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Introduction



3

Course objective: 
Evolve your understanding of computers

Input Output

After
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C programming
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What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?  
To expand from basic programming to 

operating systems and embedded development.

Also, as a case study to understand computer architecture in general.
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Memory Layout and Bounds Checking

• There is NO bounds checking in C

• i.e., it’s legal (but not advisable) to refer to 
days_in_month[216] or 
days_in_month[-35] !

• who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

DIFFERENT
from Java!
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Structures

• Structures are sort of like Java objects

• They have member variables

• But they do NOT have methods!

• Structure definition with struct keyword
struct student_record {

int id;

float grade;

} rec1, rec2;

• Declare a variable of the structure type with struct keyword
struct student_record onerec;

• Access the structure member fields with dot (‘.’), e.g. structvar.member
onerec.id = 12;

onerec.grade = 79.3;

DIFFERENT
from Java!
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Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);
$ gcc x4.c && ./a.out
5
0x7fffd232228c

DIFFERENT
from Java!
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What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

DIFFERENT
from Java!
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What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

DIFFERENT
from Java!
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C Memory Allocation

• void* malloc(nbytes)

• Obtain storage for your data (like new in Java)

• Often use sizeof(type) built-in returns bytes needed for type

• int* my_ptr = malloc (64);  // 64 bytes = 16 ints

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints

• free(ptr)

• Return the storage when you are finished (no Java equivalent)

• ptr must be a value previously returned from malloc

DIFFERENT
from Java!
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Data representations and memory
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Decimal to binary using remainders

14

? Quotient Remain-
der

457  2 = 228 1

228  2 = 114 0

114  2 = 57 0

57  2 = 28 1

28  2 = 14 0

14  2 = 7 0

7  2 = 3 1

3  2 = 1 1

1  2 = 0 1 111001001
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Decimal to binary using comparison

Num Compare 2n ≥ ?

457 256 1

201 128 1

73 64 1

9 32 0

9 16 0

9 8 1

1 4 0

1 2 0

1 1 1

111001001
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Binary to/from hexadecimal

• 01011011001000112 -->

• 0101  1011  0010  00112 -->

• 5      B       2       316

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

1       F     4       B16 -->

0001  1111  0100  10112 -->

00011111010010112
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2’s Complement Integers

• Use large positives to represent negatives 

• (-x) = 2n - x

• This is 1’s complement + 1

• (-x) = 2n - 1 - x + 1

• So, just invert bits and add 1

6-bit examples:

0101102 = 2210 ; 1010102 = -2210

110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002  → good!

0000 0

0001 1

0010 2

0011 3

0100 4
0101 5

0110 6

0111 7

1000 -8

1001 -7
1010 -6

1011 -5

1100 -4

1101 -3

1110 -2
1111 -1
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Floating point

• 32-bit float format:

• 64-bit double format:
(same thing, but with more bits)
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Standardized ASCII (0-127)
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Memory Layout

Stack

Data

Text

Reserved0

2n-1

Typical 

Address 

Space
Heap

• Memory is array of bytes, but there 
are conventions as to what goes 
where in this array

• Text: instructions (the program to 
execute)

• Data: global variables

• Stack: local variables and other 
per-function state; starts at top & 
grows down

• Heap: dynamically allocated 
variables; grows up

• What if stack and heap overlap????
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Learning Assembly language with 
MIPS
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The MIPS architecture

• 32-bit word size

• 32 registers ($0 is zero, $31 is return address)

• Fixed size 32-bit aligned instructions

• Types of instructions:

• Math and logic:

• or $1, $2, $3 → $1 = $2 | $3

• add $1, $2, $3 → $1 = $2 + $3

• Loading constants:

• li $1, 50 → $1 = 50

• Memory:

• lw $1, 4($2) → $1 = *($2 + 4)

• sw $1, 4($2) → *($2 + 4) = $1

• Control flow:

• j label → PC = label

• bne $1, $2, label → if ($1!=$2) PC=label
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Control Idiom: If-Then-Else

• Control idiom: if-then-else
if (A < B) A++;     // assume A in register $1

else B++;           // assume B in $2

slt $3,$1,$2 // if $1<$2, then $3=1

beqz $3,else // branch to else if !condition

addi $1,$1,1

j    join // jump to join

else: addi $2,$2,1

join:
ICQ: assembler converts “else” 
operand of beqz into immediate →
what is the immediate?
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16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31
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MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type
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msb lsb

3          2          1           0

little endian byte 0

0          1          2           3

big endian byte 0

Memory Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370, 
Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 
Vax, DEC/Compaq Alpha
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Combinational logic
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Truth Tables

• Map any number if inputs to any number of outputs

• Example:

(A & B) | !C

Start with Empty TT

Column Per Input

Column Per Output

Fill in Inputs

Counting in Binary

YES THE TRUTH MUST BE
IN NUMERIC ORDER FOR
THE INPUTS!

Compute Output 

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1
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Convert truth table to function

• Given a Truth Table, find the formula?

Write down every “true” case

Then OR together:

(!A & !B & !C) | 

(!A & !B & C)  |

(!A & B & !C) |

(A & B &!C) |

(A & B &C)

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1
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Summary of all Boolean axioms

Name AND form OR form

Identity law 1 & A = A 0 | A = A

Null law 0 & A = 0 1 | A = 1

Idempotent law A & A = A A | A = A

Inverse law A & !A = 0 A | !A = 1

Commutative law A & B = B & A A | B = B | A

Associative law (A&B) & C = A & (B&C) (A|B) | C = A | (B|C)

Distributive law A | (B&C) = (A|B) & (A|C) A & (B|C) = (A&B) | (A&C)

Absorption law A & (A|B) = A A | (A&B) = A

De Morgan’s law !(A&B) = !A | !B !(A|B) = !A & !B

Double negation law !!A = A

Adapted from http://studytronics.weebly.com/bool ean-algebra.html

http://studytronics.weebly.com/boolean-algebra.html
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a

b

AND(a,b) a

b

OR(a,b)

Guide to Remembering your Gates

XOR(a,b)a

b

Straight like an A Curved, like an O
XOR looks like OR (curved line),

but has two lines (like an X does)

XNOR(a,b)

a NOT(a)

a

b

NAND(a,b) a

b

NOR(a,b) a

b

Circle means NOT

(XNOR is 1-bit “equals” by the way)
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Designing a 1-bit adder

• So we’ll need to add three bits (including carry-in)

• Two-bit output is the carry-out and the sum

a   b   Cin
0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
Turn into expression, 

simplify, 

circuit-ify, 

yadda yadda yadda…
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A 1-bit Full Adder

a  b  Cin Sum Cout
0  0  0    0    0

0  0  1    1    0

0  1  0    1    0

0  1  1    0    1

1  0  0    1    0

1  0  1    0    1

1  1  0    0    1

1  1  1    1    1

01101100

01101101

+00101100

10011001

a

b

Cin

Cout

Sum

Logisim example
basic_logic.circ : full-adder
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Full AdderFull AdderFull AdderFull Adder

b0b1b2b3 a0a1a2a3

Cout

S0S1S2S3

Add/Sub

Example: Adder/Subtractor

Logisim example
basic_logic.circ : 4bit-addsub
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The ALU

16-bit
Add/sub

Cin

Cout

Add/sub F

2

0

1

2

3
a

b

Q

16

16

16

16-bit

16-bit

16-bit
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Sequential logic
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D flip flops

• Stores one bit

• Inputs:

• The data D

• The clock ‘>’

• An “enable” signal E

• Outputs:

• The stored bit output Q 
(and also its inverse !Q)

• “Commits” the input bit on clock rise, 
and only if E is high

DFF

D Q

E Q

>

Clock rise (bit gets saved at this time)
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Register

• Register: N flip flops working in parallel, 
where N is the word size

DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
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Register file

• A set of registers with multiple ports so numbered registers 
can be read/written.

• How to write:

• Use decoder to convert reg # to one hot

• Send write data to all regs

• Use one hot encoding of reg # to enable right reg

• How to read:

• 32 input mux (the way we’ve made it) not realistic

• To do this: expand our world from {1,0} to {1, 0, Z}

En0

En1

En30

En31

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…
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Finite state machines
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How FSMs are represented

State 1 State 2

3 / 0

What input we need to see

to do this state transition

What we change the circuit output 

to as a result of this state transition

7 / 1

“Self-edges” are possible
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Mealy vs Moore

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw 

384

4/1

{0-9}/1

start

0
saw 3

0

3

{0-2,4-9}

saw 38

0

8

{0-2,5-9}

3

3

{0-2,4-7,9}
saw 384

1

4

{0-9}

Moore machine: outputs on STATES in red

Mealy machine: outputs on TRANSITIONS in red
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State Transition Diagram → Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw 

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw 

384

4/1

{0-9}/1
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State Transition Diagram → Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states → 2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0
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State Transition Diagram → Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9 → requires 4 bits

input bits are in3, in2, in1, in0
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State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 00011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 01000 & 00011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 00100 & 00011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.
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State Transition Diagram → Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1
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State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.



49

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…
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How to think about the FSM circuit

Current 

state

Input Next state Output

Q1 Q0 In1 In0 D1 D0 Out

0 0 0 0 0 1 1

0 0 0 1 1 0 1

0 0 1 0 1 1 0

0 0 1 1 0 1 0

Yields

DFF

D Q

DFF

D Q

Outputs

Inputs

In1

In0

Out

Combo logic circuit

Steps:

1. Do truth table

2. Convert to logic circuit

3. Slap down DFFs

4. Hook up DFFs

5. Hook up inputs/outputs
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CPU datapath and control
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The overall datapath

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control



53

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”
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Caching
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Big Concept: Memory Hierarchy

• Use hierarchy of memory components

• Upper components (closer to CPU)

• Fast  Small  Expensive

• Lower components (further from CPU)

• Slow  Big  Cheap

• Bottom component (for now!) = what we have 
been calling “memory” until now

• Make average access time close to L1’s

• How?

• Most frequently accessed data in L1

• L1 + next most frequently accessed in L2, etc.

• Automatically move data up&down hierarchy

CPU

L1

L2

L3

Memory
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Terminology

• Hit: Access a level of memory and find what we want

• Miss: Access a level of memory and DON’T find what we want

• Block: a group of spatially contiguous and aligned bytes

• Temporal locality: Recently accessed stuff likely to be 
accessed again soon

• Spatial locality: Stuff near recently accessed thing likely to 
be accessed soon
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Memory Performance Equation

• For memory component L1

• Access: read or write to L1

• Hit: desired data found in L1

• Miss: desired data not found in L1

• Must get from another (slower) component

• Fill: action of placing data in L1

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) L1

• tmiss: time to read data into M from lower level

• Performance metric

• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

L1

thit

tmiss

%miss



58

Abstract Hierarchy Performance

tmiss-M3 = tavg-M4

CPU

L1

L2

L3

M

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

How do we compute tavg ?

=tavg-L1

=thit-L1 +(%miss-L1*tmiss-L1)

=thit-L1 +(%miss-L1*tavg-L2)

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tmiss-L2)))

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tavg-L3)))

= …

Note: Miss at level X = access at level X+1
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Where to Put Blocks in Cache

• How to decide which frame holds which block?

• And then how to find block we’re looking for?

• Some more cache structure:

• Divide cache into sets

• A block can only go in its set → there is a 1-to-1 mapping from 
block address to set

• Each set holds some number of frames = set associativity

• E.g., 4 frames per set = 4-way set-associative

• At extremes

• Whole cache has just one set = fully associative

• Most flexible (longest access latency)

• Each set has 1 frame = 1-way set-associative = ”direct mapped”

• Least flexible (shortest access latency)
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Cache structure math

• Given capacity, block_size, ways (associativity), and 
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

• Way to get offset/index/tag from address (bitwise & numeric):

• block_offset = addr & ones(offset_bits) = addr % block_size

• index = (addr >> offset_bits) & ones(index_bits)
= (addr / block_size) % sets

• tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size)

ones(n) = a string of n ones = ((1<<n)-1)

Tag Index Block offset
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Cache Replacement Policies

• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?

• Some options

• Random

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used) 

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• FIFO (first-in first-out)

• When is this a good idea?
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ABCs of Cache Design

• Architects control three primary aspects of cache design

• And can choose for each cache independently

• A = Associativity

• B = Block size

• C = Capacity of cache

• Secondary aspects of cache design

• Replacement algorithm

• Some other more subtle issues we’ll discuss later
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Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small – would’ve been 
miss even if cache had been fully associative

• Consecutive accesses to block separated by accesses to at least N 
other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low – would’ve 
been hit if cache had been fully associative

• All other misses
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Stores: Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately (as soon as store writes to this level)

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bandwidth to next level

• Write-back: later, when block is replaced from this level

• Requires additional “dirty” bit per block → why?

+ Minimal bandwidth to next level

• Only write back dirty blocks

– Non-uniform miss latency

• Miss that evicts clean block: just a fill from lower level

• Miss that evicts dirty block: writeback dirty block and then fill 
from lower level
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Stores: Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through
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Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames cache size / block size

sets frames / ways

bits:index log2(sets)

bits:offset log2(block size)

bits:tag 64 minus the above

addr-dec addr-hex tag index offset result

38 0026

30 001E

62 003E

5 0005

2049 0801

2085 0825

60 003C

4130 1022

2085 0825
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Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames 128 cache size / block size

sets 64 frames / ways

bits:index 6 log2(sets)

bits:offset 5 log2(block size)

bits:tag 53 64 minus the above

addr-dec addr-hex tag index offset result

38 0026 0 1 6 miss compulsory

30 001E 0 0 30 miss compulsory

62 003E 0 1 30 hit

5 0005 0 0 5 hit

2049 0801 1 0 1 miss compulsory

2085 0825 1 1 5 miss compulsory

60 003C 0 1 28 hit

4130 1022 2 1 2 miss compulsory

2085 0825 1 1 5 miss conflict
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Virtual memory
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C
A

C
H

IN
G Cache

Copy if popular

Figure: caching vs. virtual memory

69

RAM

V
IR

T
U

A
L

 M
E

M
O

R
Y

(or SSD)

Hard disk

Load if needed

Drop

• Faster

• More expensive
• Lower capacity

• Slower

• Cheaper
• Higher capacity

Swap out (RW) or drop (RO)
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High level operation

SEGFAULT

OK (fast)

OK (fast)

OK (but slow)

!

Virtual memory

“Page table”

Physical memory

HDD/SSD storage
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Demand Paging

Memory 
reference

Is in physical 
memory?

Success

Is page stored on 
disk?

Load it, success

Invalid reference,
abort!

Y

N

N

Y

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Done in hardware

Done by OS (software)
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Address translation

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

PhysPage#

PhysPage#VirtPage#
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Address translation

00000000000000000111000000000101

Index Data Valid?

0 463 0

1 116 1

2 460 1

3 407 1

4 727 0

5 719 1

6 203 0

7 12 1

8 192 1

…

00000000000000001100000000000101

Virtual address:

Physical address:

Virtual page number Page offset

Physical page number Page offset

Page table:
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Steps in Handling a Page Fault

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne



75©  Daniel J. Sorin from Roth 75

Translation Buffer

• Functionality problem? Add indirection!

• Performance problem? Add cache!

• Address translation too slow?

• Cache translations in translation buffer (TB)

• Small cache: 16–64 entries, often fully assoc

+ Exploits temporal locality in PT accesses

+ OS handler only on TB miss

CPU

D$

L2

Main

Memory

I$

TB

VPN PPN

VPN PPN

VPN PPN

“tag” “data”PA

VA

VA

VA VA
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Virtual Physical Caches

• Compromise: virtual-physical caches

• Indexed by VAs

• Tagged by PAs

• Cache access and address translation in parallel

+ No context-switching/aliasing problems 

+ Fast: no additional thit cycles

• A TB that acts in parallel with a cache is a TLB

• Translation Lookaside Buffer

• Common organization in processors today

CPU

D$

L2

Main

Memory

I$TLB

PA

PA

VA VA

TLB
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What Happens if There is no Free Frame?

• Page replacement – find some page in memory, but not 
really in use, page it out

• Algorithm?

• Want an algorithm which will result in minimum number of page faults

• This decision is just like choosing the caching replacement algorithm!

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne
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Thrashing

• If a process does not have “enough” pages, the page-fault 
rate is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of 
multiprogramming

• Another process added to the system

• Thrashing  a process is busy swapping pages in and out

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne
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Working-set model

•   working-set window  a fixed number of page references 
Example:  10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

• if  too small will not encompass entire locality

• if  too large will encompass several localities

• if  =   will encompass entire program

• D =  WSSi  total demand frames 

• Approximation of locality

• if D > m  Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne
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Virtual memory summary

• Address translation via page table

• Page table turns VPN to PPN (noting the valid bit)

• Page is marked ‘i’? Page fault.

• If OS has stored page on disk, load and resume

• If not, this is invalid access, kill app (seg fault)

• Governing policies:

• Keep a certain number of frames loaded per app

• Kick out frames based on a replacement algorithm (like LRU, etc.)

• Looking up page table in memory too slow, so cache it:

• The Translation Buffer (TB) is a hardware cache for the page table

• When applied at the same time as caching (as is common), 
it’s called a Translation Lookaside Buffer (TLB). 

• Working set size tells you how many pages you need over a time 
window.

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data.

WOW!
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I/O
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Protection and access

• I/O should be protected, with device access limited to OS

• User processes request I/O through the OS (not directly)

• User processes do so by triggering an interrupt,
this causes the OS to take over and service the request

• The interrupt/exception facility is implemented in hardware, 
but triggers OS software
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Connectivity

• Bus: A communication linkage with two or more devices on it

• Various topologies are possible

CPU ($)

Main

Memory Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (memory-I/O) bus

CPU

I/O I/O

I/O

Mem

Proc-Mem

adapter

I/O I/O

Backplane

CPU Mem
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Communication models

• Polling: Ask continuously

• Often a waste of processor time

• Interrupts: Have disk alert the CPU when data is ready

• But if data packets are small, this interrupt overhead can add up

• Direct Memory Access (DMA): The device itself can put the 
requested data directly into RAM without the CPU being 
involved

• The CPU is alerted via interrupt when the whole transaction is done

• Complication! 

• Now memory can change without notice; interferes with cache

• Solution: cache listens on bus for DMA traffic, drops changed data
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Pipelining
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5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR
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Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W
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Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• Fix by proper ISA/pipeline design: 
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to 
Fetch

• Data hazards 

• Result of dependencies: Need data before it’s ready

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally 
hits destination memory/register.

• Control hazards

• Result of jump/branch not being resolved until late in pipeline

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved

• This incurs overhead: wasted time! Reduce with:

• Fast branches: Add hardware to resolve branch sooner

• Delayed branch: Always execute instruction after a branch (complicates compiler)

• Branch prediction: Add hardware to speculate on if/where the branch goes
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Stalling and Bypassing together

Stall = (D/X.IR.OP == LOAD) &&

((F/D.IR.RS1 == D/X.IR.RD) || 

((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE)) 

Register

File

S

X

s1 s2 d

Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)

stall

nop

add $4,$2,$3

lw $3,0($2)add $4,$2,$3
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Pipeline Diagram: Data Hazard

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

• Even with bypasses, stalls are sometimes necessary

• Examples:

• Memory load -> ALU operation

• Memory load -> Address component of memory load/store

• Example pipeline diagram for a stall due to a data hazard:
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Pipeline Diagram: Control Hazard

• Control hazards indicated with c* (or not at all)

• “Default” penalty for taken branch is 2 cycles:

• Fast branches reduce the penalty to 1 cycle:

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* F D X M W
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Multicore
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Types of parallelism

• Pipelining tries to exploit instruction-level parallelism 
(ILP)

• “How can we simultaneously do steps in this otherwise sequential 
process?”

• Multicore tries to exploit thread-level parallelism

• “How can we simultaneously do multiple processes?”

• Thread: A program has one (or more) threads of control

• A thread has its own PC

• Threads in a program share resources, especially memory

(e.g. sharing a page table)
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Two cases of multiple threads

• Multiprogramming: run multiple programs at once

• Multithreaded programming: write software to explicitly 
take advantage of multiple threads (divide problem into 
parallel tasks)
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Multiprocessors

• Multiprocessors: have more than one CPU core

• Historically: multiple discrete physical chips

• Now: a single chip with multiple cores

Multiprocessor:

Two drive-throughs, each

with its own kitchen
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Challenges of multicore

• Two main challenges:

• Topologies of connection (rings, cubes, meshes, buses, etc.)

• Cache coherence: If each core has a cache, then each CPU can have 
a diverging view of memory !! (BAD)

• Solution: Intelligent caches that use snooping on the memory bus 
to spot sharing and react accordingly

• Different coherence algorithms (performance/complexity tradeoffs)

Store / OwnGETX

Valid OtherGETX/ --

Inv alid

OtherGETS / --

Load / OwnGETS

Load / --

Store / OwnGETX

OtherGETS / --

OtherGETX / --

Load /--

M

-/OtherGETX

Store / OwnGETX
S

I

Store / --

-/OtherGETS
Store / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --
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Intel x86
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Basic differences

MIPS Intel x86

Word size Originally: 32-bit (MIPS I in 1985)

Now: 64-bit (MIPS64 in 1999)

Originally: 16-bit (8086 in 1978)

Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

Design RISC CISC

ALU ops Register = Register ⦻ Register

(3 operand)

Register ⦻= <Reg|Memory>

(2 operand)

Registers 32 8 (32-bit) or 16 (64-bit)

Instruction size 32-bit fixed Variable: up to 15 *bytes*!

Branching Condition in register (e.g. “slt”) Condition codes set implicitly

Endian Either (typically big) Little

Variants and

extensions

Just 32- vs. 64-bit, plus some 

graphics extensions in the 90s

A bajillion (x87, IA-32, MMX, 3DNow!, 

SSE, SSE2, PAE, x86-64, SSE3, SSE4, 
SSE5, AVX, AES, FMA)

Market share Small but persistent (embedded) 80% server, similar for consumer

(defection to ARM for mobile is recent)
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64-bit x86 primer

• Registers: 

• General: rax rbx rcx rdx rdi rsi r8 r9 .. r15

• Stack: rsp rbp

• Instruction pointer: rip

• Complex instruction set

• Instructions are variable-sized & unaligned

• Hardware-supported call stack

• call / ret

• Parameters in registers {rdi, rsi, rdx, 
rcx, r8, r9}, return value in rax

• Little-endian

• These slides use Intel-style assembly language (destination first)

• GNU tools like gcc and objdump use AT&T syntax (destination last)

mov  rax, 5

mov  [rbx], 6

add  rax, rdi

push rax

pop  rsi

call 0x12345678

ret

jmp 0x87654321

jmp rax

call rax

mov 5, %rax

mov 6, [%rbx]

add %rdi, %rax

push %rax

pop  %rsi

call 0x12345678

ret

jmp 0x87654321

jmp %rax

call %rax

Intel syntax AT&T syntax
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Binary modification
(applies to *all* ISAs)

• Can disassemble binaries (turn into human-readable assembly)

• Do a bunch of cross-referencing to understand functionality
(that’s what IDA Pro does)

• Basic blocks of code ending in branches form a flow chart

• Identify behavior and make inferences on author intent

• Can modify by overwriting binary with new instructions
(can also insert instructions, but this changes layout of binary 
program, so various pointers have to be updated)

• Cheap and easy technique on x86: overwrite stuff you don’t 
want with NOP (0x90)
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THE END


