Basal Metabolic Rate Calculator

ECE261 Full-Custom VLSI Design Project Fall 2008

Brandon Noia, Daniel Klein, Arpan Roy and Peng Li

Basic Predictive Equation for BMR Calculator

For male subject :

```
BMR = (-790+3 \times age + 9 \times Heart Rate + 3 \times Weight) calories/hour
For female subject :
BMR = (-290+ age + 6 \times Heart Rate - 2 \times Weight) calories/hour
```

Found on: Wikipedia

Verified from:

MD, Mifflin. "A new predictive equation for resting energy expenditure in healthy individuals." The American Journal of Clinical Nutrition 51 (1990): 241–247.

Initial Block Diagram for BMRCalculator

Implementation

- To generate the whole circuit, we talk about the individual sub-circuits in the form of :
- 1) The multiplier To create a 16 bit multiplier we use two 8-bit multipliers with carry propagation from the LSB to the MSB. The multiplier is a hierarchical structure composed of full adders arranged in stages to perform the cascaded multiplication operation.
- 2) We also use a 16 bit adder subtractor circuit consisting of 16 full adders.

Schematics

General Information

The basic devices used in designing the various complex devices in our circuit include 2-input AND gate, 2:1 Multiplexer, 2-input OR gate, inverters and transmission gates.

The p-D latch and n-D latch units are designed so that they can together be used to work as the Master Slave D Flip-flop.

Master and slave devices

The Master D Latch

The Slave D Latch

D Flip-flop

AND Flip-flop and NAND Flip-flops

AND Flip-flop

NAND Flip-flop

OR Flip-flop

OR Flip-flops

They have two inputs A & B with two clocks - CLK and negation of CLK. The output Q is the OR of A & B. O & NQ are the beauty. The OR of A &B gets stored in the

8 - input AND gate

8 – input AND symbol

The 8-input AND gate has two 8 bit inputs and an 8 bit output and two clock inputs. It is essentially composed of 8 AND flip-flops.

8-bit Multiplier

We have implemented an 8 bit multiplier for multiplying each pair of each decimal digits. The output is the 16-bit product. As shown in the symbol it has two 8 bit inputs for the multiplier and the multiplicand and a 16-bit output denoting the product. It has two clock inputs too.

Multiplier (continued)

View of one of the rows of the multiplier

View of the ter row of and flip-flops followed by half adders to perform the first step fourtiplication.

Digital Simulation for the multiplier using ModelSim

Adders

1) Half Adder Flip flop

Half Adder Flip-flop Schematic

Half Adder Flip-flop symbol

Adders (continued)

Full Adder Flip-flop symbol

Adder / Subtractor

Schematic for the adder/subtractor

Symbol for the adder/subtractor

Schematic for the whole circuit

Basal Metabolic Rate Generator

At the end of the day we have a device count of 16,236 transistors.

Power Estimate and Area of the circuit

- ▶ Dynamic Power Estimate = $\alpha * C * V^2 * f$
 - $\alpha = 0.1$ for CMOS static logic
 - \circ C_{logic} = 16236 * 12 λ * .4 um/ λ * 2 fF/um = 155 pF
 - $^{\circ}$ $P_{dynamic} = 0.1 * 155pF * 5V^2 * f \approx .4 mW/MHz$
 - Refreshing rate is 1Hz
 - Overall power .4nW/second
- Each transistor 20 λ*10 λ(λ is 0.4um in 0.8 um technology)
- Number of transistors = 16,236
- ▶ Total area $16236*20 \lambda*10 \lambda*120\% \approx 0.6 \text{ mm}^2$

Thank you for your patience!