odinaka, D. Carlson and L. Carin, Parallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2016

 

R. Henao, J.T. Lu, J.E. Lucas, J. Ferranti and L. Carin, Electronic Health Record Analysis via Deep Poisson Factor Models, J. Machine Learning Research, 2016

 

C. Li, C. Chen, D. Carlson and L. Carin, Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks, Supplementary Material, Proc. American Association of Artificial Intelligence (AAAI), 2016

 

C. Li, C. Chen, K. Fan and L. Carin, High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models, Supplementary Material, Proc. American Association of Artificial Intelligence (AAAI), 2016

 

Y. Zhang, R. Henao, L. Carin, J. Zhong and A.J. Hartemink, Learning a Hybrid Architecture for Sequence Regression and Annotation, Supplementary Material, Proc. American Association of Artificial Intelligence (AAAI), 2016

 

D.E. Carlson, Y.-P. Hsieh, E. Collins, L. Carin and V. Cevher, Stochastic Spectral Descent for Discrete Graphical Models, IEEE Journal of Selected Topics in Signal Processing, 2016.

 

 

2015

 

D.E. Carlson, E. Collins, Y.-P. Hsieh, L. Carin and V. Cevher, Preconditioned Spectral Descent for Deep Learning, Supplementary Material, Neural and Information Processing Systems (NIPS), 2015

 

P. Rai, C. Hu, R. Henao, L. Carin, Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings, Software, Neural and Information Processing Systems (NIPS), 2015

 

K. Ulrich, D.E. Carlson, K. Dzirasa and L. Carin, GP Kernels for Cross-Spectrum Analysis, Supplementary Material, Neural and Information Processing Systems (NIPS), 2015

 

C. Chen, N. Ding and L. Carin, On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators, Supplementary Material, Neural and Information Processing Systems (NIPS), 2015

 

R. Henao, Z. Gan, J. Lu and L. Carin, Deep Poisson Factor Modeling, Supplementary Material, Neural and Information Processing Systems (NIPS), 2015

 

Z. Gan, C. Li, R. Henao, D.E. Carlson and L. Carin, Deep Temporal Sigmoid Belief Networks for Sequence Modeling, Supplementary Material, Neural and Information Processing Systems (NIPS), 2015

 

Y. Kaganovsky, S. Han, S. Degirmenci, D.G. Politte, D.J. Brady, J.A. O’Sullivan, and L. Carin, Alternating Minimization Algorithm with Automatic Relevance Determination for Transmission Tomography under Poisson Noise, SIAM J. Imaging Sciences, 2015

 

L. Wang, J. Huang, X. Yuan, K. Krishnamurthy, J. Greenberg, V. Cevher, M.R.D. Rodrigues, D. Brady, R. Calderbank, and L. Carin, Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements, SIAM J. Imaging Sciences, 2015

 

C. Hu, P. Rai and L. Carin, Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors, Uncertainty in Artificial Intelligence (UAI), 2015

 

C. Hu, P. Rai, C. Chen, M. Harding, and L. Carin, Scalable Bayesian Non-Negative Tensor Factorization for Massive Count Data, European Conference on Machine Learning (ECML), 2015

 

X. Yuan, R. Henao, E.L. Tsalik, R.J. Langley and L. Carin, Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood, Supplementary Material, Int. Conf. Machine Learning (ICML), 2015

 

W. Lian, R. Henao, V. Rao, J. Lucas and L. Carin, A Multitask Point Process Predictive Model, Supplementary Material, Int. Conf. Machine Learning (ICML), 2015

 

Z. Gan, C. Chen, R. Henao, D. Carlson and L. Carin, Scalable Deep Poisson Factor Analysis for Topic Modeling, Supplementary Material, Int. Conf. Machine Learning (ICML), 2015

 

P. Rai, C. Hu , M. Harding and L. Carin, Scalable Probabilistic Tensor Factorization for Binary and Count Data, Int. Joint Conf. on Artificial Intelligence (IJCAI), 2015

 

M. Liu, J.P. How, C. Amato, X. Liao and L. Carin, Stick-Breaking Policy Learning in Dec-POMDPs, Int. Joint Conf. on Artificial Intelligence (IJCAI), 2015

 

W. Lian, R. Talmon, H. Zaveri, L. Carin and R. Coifman, Multivariate Time-Series Analysis and Diffusion Maps, Signal Processing, 2015

 

Z. Gan, R. Henao, D. Carlson and L. Carin, Learning Deep Sigmoid Belief Networks with Data Augmentation, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2015

 

D. Carlson, V. Cevher and L. Carin, Stochastic Spectral Descent for Restricted Boltzmann Machines, Supplementary Material, Artificial Intelligence and Statistics (AISTATS), 2015

 

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, Compressive Hyperspectral Imaging with Side Information, Appendix, IEEE J. Selected Topics Signal Processing, 2015

 

Yi Zhen, P. Rai, H. Zha and L. Carin, Cross-Modal Similarity Learning via Pairs, Preferences, and Active Supervision, AAAI Conference on Artificial Intelligence, 2015

 

P. Rai, Y. Wang, and L. Carin, Leveraging Features and Networks for Probabilistic Tensor Decomposition, AAAI Conference on Artificial Intelligence, 2015

 

W. Lian, P. Rai, E. Salazar, and L. Carin, Integrating Features and Similarities: Flexible Models for Heterogeneous Multiview Data, AAAI Conference on Artificial Intelligence, 2015

 

 

2014

 

K. Ulrich, D.E. Carlson, W. Lian, J.S. Borg, K. Dzirasa and L. Carin, Analysis of Brain States from Multi-Region LFP Time-Series, Supplementary Material, Neural Information Processing Systems (NIPS), 2014

 

J. Yang, X. Liao, M. Chen and L. Carin, Compressive Sensing of Signals from a GMM with Sparse Precision Matrices, Supplementary Material, Neural Information Processing Systems (NIPS), 2014

 

D.E. Carlson, J. Schaich Borg, K. Dzirasa, and L. Carin, On the Relationship Between LFP & Spiking Data, Supplementary Material, Neural Information Processing Systems (NIPS), 2014

 

S. Han , L. Du , E. Salazar and L. Carin, Dynamic Rank Factor Model for Text Streams, Supplementary Material, Neural Information Processing Systems (NIPS), 2014

 

R. Henao, X. Yuan and L. Carin, Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling, Supplementary Material, Neural Information Processing Systems (NIPS), 2014

 

X. Yuan, V. Rao, S. Han and L. Carin, Hierarchical Infinite Divisibility for Multiscale Shrinkage, (Supplementary Material), (Code), IEEE Trans. Signal Processing, 2014

 

J. Yang, X. Liao, X. Yuan, P. Llull, D.J. Brady, G. Sapiro, and L. Carin, Compressive Sensing by Learning a Gaussian Mixture Model from Measurements, IEEE Trans. Image Processing, 2014

 

L. Wang, A. Razi, M.D. Rodrigues, R. Calderbank and L. Carin, Nonlinear Information-Theoretic Compressive Measurement Design (Supplementary Material), Proc. Int. Conf. Machine Learning (ICML), 2014

 

P. Rai, Y.Wang, S. Guoz, G. Chen, D. Dunson and L. Carin, Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors (Supplementary Material), Proc. Int. Conf. Machine Learning (ICML), 2014

 

W. Lian, V. Rao, B. Eriksson, L. Carin, Modeling Correlated Arrival Events with Latent Semi-Markov Processes, Proc. Int. Conf. Machine Learning (ICML), 2014

 

J. Yang, X. Yuan, X. Liao, P. Llull, D.J. Brady, G. Sapiro and L. Carin, Video Compressive Sensing Using Gaussian Mixture Models, (Software), IEEE Trans. Image Processing, 2014

 

H. Zhang and L. Carin, Multi-Shot Imaging: Joint Alignment, Deblurring and Resolution-Enhancement, IEEE Computer Vision and Pattern Recognition (CVPR), 2014

 

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D.J. Brady and L. Carin, Low-Cost Compressive Sensing for Color Video and Depth, IEEE Computer Vision and Pattern Recognition (CVPR), 2014

 

C. Hu, E. Ryu, D. Carlson, Y. Wang and L. Carin, Latent Gaussian Models for Topic Modeling, Artificial Intelligence & Statistics (AISTATS), 2014

 

X. Liao, H. Li, and L. Carin, Generalized Alternating Projection for Weighted-ℓ2,1 Minimization with Applications to Model-Based Compressive Sensing, SIAM J. Imaging Science, 2014

 

L. Wang, D. Carlson, M.R.D. Rodrigues, R. Calderbank and L. Carin, A Bregman Matrix and the Gradient of Mutual Information for Vector Poisson and Gaussian Channels, in IEEE Trans. Information Theory, 2014

 

F. Renna, R. Calderbank, L. Carin, and M.R.D. Rodrigues, Reconstruction of Signals Drawn from a Gaussian Mixture via Noisy Compressive Measurements, IEEE Trans. Signal Processing, 2014.

 

Z. Xing, B. Nicholson, M. Jimenez, T. Veldman, L. Hudson, J. Lucas, D. Dunson, A.K. Zaas, C.W. Woods, G.S. Ginsburg  and L. Carin, Bayesian Modeling of Space-Time Properties of Infectious Disease in a College Student Population, J. Applied Statistics, 2014

 

M. Zhou and L. Carin, Negative Binomial Process Count and Mixture Modeling, IEEE Trans. Pattern Analysis Machine Intelligence, 2014

 

 

2013

 

T. Campbell, M. Liu, B. Kulis, J.P. How, L. Carin, Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture, Neural Information Processing Systems (NIPS), 2013

 

L. Wang, D. Carlson, M.D. Rodrigues, D. Wilcox, R. Calderbank and L. Carin, Designed Measurements for Vector Count Data, (Supplementary Material), Neural Information Processing Systems (NIPS), 2013

 

S. Han, X. Liao and L. Carin, Integrated Non-Factorized Variational Inference (Supplementary Material), Neural Information Processing Systems (NIPS), 2013

 

D. Carlson, V. Rao, J. Vogelstein and L. Carin, Real-Time Inference for a Gamma Process Model of Neural Spiking, Neural Information Processing Systems (NIPS), 2013

 

D. Carlson, J. Vogelstein, Q.Wu, W. Lian, M. Zhou, C.R. Stoetzner, D. Kipke, D. Weber, D. Dunson and L. Carin, Sorting Electrophysiological Data via Dictionary Learning & Mixture Modeling, IEEE Trans. Biomedical Engineering, 2013

 

E. Salazar, D.B. Dunson, and L. Carin, Analysis of Space-Time Relational Data with Application to Legislative Voting, Computational Statistics and Data Analysis, 2013

 

M. Liu, X. Liao and L. Carin, Online Expectation Maximization for Reinforcement Learning in POMDPs, Prof. Int. Joint Conf. Artificial Intelligence (IJCAI), 2013

 

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro and D.J. Brady, Coded Aperture Compressive Temporal Imaging, Optics Express, 2013.

 

E. Salazar, R. Bogdan, A. Gorka, A.R. Hariri and L. Carin, Exploring the Mind: Integrating Questionnaires and fMRI, Proc. Int. Conf. Machine Learning (ICML), 2013

 

A. Rajwade, D. Kittle, T.-H. Tsai, D. Brady and L. Carin, Coded Hyperspectral Imaging and Blind Compressive Sensing, SIAM J. Imaging Science, 2013

 

B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson and L. Carin, Deep Learning with Hierarchical Convolutional Factor Analysis (supplementary material), IEEE Trans. Pattern Analysis & Machine Intelligence, 2013.

 

E. Wang, E. Salazar, D. Dunson and L. Carin, Spatio-Temporal Modeling of Legislation and Votes, Bayesian Analysis, 2013.

 

 

2012

 

M. Zhou and L. Carin, Augment-and-Conquer Negative Binomial Processes, Proc. Neural and Information Processing Systems (NIPS), 2012

 

X. Zhang and L. Carin, Joint Modeling of a Matrix with Associated Text via Latent Binary Features (Supplementary Material), Proc. Neural and Information Processing Systems (NIPS), 2012

 

L. Li, X. Zhang, M. Zhou and L. Carin, Nested Dictionary Learning for Hierarchical Organization of Imagery and Text (Supplementary Material), Proc. Uncertainty in Artificial Intelligence (UAI), 2012

 

M. Ding, L. He, D. Dunson and L. Carin, Nonparametric Bayesian Segmentation of Multivariate Inhomogeneous Space-Time Poisson Process, Bayesian Analysis, 2012

 

W.R. Carson, M. Chen, M.R.D. Rodrigues, R. Calderbank and L. Carin, Communications Inspired Projection Design with Application to Compressive Sensing, SIAM J. Imaging Sciences, 2012

 

Y. Wang and L. Carin, Levy Measure Decompositions for the Beta and Gamma Processes (Supplementary material), Proc. Int. Conf. Machine Learning (ICML), 2012

 

S. Han, X. Liao, L. Carin, Cross-Domain Multitask Learning with Latent Probit Models, Proc. Int. Conf. Machine Learning (ICML), 2012

 

M. Chen, W. Carson, M. Rodrigues, R. Calderbank and L. Carin, Communications Inspired Linear Discriminant Analysis, Proc. Int. Conf. Machine Learning (ICML), 2012

 

M. Zhou, L. Li, D. Dunson, and L. Carin, Lognormal and Gamma Mixed Negative Binomial Regression (Supplementary Material), Proc. Int. Conf. Machine Learning (ICML), 2012

 

E. Salazar, M.S. Cain, E.F. Darling, S.R. Mitroff and L.Carin, Inferring Latent Structure From Mixed Real and Categorical Relational Data, Proc. Int. Conf. Machine Learning (ICML), 2012

 

X. Chen, M. Zhou,  and L. Carin, The Contextual Focused Topic Model, Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining, 2012

 

J. Silva and L. Carin, Active Learning for Online Bayesian Matrix Factorization, Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining, 2012

 

M. Zhou, L. Hannah, D. Dunson and L. Carin, Beta-Negative Binomial Process and Poisson Factor Analysis, AISTATS 2012

 

 

2011

 

X. Zhang, D.B. Dunson, and L. Carin, Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices, (Supplementary Materials), Proc. Neural and Information Processing Systems (NIPS), 2011

 

L. Ren, Y. Wang, D. Dunson and L. Carin, The Kernel Beta Process (Supplementary Material), Proc. Neural and Information Processing Systems (NIPS), 2011

 

B. Chen, D.E. Carlson and L. Carin, On the Analysis of Multi-Channel Neural Spike Data, Proc. Neural and Information Processing Systems (NIPS), 2011

 

M. Chen, A. Zaas, C. Woods, G.S. Ginsburg, J. Lucas, D. Dunson and L. Carin, Predicting Viral Infection from High-Dimensional Biomarker Trajectories, J. Am. Statistical Association, 2011

 

Z. Xing, M. Zhou, A. Castrodad, G. Sapiro and L. Carin, Dictionary Learning for Noisy and Incomplete Hyperspectral Images, SIAM J. Imaging Sciences, 2011

 

M. Liu, X. Liao and L. Carin, The Infinite Regionalized Policy Representation, Proc. Int. Conf. Machine Learning (ICML), 2011

 

J. Paisley, L. Carin and D. Blei, Variational Inference for Stick-Breaking Beta Process Priors, Proc. Int. Conf. Machine Learning (ICML), 2011

 

X. Zhang, D.B. Dunson and L. Carin, Tree-Structured Infinite Sparse Factor Model, (Supplemental Material), Proc. Int. Conf. Machine Learning (ICML), 2011

 

L. Li, M. Zhou, G. Sapiro and L. Carin, On the Integration of Topic Modeling and Dictionary Learning, Proc. Int. Conf. Machine Learning (ICML), 2011

 

H. Chen, D.B. Dunson and L. Carin, Topic Modeling with Nonparametric Markov Tree, Proc. Int. Conf. Machine Learning (ICML), 2011

 

B. Chen, G. Polatkan, G. Sapiro, D. Dunson and L. Carin, The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning, Proc. Int. Conf. Machine Learning (ICML), 2011

 

M. Zhou, H. Yang, G. Sapiro, D. Dunson and L. Carin, Dependent Hierarchical Beta Process for Image Interpolation and Denoising, AISTATS, 2011

 

X. Ding, L. He and L. Carin, Bayesian Robust Principal Component Analysis, IEEE Trans. Image Processing, 2011

 

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro and L. Carin, Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images, IEEE Trans. Image Processing, 2011

 

L. Ren, L. Du, L. Carin and D. Dunson, Logistic Stick-Breaking Process, J. Machine Learning Research (code is here), 2011

 

L. Carin, D. Liu and B. Guo, Coherence, Compressive Sensing and Random Sensor Arrays, IEEE Antennas and Propagation Magazine, 2011

 

 

2010

 

C. Wang, X. Liao, D. Dunson and L. Carin, Multi-Task Learning for Incomplete Data, J. Machine Learning Research, 2010

 

E. Wang, D. Liu, J. Silva, D. Dunson and L. Carin, Joint Analysis of Time-Evolving Binary Matrices and Associated Documents, Proc. Neural and Information Processing Systems (NIPS), 2010

 

M. Zhou, C. Wang, M. Chen, J. Paisley, D. Dunson and L. Carin, Nonparametric Bayesian Matrix Completion, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop

 

L. Du, M. Chen, J. Lucas and L. Carin, Sticky Hidden Markov Modeling of Comparative Genomic Hybridization, IEEE Trans. Signal Processing, 2010.

 

M. Chen, D. Carlson, A. Zaas, C. Woods, G.S. Ginsburg, J. Lucas and L. Carin, Detection of viruses via statistical gene-expression analysis, IEEE Trans. Biomedical Engineering, 2010

 

J. Paisley, A. Zaas, C.W. Woods, G.S. Ginsburg and L. Carin, A Stick-Breaking Construction of the Beta Process, Int. Conf. Machine Learning (ICML), June 2010

 

J. Paisley, X. Liao and L. Carin, Active learning and basis selection for kernel-based linear models: A Bayesian perspective, IEEE Trans. Signal Processing, 2010.

 

B. Chen, M. Chen, J. Paisley, A. Zaas, C. Woods, G.S. Ginsburg, A. Hero III, J. Lucas, D. Dunson and L. Carin, Nonparametric Bayesian Factor Analysis: Application to Time-Evolving Viral Gene-Expression Data, BMC Bioinformatics, 2010

 

 

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson and L. Carin, Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds, IEEE Trans. Signal Processing, 2010

 

L. Ren, D. Dunson, S. Lindroth and L. Carin, Dynamic Nonparametric Bayesian Models for Analysis of Music, J. American Statistical Association (JASA), 2010.

 

I. Pruteanu-Malinici, L. Ren, J. Paisley, E. Wang and L. Carin, Hierarchical Bayesian Modeling of Topics in Time-Stamped Documents, IEEE Trans. Pattern Analysis Machine Intelligence, 2010.

 

J. Paisley and L. Carin, Hidden Markov Models with Stick-Breaking Priors, IEEE Trans. Signal Processing, 2010

 

 

2009

 

M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro and L. Carin, Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations, Neural and Information Processing Systems (NIPS), 2009.

 

L. Du, L. Ren, D. Dunson and L. Carin, A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation, Neural and Information Processing Systems (NIPS), 2009.

 

C. Cai, X. Liao, and L. Carin, Learning to Explore and Exploit in POMDPs, Neural and Information Processing Systems (NIPS), 2009.

 

L. He, H. Chen and L. Carin, Tree-Structured Compressive Sensing with Variational Bayesian Analysis, IEEE Signal Processing Letters, 2009

 

J. Paisley and L. Carin, Nonparametric Factor Analysis with Beta Process Priors, Proc. Int. Conf. Machine Learning (ICML), 2009

 

H. Li, X. Liao and L. Carin, Multi-task Reinforcement Learning in Partially Observable Stochastic Environments, J. Machine Learning Research, 2009

 

L. Carin, On the Relationship Between Compressive Sensing and Random Sensor Arrays, IEEE Antennas & Propagation Magazine, October 2009.

 

Q. Liu, X. Liao, H. Li, J. Stack and L. Carin, Semi-Supervised Multitask Learning, IEEE Trans. Pattern Analysis & Machine Intelligence, 2009

 

L. He and L. Carin, Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing, IEEE Trans. Signal Processing, Sept 2009