
ECE/CS 250
Computer Architecture

Course review

Tyler Bletsch

Duke University

Includes work by
Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)

2

Introduction

3

Course objective:
Evolve your understanding of computers

Input Output

After

4

I/O Bus

memory bus

disk

CPU

Cachecache

Main
Memory

disk
controller

main

memory

disk

graphics
controller

network
interface

graphics Network

System Organization

I/O bridge

5

C programming

6

What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?
To expand from basic programming to

operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

7

Memory Layout and Bounds Checking

• There is NO bounds checking in C

• i.e., it’s legal (but not advisable) to refer to
days_in_month[216] or
days_in_month[-35] !

• who knows what is stored there?

… …

Storage for array int days_in_month[12];

Storage for other stuff
Storage for some more stuff

(each location shown here is an int)

DIFFERENT
from Java!

8

Structures

• Structures are sort of like Java objects

• They have member variables

• But they do NOT have methods!

• Structure definition with struct keyword
struct student_record {

int id;

float grade;

} rec1, rec2;

• Declare a variable of the structure type with struct keyword
struct student_record onerec;

• Access the structure member fields with dot (‘.’), e.g. structvar.member
onerec.id = 12;

onerec.grade = 79.3;

DIFFERENT
from Java!

9

Let’s look at memory addresses!

• You can find the address of ANY variable with:

&
The address-of operator

int v = 5;

printf(“%d\n”,v);

printf(“%p\n”,&v);
$ gcc x4.c && ./a.out
5
0x7fffd232228c

DIFFERENT
from Java!

10

What’s a pointer?

• It’s a memory address you treat as a variable

• You declare pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c

Append to any data type

DIFFERENT
from Java!

11

What’s a pointer?

• You can look up what’s stored at a pointer!

• You dereference pointers with:

*
The dereference operator

int v = 5;

int* p = &v;

printf(“%d\n”,v);

printf(“%p\n”,p);

printf(“%d\n”,*p);
$ gcc x4.c && ./a.out
5
0x7fffe0e60b7c
5

Prepend to any pointer variable or expression

DIFFERENT
from Java!

12

C Memory Allocation

• void* malloc(nbytes)

• Obtain storage for your data (like new in Java)

• Often use sizeof(type) built-in returns bytes needed for type

• int* my_ptr = malloc (64); // 64 bytes = 16 ints

• int* my_ptr = malloc (64*sizeof(int)); // 64 ints

• free(ptr)

• Return the storage when you are finished (no Java equivalent)

• ptr must be a value previously returned from malloc

DIFFERENT
from Java!

13

Data representations and memory

14

Decimal to binary using remainders

14

? Quotient Remain-
der

457 2 = 228 1

228 2 = 114 0

114 2 = 57 0

57 2 = 28 1

28 2 = 14 0

14 2 = 7 0

7 2 = 3 1

3 2 = 1 1

1 2 = 0 1 111001001

15

Decimal to binary using comparison

Num Compare 2n ≥ ?

457 256 1

201 128 1

73 64 1

9 32 0

9 16 0

9 8 1

1 4 0

1 2 0

1 1 1

111001001

16

Binary to/from hexadecimal

• 01011011001000112 -->

• 0101 1011 0010 00112 -->

• 5 B 2 316

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

1 F 4 B16 -->

0001 1111 0100 10112 -->

00011111010010112

17

2’s Complement Integers

• Use large positives to represent negatives

• (-x) = 2n - x

• This is 1’s complement + 1

• (-x) = 2n - 1 - x + 1

• So, just invert bits and add 1

6-bit examples:

0101102 = 2210 ; 1010102 = -2210

110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002 → good!

0000 0

0001 1

0010 2

0011 3

0100 4
0101 5

0110 6

0111 7

1000 -8

1001 -7
1010 -6

1011 -5

1100 -4

1101 -3

1110 -2
1111 -1

18

Floating point

• 32-bit float format:

• 64-bit double format:
(same thing, but with more bits)

19

Standardized ASCII (0-127)

20

Memory Layout

Stack

Data

Text

Reserved0

2n-1

Typical

Address

Space
Heap

• Memory is array of bytes, but there
are conventions as to what goes
where in this array

• Text: instructions (the program to
execute)

• Data: global variables

• Stack: local variables and other
per-function state; starts at top &
grows down

• Heap: dynamically allocated
variables; grows up

• What if stack and heap overlap????

21

Learning Assembly language with
MIPS

22

The MIPS architecture

• 32-bit word size

• 32 registers ($0 is zero, $31 is return address)

• Fixed size 32-bit aligned instructions

• Types of instructions:

• Math and logic:

• or $1, $2, $3 → $1 = $2 | $3

• add $1, $2, $3 → $1 = $2 + $3

• Loading constants:

• li $1, 50 → $1 = 50

• Memory:

• lw $1, 4($2) → $1 = *($2 + 4)

• sw $1, 4($2) → *($2 + 4) = $1

• Control flow:

• j label → PC = label

• bne $1, $2, label → if ($1!=$2) PC=label

23

Control Idiom: If-Then-Else

• Control idiom: if-then-else
if (A < B) A++; // assume A in register $1

else B++; // assume B in $2

slt $3,$1,$2 // if $1<$2, then $3=1

beqz $3,else // branch to else if !condition

addi $1,$1,1

j join // jump to join

else: addi $2,$2,1

join:
ICQ: assembler converts “else”
operand of beqz into immediate →
what is the immediate?

24

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

MIPS Register Usage/Naming Conventions

Important: The only general purpose registers are the $s and $t registers.

Everything else has a specific usage:

$a = arguments, $v = return values, $ra = return address, etc.

Also 32 floating-point registers: $f0 .. $f31

25

MIPS Instruction Formats

• 3 variations on theme from previous slide

• All MIPS instructions are either R, I, or J type

• Note: all instructions have opcode as first 6 bits

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

26

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Memory Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370,
Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC
Vax, DEC/Compaq Alpha

27

Combinational logic

28

Truth Tables

• Map any number if inputs to any number of outputs

• Example:

(A & B) | !C

Start with Empty TT

Column Per Input

Column Per Output

Fill in Inputs

Counting in Binary

YES THE TRUTH MUST BE
IN NUMERIC ORDER FOR
THE INPUTS!

Compute Output

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

29

Convert truth table to function

• Given a Truth Table, find the formula?

Write down every “true” case

Then OR together:

(!A & !B & !C) |

(!A & !B & C) |

(!A & B & !C) |

(A & B &!C) |

(A & B &C)

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

30

Summary of all Boolean axioms

Name AND form OR form

Identity law 1 & A = A 0 | A = A

Null law 0 & A = 0 1 | A = 1

Idempotent law A & A = A A | A = A

Inverse law A & !A = 0 A | !A = 1

Commutative law A & B = B & A A | B = B | A

Associative law (A&B) & C = A & (B&C) (A|B) | C = A | (B|C)

Distributive law A | (B&C) = (A|B) & (A|C) A & (B|C) = (A&B) | (A&C)

Absorption law A & (A|B) = A A | (A&B) = A

De Morgan’s law !(A&B) = !A | !B !(A|B) = !A & !B

Double negation law !!A = A

Adapted from http://studytronics.weebly.com/bool ean-algebra.html

http://studytronics.weebly.com/boolean-algebra.html

31

a

b

AND(a,b) a

b

OR(a,b)

Guide to Remembering your Gates

XOR(a,b)a

b

Straight like an A Curved, like an O
XOR looks like OR (curved line),

but has two lines (like an X does)

XNOR(a,b)

a NOT(a)

a

b

NAND(a,b) a

b

NOR(a,b) a

b

Circle means NOT

(XNOR is 1-bit “equals” by the way)

32

Designing a 1-bit adder

• So we’ll need to add three bits (including carry-in)

• Two-bit output is the carry-out and the sum

a b Cin
0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
Turn into expression,

simplify,

circuit-ify,

yadda yadda yadda…

33

A 1-bit Full Adder

a b Cin Sum Cout
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

01101100

01101101

+00101100

10011001

a

b

Cin

Cout

Sum

Logisim example
basic_logic.circ : full-adder

34

Full AdderFull AdderFull AdderFull Adder

b0b1b2b3 a0a1a2a3

Cout

S0S1S2S3

Add/Sub

Example: Adder/Subtractor

Logisim example
basic_logic.circ : 4bit-addsub

35

The ALU

16-bit
Add/sub

Cin

Cout

Add/sub F

2

0

1

2

3
a

b

Q

16

16

16

16-bit

16-bit

16-bit

36

Sequential logic

37

D flip flops

• Stores one bit

• Inputs:

• The data D

• The clock ‘>’

• An “enable” signal E

• Outputs:

• The stored bit output Q
(and also its inverse !Q)

• “Commits” the input bit on clock rise,
and only if E is high

DFF

D Q

E Q

>

Clock rise (bit gets saved at this time)

38

Register

• Register: N flip flops working in parallel,
where N is the word size

DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>
DFF

D Q

E Q

>

39

Register file

• A set of registers with multiple ports so numbered registers
can be read/written.

• How to write:

• Use decoder to convert reg # to one hot

• Send write data to all regs

• Use one hot encoding of reg # to enable right reg

• How to read:

• 32 input mux (the way we’ve made it) not realistic

• To do this: expand our world from {1,0} to {1, 0, Z}

En0

En1

En30

En31

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

32 bit reg

D Q

E Q

WrData

En0

En1

En30

En31

…

40

Finite state machines

41

How FSMs are represented

State 1 State 2

3 / 0

What input we need to see

to do this state transition

What we change the circuit output

to as a result of this state transition

7 / 1

“Self-edges” are possible

42

Mealy vs Moore

start saw 3

3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

start

0
saw 3

0

3

{0-2,4-9}

saw 38

0

8

{0-2,5-9}

3

3

{0-2,4-7,9}
saw 384

1

4

{0-9}

Moore machine: outputs on STATES in red

Mealy machine: outputs on TRANSITIONS in red

43

State Transition Diagram → Truth Table

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 384 1

start saw 3

3/0

{0-2,4-9}/0

saw

38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw

384

4/1

{0-9}/1

44

State Transition Diagram → Truth Table

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states → 2 flip-flops to hold the current state of the FSM

inputs to flip-flops are D1D0

outputs of flip-flops are Q1Q0

45

State Transition Diagram → Truth Table

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9 → requires 4 bits

input bits are in3, in2, in1, in0

46

State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3
(all binary combos other than 00011)

0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3
(all binary combos other than 01000 & 00011)

0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3
(all binary combos other than 00100 & 00011)

0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!

Write out product-of-sums equations, optimize, and build.

47

State Transition Diagram → Truth Table

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

48

State Transition Diagram → Truth Table

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Remember, these represent DFF outputs …and these are the DFF inputs

The DFFs are how we store the state.

49

Truth Table → Sequential Circuit

D1 Q1

FF1
!Q1

D0 Q0

FF0
!Q0

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

in3

in2

in1

in0

output

Not pictured
Follow a similar procedure for D0…

50

How to think about the FSM circuit

Current

state

Input Next state Output

Q1 Q0 In1 In0 D1 D0 Out

0 0 0 0 0 1 1

0 0 0 1 1 0 1

0 0 1 0 1 1 0

0 0 1 1 0 1 0

Yields

DFF

D Q

DFF

D Q

Outputs

Inputs

In1

In0

Out

Combo logic circuit

Steps:

1. Do truth table

2. Convert to logic circuit

3. Slap down DFFs

4. Hook up DFFs

5. Hook up inputs/outputs

51

CPU datapath and control

52

The overall datapath

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control

53

Exceptions

• Exceptions and interrupts

• Infrequent (exceptional!) events

• I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-
C, ctrl-Z, timer

• Handling requires intervention from operating system

• End program: divide-by-0, protection fault, illegal insn, ^C

• Fix and restart program: I/O, page fault, ^Z, timer

• Handling should be transparent to application code

• Don’t want to (can’t) constantly check for these using insns

• Want “Fix and restart” equivalent to “never happened”

54

Caching

55

Big Concept: Memory Hierarchy

• Use hierarchy of memory components

• Upper components (closer to CPU)

• Fast Small Expensive

• Lower components (further from CPU)

• Slow Big Cheap

• Bottom component (for now!) = what we have
been calling “memory” until now

• Make average access time close to L1’s

• How?

• Most frequently accessed data in L1

• L1 + next most frequently accessed in L2, etc.

• Automatically move data up&down hierarchy

CPU

L1

L2

L3

Memory

56

Terminology

• Hit: Access a level of memory and find what we want

• Miss: Access a level of memory and DON’T find what we want

• Block: a group of spatially contiguous and aligned bytes

• Temporal locality: Recently accessed stuff likely to be
accessed again soon

• Spatial locality: Stuff near recently accessed thing likely to
be accessed soon

57

Memory Performance Equation

• For memory component L1

• Access: read or write to L1

• Hit: desired data found in L1

• Miss: desired data not found in L1

• Must get from another (slower) component

• Fill: action of placing data in L1

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) L1

• tmiss: time to read data into M from lower level

• Performance metric

• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

L1

thit

tmiss

%miss

58

Abstract Hierarchy Performance

tmiss-M3 = tavg-M4

CPU

L1

L2

L3

M

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

How do we compute tavg ?

=tavg-L1

=thit-L1 +(%miss-L1*tmiss-L1)

=thit-L1 +(%miss-L1*tavg-L2)

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tmiss-L2)))

=thit-L1 +(%miss-L1*(thit-L2+(%miss-L2*tavg-L3)))

= …

Note: Miss at level X = access at level X+1

59

Where to Put Blocks in Cache

• How to decide which frame holds which block?

• And then how to find block we’re looking for?

• Some more cache structure:

• Divide cache into sets

• A block can only go in its set → there is a 1-to-1 mapping from
block address to set

• Each set holds some number of frames = set associativity

• E.g., 4 frames per set = 4-way set-associative

• At extremes

• Whole cache has just one set = fully associative

• Most flexible (longest access latency)

• Each set has 1 frame = 1-way set-associative = ”direct mapped”

• Least flexible (shortest access latency)

60

Cache structure math

• Given capacity, block_size, ways (associativity), and
word_size.

• Cache parameters:

• num_frames = capacity / block_size

• sets = num_frames / ways = capacity / block_size / ways

• Address bit fields:

• offset_bits = log2(block_size)

• index_bits = log2(sets)

• tag_bits = word_size - index_bits - offset_bits

• Way to get offset/index/tag from address (bitwise & numeric):

• block_offset = addr & ones(offset_bits) = addr % block_size

• index = (addr >> offset_bits) & ones(index_bits)
= (addr / block_size) % sets

• tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size)

ones(n) = a string of n ones = ((1<<n)-1)

Tag Index Block offset

61

Cache Replacement Policies

• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?

• Some options

• Random

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• FIFO (first-in first-out)

• When is this a good idea?

62

ABCs of Cache Design

• Architects control three primary aspects of cache design

• And can choose for each cache independently

• A = Associativity

• B = Block size

• C = Capacity of cache

• Secondary aspects of cache design

• Replacement algorithm

• Some other more subtle issues we’ll discuss later

63

Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small – would’ve been
miss even if cache had been fully associative

• Consecutive accesses to block separated by accesses to at least N
other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low – would’ve
been hit if cache had been fully associative

• All other misses

64

Stores: Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately (as soon as store writes to this level)

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bandwidth to next level

• Write-back: later, when block is replaced from this level

• Requires additional “dirty” bit per block → why?

+ Minimal bandwidth to next level

• Only write back dirty blocks

– Non-uniform miss latency

• Miss that evicts clean block: just a fill from lower level

• Miss that evicts dirty block: writeback dirty block and then fill
from lower level

65

Stores: Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

66

Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames cache size / block size

sets frames / ways

bits:index log2(sets)

bits:offset log2(block size)

bits:tag 64 minus the above

addr-dec addr-hex tag index offset result

38 0026

30 001E

62 003E

5 0005

2049 0801

2085 0825

60 003C

4130 1022

2085 0825

67

Example cache trace

Term Value Equation

cache size 4096 given

block size 32 given

ways 2 given

frames 128 cache size / block size

sets 64 frames / ways

bits:index 6 log2(sets)

bits:offset 5 log2(block size)

bits:tag 53 64 minus the above

addr-dec addr-hex tag index offset result

38 0026 0 1 6 miss compulsory

30 001E 0 0 30 miss compulsory

62 003E 0 1 30 hit

5 0005 0 0 5 hit

2049 0801 1 0 1 miss compulsory

2085 0825 1 1 5 miss compulsory

60 003C 0 1 28 hit

4130 1022 2 1 2 miss compulsory

2085 0825 1 1 5 miss conflict

68

Virtual memory

69

C
A

C
H

IN
G Cache

Copy if popular

Figure: caching vs. virtual memory

69

RAM

V
IR

T
U

A
L

 M
E

M
O

R
Y

(or SSD)

Hard disk

Load if needed

Drop

• Faster

• More expensive
• Lower capacity

• Slower

• Cheaper
• Higher capacity

Swap out (RW) or drop (RO)

70

High level operation

SEGFAULT

OK (fast)

OK (fast)

OK (but slow)

!

Virtual memory

“Page table”

Physical memory

HDD/SSD storage

71

Demand Paging

Memory
reference

Is in physical
memory?

Success

Is page stored on
disk?

Load it, success

Invalid reference,
abort!

Y

N

N

Y

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

Done in hardware

Done by OS (software)

72

Address translation

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

PhysPage#

PhysPage#VirtPage#

73

Address translation

00000000000000000111000000000101

Index Data Valid?

0 463 0

1 116 1

2 460 1

3 407 1

4 727 0

5 719 1

6 203 0

7 12 1

8 192 1

…

00000000000000001100000000000101

Virtual address:

Physical address:

Virtual page number Page offset

Physical page number Page offset

Page table:

74

Steps in Handling a Page Fault

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

75© Daniel J. Sorin from Roth 75

Translation Buffer

• Functionality problem? Add indirection!

• Performance problem? Add cache!

• Address translation too slow?

• Cache translations in translation buffer (TB)

• Small cache: 16–64 entries, often fully assoc

+ Exploits temporal locality in PT accesses

+ OS handler only on TB miss

CPU

D$

L2

Main

Memory

I$

TB

VPN PPN

VPN PPN

VPN PPN

“tag” “data”PA

VA

VA

VA VA

76© Daniel J. Sorin from Roth 76

Virtual Physical Caches

• Compromise: virtual-physical caches

• Indexed by VAs

• Tagged by PAs

• Cache access and address translation in parallel

+ No context-switching/aliasing problems

+ Fast: no additional thit cycles

• A TB that acts in parallel with a cache is a TLB

• Translation Lookaside Buffer

• Common organization in processors today

CPU

D$

L2

Main

Memory

I$TLB

PA

PA

VA VA

TLB

77

What Happens if There is no Free Frame?

• Page replacement – find some page in memory, but not
really in use, page it out

• Algorithm?

• Want an algorithm which will result in minimum number of page faults

• This decision is just like choosing the caching replacement algorithm!

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

78

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• Thrashing a process is busy swapping pages in and out

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

79

Working-set model

• working-set window a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent (varies in time)

• if too small will not encompass entire locality

• if too large will encompass several localities

• if = will encompass entire program

• D = WSSi total demand frames

• Approximation of locality

• if D > m Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne

80

Virtual memory summary

• Address translation via page table

• Page table turns VPN to PPN (noting the valid bit)

• Page is marked ‘i’? Page fault.

• If OS has stored page on disk, load and resume

• If not, this is invalid access, kill app (seg fault)

• Governing policies:

• Keep a certain number of frames loaded per app

• Kick out frames based on a replacement algorithm (like LRU, etc.)

• Looking up page table in memory too slow, so cache it:

• The Translation Buffer (TB) is a hardware cache for the page table

• When applied at the same time as caching (as is common),
it’s called a Translation Lookaside Buffer (TLB).

• Working set size tells you how many pages you need over a time
window.

• DRAM is slower than SRAM, but denser. Needs constant refreshing of data.

WOW!

81

I/O

82

Protection and access

• I/O should be protected, with device access limited to OS

• User processes request I/O through the OS (not directly)

• User processes do so by triggering an interrupt,
this causes the OS to take over and service the request

• The interrupt/exception facility is implemented in hardware,
but triggers OS software

83

Connectivity

• Bus: A communication linkage with two or more devices on it

• Various topologies are possible

CPU ($)

Main

Memory Disk
kbd

DMA DMA

display NIC

I/O ctrl

“System” (memory-I/O) bus

CPU

I/O I/O

I/O

Mem

Proc-Mem

adapter

I/O I/O

Backplane

CPU Mem

84

Communication models

• Polling: Ask continuously

• Often a waste of processor time

• Interrupts: Have disk alert the CPU when data is ready

• But if data packets are small, this interrupt overhead can add up

• Direct Memory Access (DMA): The device itself can put the
requested data directly into RAM without the CPU being
involved

• The CPU is alerted via interrupt when the whole transaction is done

• Complication!

• Now memory can change without notice; interferes with cache

• Solution: cache listens on bus for DMA traffic, drops changed data

85

Pipelining

86

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not re-latched after ALU stage (why not?)

PC
Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

87

Pipeline Diagram

• Pipeline diagram: shorthand for what we just saw

• Across: cycles

• Down: insns

• Convention: X means lw $4,0($5) finishes execute stage and
writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W

88

Pipeline Hazards

• Hazard: condition leads to incorrect execution if not fixed

• “Fixing” typically increases CPI

• Three kinds of hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• Fix by proper ISA/pipeline design:
Each insn uses every structure exactly once for at most one cycle, always at same stage relative to
Fetch

• Data hazards

• Result of dependencies: Need data before it’s ready

• Solve by (a) stalling pipeline (inject NOPs) and (b) having bypasses provide data before it formally
hits destination memory/register.

• Control hazards

• Result of jump/branch not being resolved until late in pipeline

• Solve by flushing instructions that shouldn’t have been happening after branch is resolved

• This incurs overhead: wasted time! Reduce with:

• Fast branches: Add hardware to resolve branch sooner

• Delayed branch: Always execute instruction after a branch (complicates compiler)

• Branch prediction: Add hardware to speculate on if/where the branch goes

89

Stalling and Bypassing together

Stall = (D/X.IR.OP == LOAD) &&

((F/D.IR.RS1 == D/X.IR.RD) ||

((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

Register

File

S

X

s1 s2 d

Data

Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)

stall

nop

add $4,$2,$3

lw $3,0($2)add $4,$2,$3

90

Pipeline Diagram: Data Hazard

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W

lw $4,0($3) F D X M W

addi $6,$4,1 F d* D X M W

• Even with bypasses, stalls are sometimes necessary

• Examples:

• Memory load -> ALU operation

• Memory load -> Address component of memory load/store

• Example pipeline diagram for a stall due to a data hazard:

91

Pipeline Diagram: Control Hazard

• Control hazards indicated with c* (or not at all)

• “Default” penalty for taken branch is 2 cycles:

• Fast branches reduce the penalty to 1 cycle:

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* F D X M W

92

Multicore

93

Types of parallelism

• Pipelining tries to exploit instruction-level parallelism
(ILP)

• “How can we simultaneously do steps in this otherwise sequential
process?”

• Multicore tries to exploit thread-level parallelism

• “How can we simultaneously do multiple processes?”

• Thread: A program has one (or more) threads of control

• A thread has its own PC

• Threads in a program share resources, especially memory

(e.g. sharing a page table)

94

Two cases of multiple threads

• Multiprogramming: run multiple programs at once

• Multithreaded programming: write software to explicitly
take advantage of multiple threads (divide problem into
parallel tasks)

95

Multiprocessors

• Multiprocessors: have more than one CPU core

• Historically: multiple discrete physical chips

• Now: a single chip with multiple cores

Multiprocessor:

Two drive-throughs, each

with its own kitchen

96

Challenges of multicore

• Two main challenges:

• Topologies of connection (rings, cubes, meshes, buses, etc.)

• Cache coherence: If each core has a cache, then each CPU can have
a diverging view of memory !! (BAD)

• Solution: Intelligent caches that use snooping on the memory bus
to spot sharing and react accordingly

• Different coherence algorithms (performance/complexity tradeoffs)

Store / OwnGETX

Valid OtherGETX/ --

Inv alid

OtherGETS / --

Load / OwnGETS

Load / --

Store / OwnGETX

OtherGETS / --

OtherGETX / --

Load /--

M

-/OtherGETX

Store / OwnGETX
S

I

Store / --

-/OtherGETS
Store / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

97

Intel x86

98

Basic differences

MIPS Intel x86

Word size Originally: 32-bit (MIPS I in 1985)

Now: 64-bit (MIPS64 in 1999)

Originally: 16-bit (8086 in 1978)

Later: 32-bit (80386 in 1985)
Now: 64-bit (Pentium 4’s in 2005)

Design RISC CISC

ALU ops Register = Register ⦻ Register

(3 operand)

Register ⦻= <Reg|Memory>

(2 operand)

Registers 32 8 (32-bit) or 16 (64-bit)

Instruction size 32-bit fixed Variable: up to 15 *bytes*!

Branching Condition in register (e.g. “slt”) Condition codes set implicitly

Endian Either (typically big) Little

Variants and

extensions

Just 32- vs. 64-bit, plus some

graphics extensions in the 90s

A bajillion (x87, IA-32, MMX, 3DNow!,

SSE, SSE2, PAE, x86-64, SSE3, SSE4,
SSE5, AVX, AES, FMA)

Market share Small but persistent (embedded) 80% server, similar for consumer

(defection to ARM for mobile is recent)

99

64-bit x86 primer

• Registers:

• General: rax rbx rcx rdx rdi rsi r8 r9 .. r15

• Stack: rsp rbp

• Instruction pointer: rip

• Complex instruction set

• Instructions are variable-sized & unaligned

• Hardware-supported call stack

• call / ret

• Parameters in registers {rdi, rsi, rdx,
rcx, r8, r9}, return value in rax

• Little-endian

• These slides use Intel-style assembly language (destination first)

• GNU tools like gcc and objdump use AT&T syntax (destination last)

mov rax, 5

mov [rbx], 6

add rax, rdi

push rax

pop rsi

call 0x12345678

ret

jmp 0x87654321

jmp rax

call rax

mov 5, %rax

mov 6, [%rbx]

add %rdi, %rax

push %rax

pop %rsi

call 0x12345678

ret

jmp 0x87654321

jmp %rax

call %rax

Intel syntax AT&T syntax

100

Binary modification
(applies to *all* ISAs)

• Can disassemble binaries (turn into human-readable assembly)

• Do a bunch of cross-referencing to understand functionality
(that’s what IDA Pro does)

• Basic blocks of code ending in branches form a flow chart

• Identify behavior and make inferences on author intent

• Can modify by overwriting binary with new instructions
(can also insert instructions, but this changes layout of binary
program, so various pointers have to be updated)

• Cheap and easy technique on x86: overwrite stuff you don’t
want with NOP (0x90)

101

THE END

