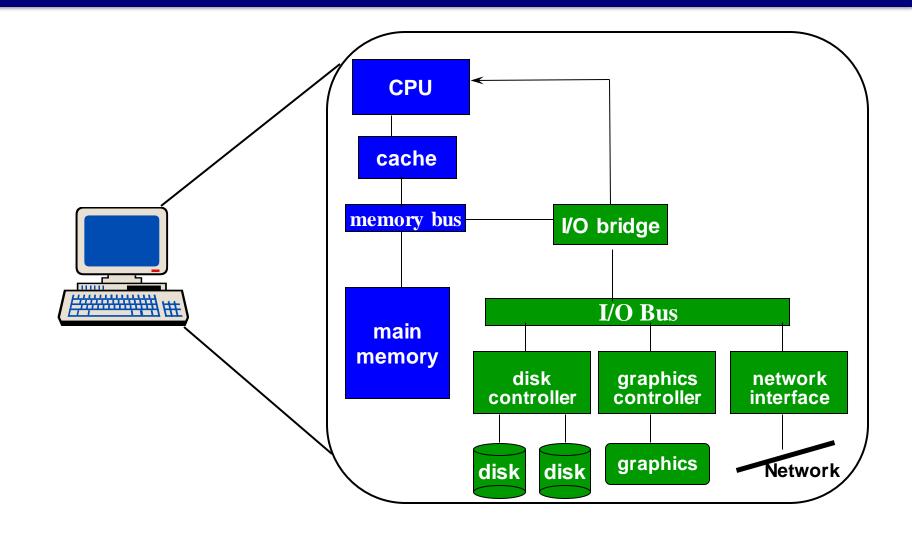
ECE/CS 250 Computer Architecture

Course review

Tyler Bletsch Duke University

Includes work by Daniel J. Sorin (Duke), Amir Roth (Penn), and Alvin Lebeck (Duke)


Introduction

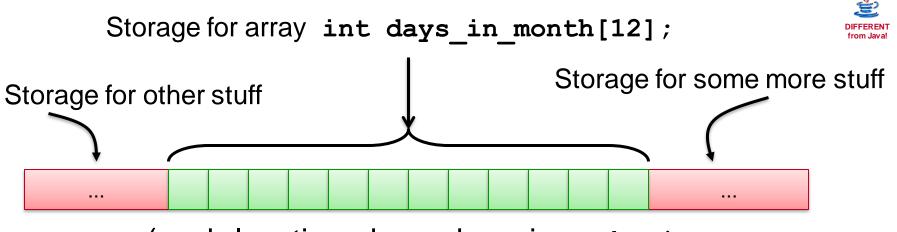
Course objective: Evolve your understanding of computers

<u>After</u>

System Organization

C programming

What is C?


- The language of UNIX
- Procedural language (no classes)
- Low-level access to memory
- Easy to map to machine language
- Not much run-time stuff needed
- Surprisingly cross-platform

Why teach it now?

To expand from basic programming to operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

Memory Layout and Bounds Checking

(each location shown here is an int)

- There is NO bounds checking in C
 - i.e., it's legal (but not advisable) to refer to days_in_month[216] Or days_in_month[-35] !
 - who knows what is stored there?

Structures

- Structures are sort of like Java objects
 - They have member variables
 - But they do NOT have methods!
- Structure definition with struct keyword

```
struct student_record {
    int id;
    float grade;
} rec1, rec2;
```

- Declare a variable of the structure type with struct keyword struct student_record onerec;
- Access the structure member fields with dot ('.'), e.g. structvar.member onerec.id = 12; onerec.grade = 79.3;

Let's look at memory addresses!

• You can find the address of ANY variable with:

\$ gcc x4.c && ./a.out
5
0x7fffd232228c

What's a pointer?

- It's a memory address you treat as a variable
- You declare pointers with:

The *dereference* operator

int v = 5; Append to any data type
int* p = &v;
printf("%d\n",v);
printf("%p\n",p);

\$ gcc x4.c && ./a.out 5 0x7fffe0e60b7c

What's a pointer?

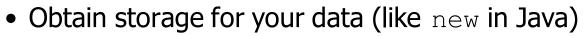
- You can look up what's stored at a pointer!
- You **dereference** pointers with:

The *dereference* operator

int v = 5;

int* p = &v;

printf("%d\n",v);


printf("%p\n",p);
printf("%d\n",*p);

Prepend to any pointer variable or expression

\$ gcc x4.c && ./a.out 5 0x7fffe0e60b7c 5

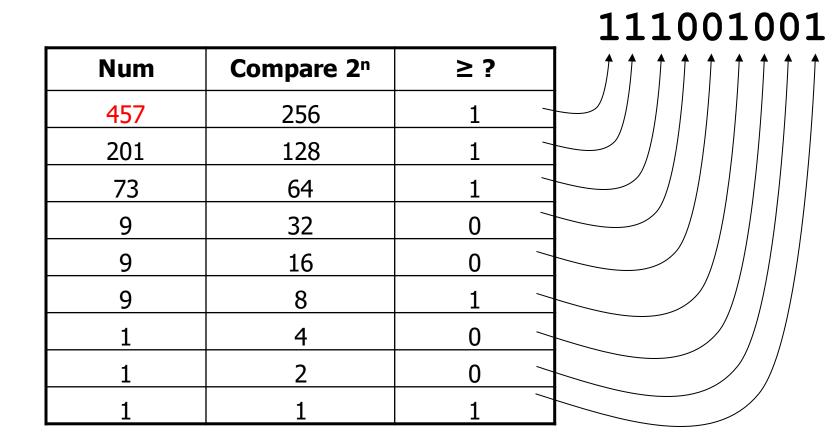
C Memory Allocation

• void* malloc(nbytes)

- Often use sizeof(type) built-in returns bytes needed for type
- int* my_ptr = malloc (64); // 64 bytes = 16 ints
- int* my_ptr = malloc (64*sizeof(int)); // 64 ints

• free (ptr)

- Return the storage when you are finished (no Java equivalent)
- ptr must be a value previously returned from malloc



Data representations and memory

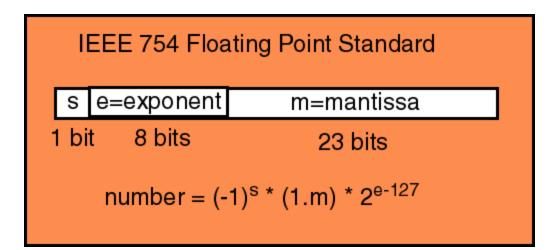
Decimal to binary using remainders

?	Quotient	Remain- der	
457 ÷ 2 =	228	1 —	
228 ÷ 2 =	114	0 —	
114 ÷ 2 =	57	0 —	
57 ÷ 2 =	28	1 —	
28 ÷ 2 =	14	0 —	
14 ÷ 2 =	7	0 —	
7 ÷ 2 =	3	1 —	
3 ÷ 2 =	1	1 —	
1 ÷ 2 =	0	1 —	111001001

Decimal to binary using comparison

Binary to/from hexadecimal

• 0101101100100011 ₂ >								
• 0101	1011	0010	0011 ₂ >					
• 5	В	2	3 ₁₆					
1	F	4	B ₁₆ >					
0001	111 [.]	1 010	0 1011 ₂ >					
0001			$0 1011_2 - 2$					
0001	1111	01001	L011 ₂					


Binary	Hex			
0000	0			
0001	1			
0010	2			
0011	3			
0100	4			
0101	5			
0110	6			
0111	7			
1000	8			
1001	9			
1010	А			
1011	В			
1100	С			
1101	D			
1110	E			
1111	F			

2's Complement Integers

 Use large positives to represent negatives 	0000	0
• $(-x) = 2^n - x$	0001 0010	1 2
 This is 1's complement + 1 	0011	3
•	0100	4
• $(-x) = 2^n - 1 - x + 1$	0101	5
	0110	6
 So, just invert bits and add 1 	0111	7
	1000	-8
	1001	-7
<u>6-bit examples:</u>	1010	-6
$010110_2 = 22_{10}; 101010_2 = -22_{10}$	1011	-5
	1100	-4
$1_{10} = 000001_2; -1_{10} = 111111_2$	1101	-3
$0_{10} = 000000_2; -0_{10} = 000000_2 \rightarrow \text{good!}$	1110	-2
	1111	-1

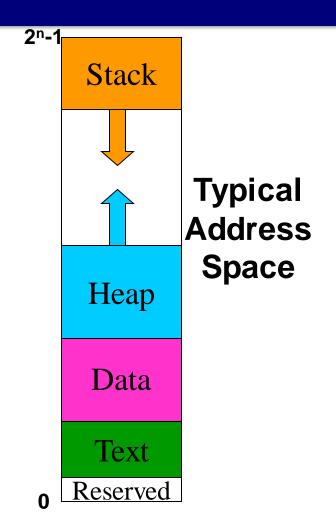

Floating point

• 32-bit **float** format:

• 64-bit **double** format:

(same thing, but with more bits)

Double Precision


Standardized ASCII (0-127)

Dec	Hx	Oct	Chai	,	Dec	Нх	Oct	Html	Chr	Dec	Нx	Oct	Html	Chr	Dec	: Нх	Oct	Html Cl	nr
0	0 (000	NUL	(null)	32	20	040	⊛# 32;	Space	64	40	100	«#64;	0	96	60	140	& #96;	10
1				(start of heading)				&# 33;	-		41	101	«#65;	A				 #97;	а
2				(start of text)	34	22	042	 <i>₄</i> #34;	"	66	42	102	B	В	98	62	142	 ≪#98;	b
3	3 (003	ETX	(end of text)	35	23	043	 ∉#35;	#	67	43	103	 <i>₄</i> #67;	С	99	63	143	 <i>∝</i> #99;	С
4	4 (004	EOT	(end of transmission)	36	24	044	&#36;</td><td>ş –</td><td>68</td><td>44</td><td>104</td><td>&#68;</td><td>D</td><td>100</td><td>64</td><td>144</td><td>d</td><td>d</td></tr><tr><td>5</td><td>5 (</td><td>005</td><td>ENQ</td><td>(enquiry)</td><td></td><td></td><td></td><td>∉#37;</td><td></td><td></td><td></td><td></td><td>&#69;</td><td></td><td>101</td><td>65</td><td>145</td><td>e</td><td>e</td></tr><tr><td>6</td><td>6 (</td><td>006</td><td>ACK</td><td>(acknowledge)</td><td>38</td><td>26</td><td>046</td><td>∉38;</td><td>6</td><td>70</td><td>46</td><td>106</td><td>∝#70;</td><td>F</td><td>102</td><td>66</td><td>146</td><td>&#102;</td><td>f</td></tr><tr><td>7</td><td>7 (</td><td>007</td><td>BEL</td><td>(bell)</td><td>39</td><td>27</td><td>047</td><td>∉#39;</td><td>1</td><td>71</td><td>47</td><td>107</td><td>&#71;</td><td>G</td><td>103</td><td>67</td><td>147</td><td><i>∝</i>#103;</td><td>g</td></tr><tr><td>8</td><td>8 (</td><td>010</td><td>BS</td><td>(backspace)</td><td>40</td><td>28</td><td>050</td><td>∝#40;</td><td>(</td><td>72</td><td>48</td><td>110</td><td>H</td><td>н</td><td>104</td><td>68</td><td>150</td><td>h</td><td>h</td></tr><tr><td>9</td><td></td><td></td><td></td><td>(horizontal tab)</td><td></td><td></td><td></td><td>)</td><td></td><td></td><td></td><td></td><td>∉#73;</td><td></td><td></td><td></td><td></td><td>i</td><td></td></tr><tr><td>10</td><td>A (</td><td>012</td><td>LF</td><td>(NL line feed, new line)</td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td>«#74;</td><td></td><td></td><td></td><td></td><td>j</td><td></td></tr><tr><td>11</td><td>В (</td><td>013</td><td>VT</td><td>(vertical tab)</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>∝#75;</td><td></td><td></td><td></td><td></td><td>k</td><td></td></tr><tr><td>12</td><td>С (</td><td>014</td><td>FF</td><td>(NP form feed, new page)</td><td>44</td><td>2C</td><td>054</td><td>a#44;</td><td>100</td><td>76</td><td>4C</td><td>114</td><td>L</td><td>L</td><td></td><td></td><td></td><td>‰#108;</td><td></td></tr><tr><td>13</td><td>D (</td><td>015</td><td>CR</td><td>(carriage return)</td><td></td><td></td><td></td><td>&#45;</td><td></td><td></td><td>_</td><td></td><td>M</td><td></td><td></td><td></td><td></td><td>m</td><td></td></tr><tr><td>14</td><td></td><td>016</td><td></td><td>(shift out)</td><td></td><td></td><td></td><td>.</td><td></td><td></td><td></td><td></td><td>∉78;</td><td></td><td></td><td></td><td></td><td>n</td><td></td></tr><tr><td>15</td><td></td><td>017</td><td></td><td>(shift in)</td><td></td><td></td><td></td><td>/</td><td></td><td></td><td></td><td></td><td>∉79;</td><td></td><td></td><td></td><td></td><td>o</td><td></td></tr><tr><td></td><td>10 (</td><td></td><td></td><td>(data link escape)</td><td></td><td></td><td></td><td>«#48;</td><td></td><td></td><td></td><td></td><td>≪#80;</td><td></td><td></td><td></td><td></td><td>p</td><td></td></tr><tr><td>17</td><td>11 (</td><td>021</td><td>DC1</td><td>(device control 1)</td><td></td><td></td><td></td><td>«#49;</td><td></td><td></td><td></td><td></td><td><i>4</i>81;</td><td>-</td><td></td><td></td><td></td><td>q</td><td></td></tr><tr><td>18</td><td>12 (</td><td>022</td><td>DC2</td><td>(device control 2)</td><td></td><td></td><td></td><td>&#50;</td><td></td><td></td><td></td><td></td><td>≨#82;</td><td></td><td></td><td></td><td></td><td>r</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 3)</td><td></td><td></td><td></td><td>&#51;</td><td></td><td></td><td></td><td></td><td>∉#83;</td><td></td><td></td><td></td><td></td><td>s</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 4)</td><td></td><td></td><td></td><td>&#52;</td><td></td><td></td><td></td><td></td><td>∉84;</td><td></td><td></td><td></td><td></td><td>t</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(negative acknowledge)</td><td></td><td></td><td></td><td>∉53;</td><td></td><td></td><td></td><td></td><td>∉#85;</td><td></td><td></td><td></td><td></td><td>u</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(synchronous idle)</td><td></td><td></td><td></td><td>«#54;</td><td></td><td></td><td></td><td></td><td>&#86;</td><td></td><td></td><td></td><td></td><td>v</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(end of trans. block)</td><td></td><td></td><td></td><td>«#55;</td><td></td><td></td><td></td><td></td><td>∉#87;</td><td></td><td></td><td></td><td></td><td>w</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(cancel)</td><td></td><td></td><td></td><td>&#56;</td><td></td><td></td><td></td><td></td><td>4#88;</td><td></td><td></td><td></td><td></td><td>∝#120;</td><td></td></tr><tr><td></td><td>19 (</td><td></td><td></td><td>(end of medium)</td><td></td><td></td><td></td><td>∉\$7;</td><td></td><td></td><td></td><td></td><td>∉#89;</td><td></td><td></td><td></td><td></td><td>y</td><td></td></tr><tr><td></td><td>1A (</td><td></td><td></td><td>(substitute)</td><td></td><td></td><td></td><td>&#58;</td><td></td><td></td><td></td><td></td><td><i>₄</i>#90;</td><td></td><td></td><td></td><td></td><td>z</td><td></td></tr><tr><td></td><td>1B (</td><td></td><td></td><td>(escape)</td><td></td><td></td><td></td><td>«#59;</td><td></td><td></td><td></td><td></td><td>[</td><td>_</td><td></td><td></td><td></td><td>{</td><td></td></tr><tr><td></td><td>1C (</td><td></td><td></td><td>(file separator)</td><td></td><td></td><td></td><td>&#60;</td><td></td><td></td><td></td><td></td><td>∉#92;</td><td></td><td></td><td></td><td></td><td> </td><td></td></tr><tr><td></td><td>1D (</td><td></td><td></td><td>(group separator)</td><td></td><td></td><td></td><td>&#6l;</td><td></td><td></td><td></td><td></td><td>∉#93;</td><td>-</td><td></td><td></td><td></td><td>}</td><td></td></tr><tr><td></td><td>1E (</td><td></td><td></td><td>(record separator)</td><td></td><td></td><td></td><td>≪#62;</td><td></td><td></td><td></td><td></td><td>«#94;</td><td></td><td></td><td></td><td></td><td>~</td><td></td></tr><tr><td>31</td><td>1F (</td><td>037</td><td>US</td><td>(unit separator)</td><td> 63</td><td>ЗF</td><td>077</td><td>∉63;</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>∝#95;</td><td>_</td><td> 127</td><td>7F</td><td>177</td><td>∉#127;</td><td>DEL</td></tr></tbody></table>											

Source: www.LookupTables.com

Memory Layout

- Memory is array of bytes, but there are conventions as to what goes where in this array
- Text: instructions (the program to execute)
- Data: global variables
- Stack: local variables and other per-function state; starts at top & grows down
- Heap: dynamically allocated variables; grows up
- What if stack and heap overlap????

Learning Assembly language with MIPS

The MIPS architecture

- 32-bit word size
- 32 registers (\$0 is zero, \$31 is return address) •
- Fixed size 32-bit aligned instructions •
- Types of instructions:
 - Math and logic:

• or \$1, \$2, \$3	→ \$1 = \$2 \$3
• add \$1, \$2, \$3	\rightarrow \$1 = \$2 + \$3
 Loading constants: 	
• li \$1, 50	\rightarrow \$1 = 50
Memory:	
• lw \$1, 4(\$2)	\rightarrow \$1 = *(\$2 + 4)
• sw \$1, 4(\$2)	\rightarrow *(\$2 + 4) = \$1
Control flow:	
• j label	\rightarrow PC = label

• bne \$1, \$2, label \rightarrow if (\$1!=\$2) PC=label

Control Idiom: If-Then-Else

 Control idiom: if-then-else if (A < B) A++; // assume A in register \$1 else B++; // assume B in \$2

slt \$3,\$1,\$2
beqz \$3,else
addi \$1,\$1,1
j join
else: addi \$2,\$2,1
join:

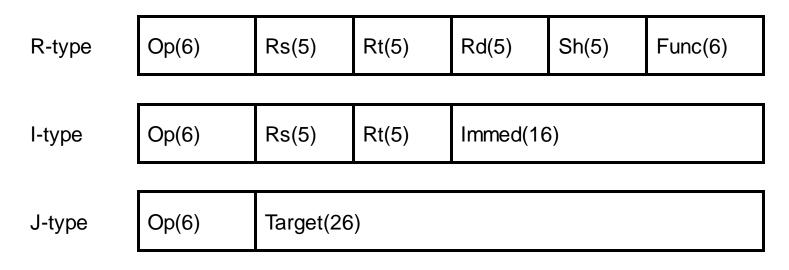
// if \$1<\$2, then \$3=1
// branch to else if !condition</pre>

// jump to join

ICQ: assembler converts "else" operand of beqz into immediate → what is the immediate?

MIPS Register Usage/Naming Conventions

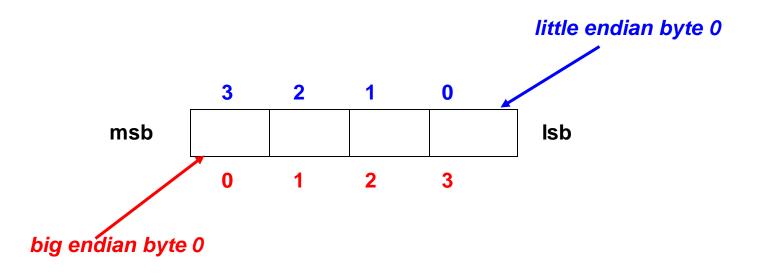
0	zero	o constant	16	s0	callee saves
1	at	reserved for assembler			
2	v0	expression evaluation &	23	s7	
3	v1	function results	24	t8	temporary (cont'd)
4	a0	arguments	25	t9	
5	a1		26	k0	reserved for OS kernel
6	a2		27	k1	
7	a3		28	gp	pointer to global area
8	t0	temporary: caller saves	29	sp	stack pointer
• • •			30	fp	frame pointer
15	t7		31	ra	return address


Also 32 floating-point registers: \$f0 .. \$f31

Important: The only general purpose registers are the \$s and \$t registers.

Everything else has a specific usage: \$a = arguments, \$v = return values, \$ra = return address, etc.

MIPS Instruction Formats


- 3 variations on theme from previous slide
 - All MIPS instructions are either R, I, or J type
 - Note: all instructions have opcode as first 6 bits

Memory Addressing Issue: Endian-ness

Byte Order

- Big Endian: byte 0 is 8 most significant bits IBM 360/370, Motorola 68k, MIPS, SPARC, HP PA-RISC
- Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC Vax, DEC/Compaq Alpha

Combinational logic

Truth Tables

- Map any number if inputs to any number of outputs
- Example: (A & B) | !C
- Start with Empty TT Column Per Input Column Per Output
- Fill in Inputs

Counting in Binary YES THE TRUTH MUST BE IN NUMERIC ORDER FOR THE INPUTS!

Α	В	С	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

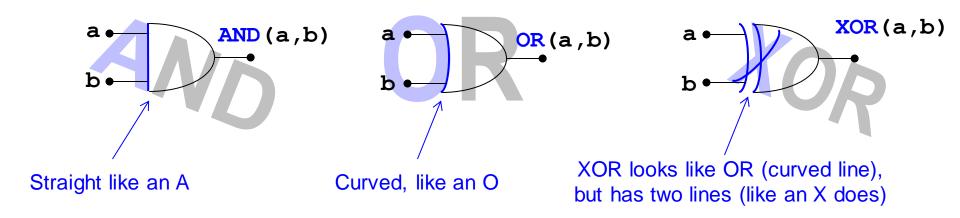
Compute Output

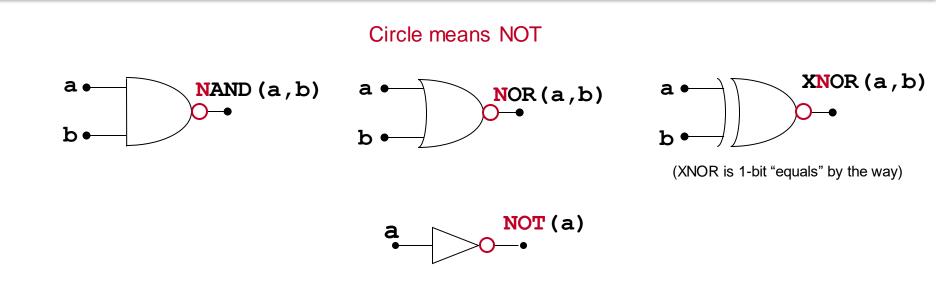
Convert truth table to function

• Given a Truth Table, find the formula?

```
Write down every "true" case
Then OR together:
```

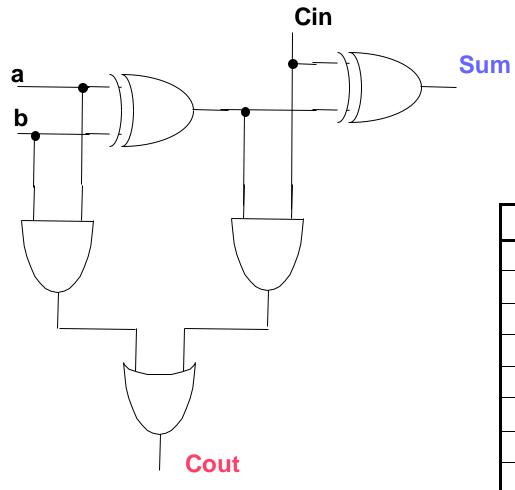
```
(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B & &C)
```


Α	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1


Summary of all Boolean axioms

Name	AND form	OR form		
Identity law	1 & A = A	0 A = A		
Null law	0 & A = 0	1 A = 1		
Idempotent law	A & A = A	$A \mid A = A$		
Inverse law	A & !A = 0	A !A = 1		
Commutative law	A & B = B & A	$A \mid B = B \mid A$		
Associative law	(A&B) & C = A & (B&C)	(A B) C = A (B C)		
Distributive law	A (B&C) = (A B) & (A C)	A & (B C) = (A&B) (A&C)		
Absorption law	A & (A B) = A	$A \mid (A\&B) = A$		
De Morgan's law	!(A&B) = !A !B	!(A B) = !A & !B		
Double negation law	!!A = A			

Guide to Remembering your Gates

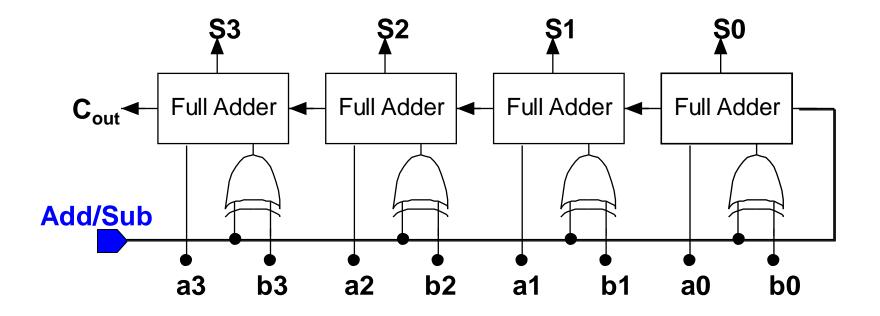

Designing a 1-bit adder

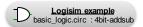
- So we'll need to add three bits (including carry-in)
- Two-bit output is the carry-out and the sum

 C_{in} b a 0 + 0 + 0 =00 0 + 0 + 1 = 010 + 1 + 0 = 01+1+1=100 1 + 0 + 0 = 011 + 0 + 1 = 101 + 1 + 0 = 101 + 1 + 1 = 11

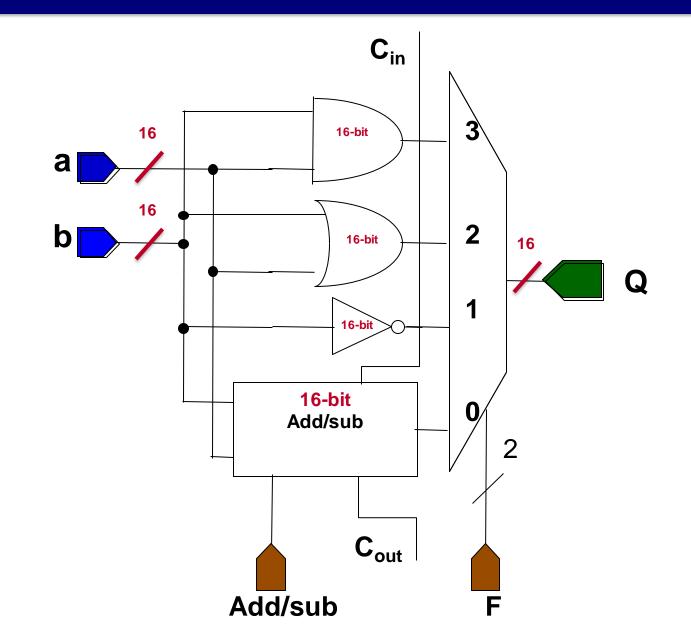
Turn into expression, simplify, circuit-ify, yadda yadda yadda...

A 1-bit Full Adder



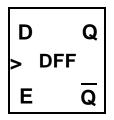

+00101100

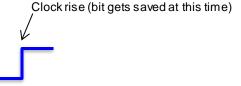
a	b	C_{in}	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



Example: Adder/Subtractor

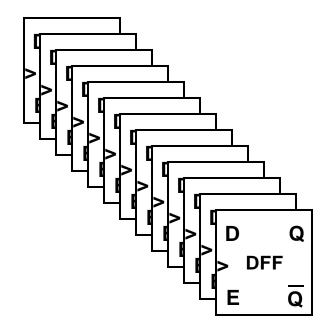
The ALU

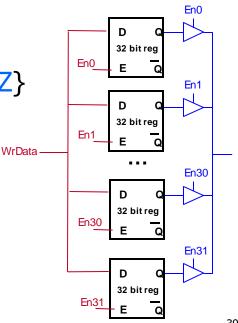



Sequential logic

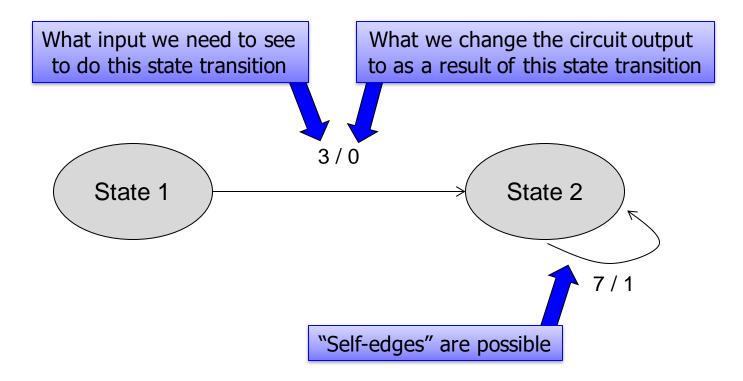
D flip flops

- Stores one bit
- Inputs:
 - The data D
 - The clock `>'
 - An "enable" signal E
- Outputs:
 - The stored bit output Q (and also its inverse !Q)

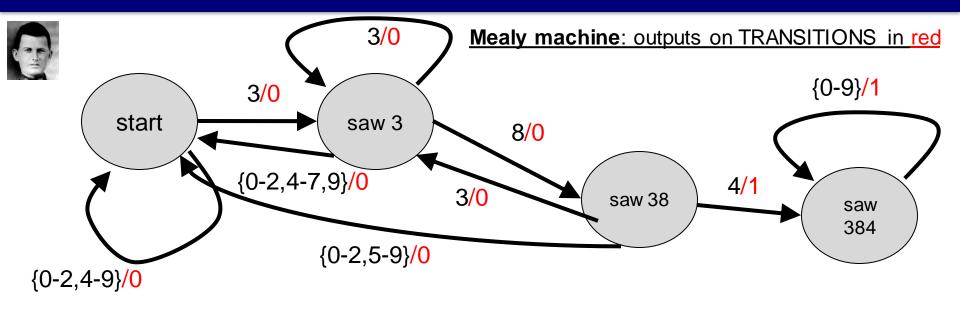


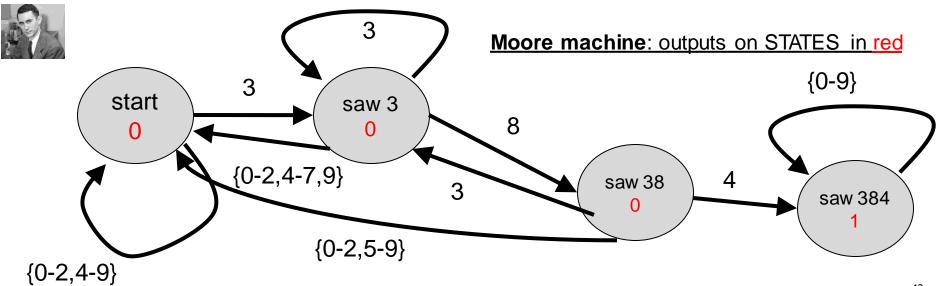

Register

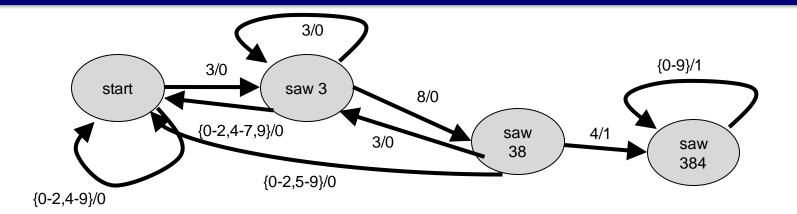
• **Register**: N flip flops working in parallel, where N is the word size


Register file

- A set of registers with multiple ports so numbered registers can be read/written.
- How to write:
 - Use decoder to convert reg # to one hot
 - Send write data to all regs
 - Use one hot encoding of reg # to enable right reg
- How to read:
 - 32 input mux (the way we've made it) not realistic
 - To do this: expand our world from $\{1,0\}$ to $\{1, 0, Z\}$




Finite state machines


How FSMs are represented

Mealy vs Moore

Current State	Input	Next state	Output
Start	3	Saw 3	0 (closed)
Start	Not 3	Start	0
Saw 3	8	Saw 38	0
Saw 3	3	Saw 3	0
Saw 3	Not 8 or 3	Start	0
Saw 38	4	Saw 384	1 (open)
Saw 38	3	Saw 3	0
Saw 38	Not 4 or 3	Start	0
Saw 384	Any	Saw 384	1

Current State	Input	Next state	Output
00 (start)	3	01	0 (closed)
00	Not 3	00	0
01	8	10	0
01	3	01	0
01	Not 8 or 3	00	0
10	4	11	1 (open)
10	3	01	0
10	Not 4 or 3	00	0
11	Any	11	1

4 states \rightarrow 2 flip-flops to hold the current state of the FSM inputs to flip-flops are D₁D₀ outputs of flip-flops are Q₁Q₀

Q1	Q0	Input	D1	D0	Output
0	0	3	0	1	0 (closed)
0	0	Not 3	0	0	0
0	1	8	1	0	0
0	1	3	0	1	0
0	1	Not 8 or 3	0	0	0
1	0	4	1	1	1 (open)
1	0	3	0	1	0
1	0	Not 4 or 3	0	0	0
1	1	Any	1	1	1

Input can be 0-9 \rightarrow requires 4 bits input bits are in3, in2, in1, in0

Q1	Q0	In3	In2	In1	In0	D1	D0	Out put
0	0	0	0	1	1	0	1	0
0	0		Not 3 (all binary combos other than 00011)				0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1	(all t	Not 8 or 3 (all binary combos other than 01000 & 00011)			0	0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	(all t	Not 4 or 3 (all binary combos other than 00100 & 00011)				0	0
1	1			Any		1	1	1

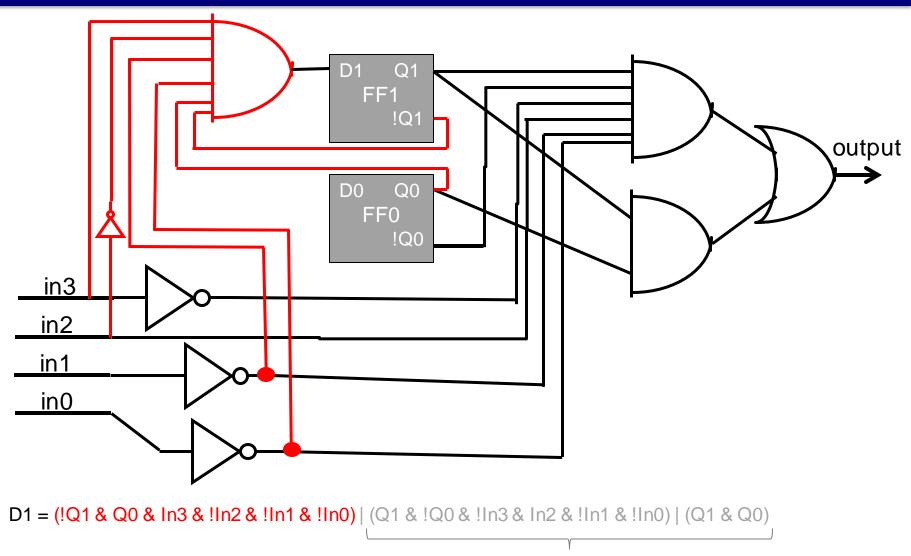
From here, it's just like combinational logic design! Write out product-of-sums equations, optimize, and build.

Q1	Q0	In3	In2	In1	In0	D1	D0	Out put
0	0	0	0	1	1	0	1	0
0	0		Not 3				0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1		Not 8 or 3				0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	Not 4 or 3				0	0	0
1	1			Any		1	1	1

Output = (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

D1 = (!Q1 & Q0 & In3 & !In2 & !In1 & !In0) | (Q1 & !Q0 & !In3 & In2 & !In1 & !In0) | (Q1 & Q0)

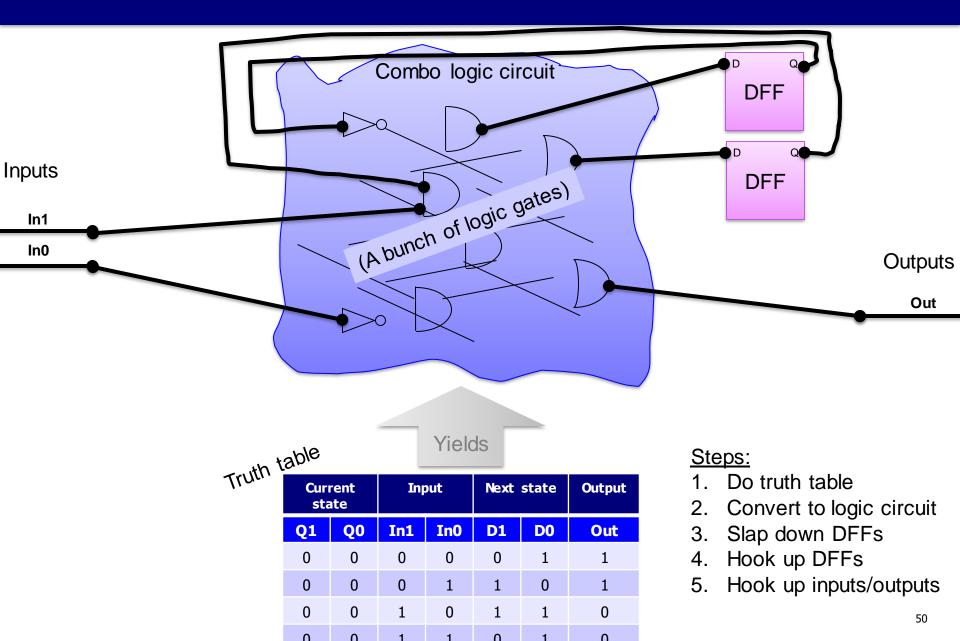
D0 = do the same thing


Q1	Q0	In3	In2	In1	In0	D1	D0	Out put
0	0	0	0	1	1	0	1	0
0	0		Not 3				0	0
0	1	1	0	0	0	1	0	0
0	1	0	0	1	1	0	1	0
0	1	Not 8 or 3				0	0	0
1	0	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	Not 4 or 3				0	0	0
1	1		Any				1	1
	-γ	J					γ	

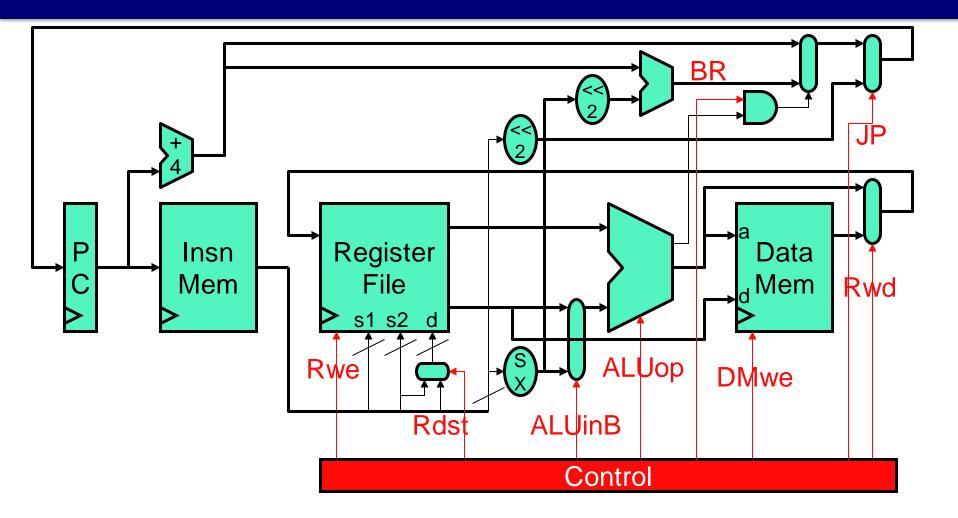
Remember, these represent **DFF outputs**

...and these are the DFF inputs

The DFFs are how we store the **state**.


Truth Table → Sequential Circuit

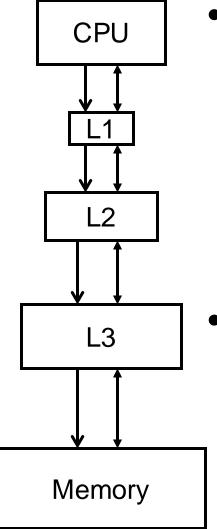
Follow a similar procedure for D0...


Not pictured

How to think about the FSM circuit

CPU datapath and control

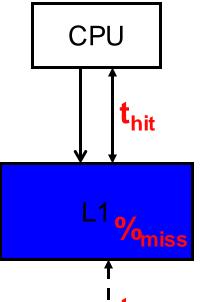
The overall datapath


Exceptions

Exceptions and interrupts

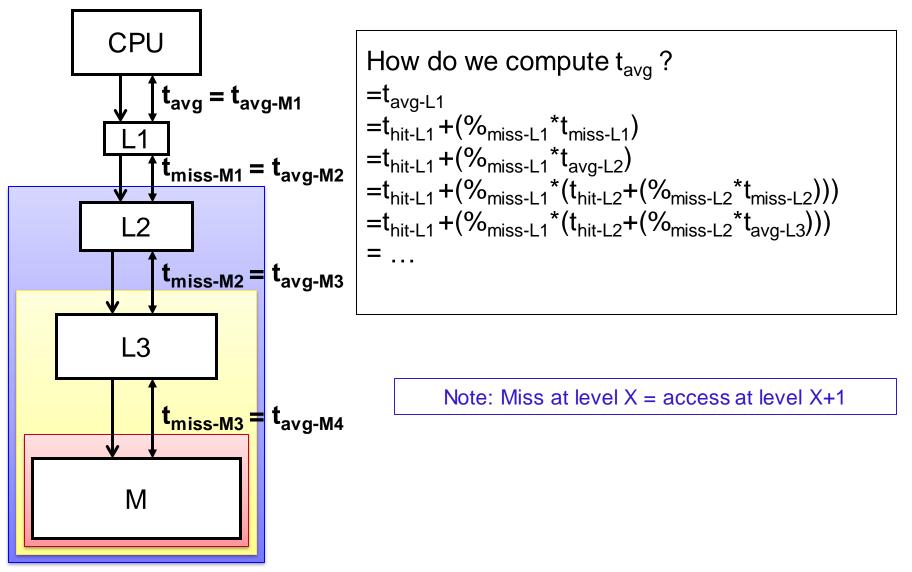
- Infrequent (exceptional!) events
 - I/O, divide-by-0, illegal instruction, page fault, protection fault, ctrl-C, ctrl-Z, timer
- Handling requires intervention from operating system
 - End program: divide-by-0, protection fault, illegal insn, ^C
 - Fix and restart program: I/O, page fault, ^Z, timer
- Handling should be transparent to application code
 - Don't want to (can't) constantly check for these using insns
 - Want "Fix and restart" equivalent to "never happened"

Big Concept: Memory Hierarchy



- Use hierarchy of memory components
 - Upper components (closer to CPU)
 - Fast \leftrightarrow Small \leftrightarrow Expensive
 - Lower components (further from CPU)
 - Slow \leftrightarrow Big \leftrightarrow Cheap
 - Bottom component (for now!) = what we have been calling "memory" until now
- Make average access time close to L1's
 - How?
 - Most frequently accessed data in L1
 - L1 + next most frequently accessed in L2, etc.
 - Automatically move data up&down hierarchy

Terminology


- Hit: Access a level of memory and find what we want
- Miss: Access a level of memory and DON'T find what we want
- **Block**: a group of spatially contiguous and aligned bytes
- **Temporal locality**: Recently accessed stuff likely to be accessed again soon
- **Spatial locality**: Stuff near recently accessed thing likely to be accessed soon

Memory Performance Equation

- For memory component L1
 - Access: read or write to L1
 - Hit: desired data found in L1
 - Miss: desired data not found in L1
 - Must get from another (slower) component
 - Fill: action of placing data in L1
 - % (miss-rate): #misses / #accesses
 - t_{hit}: time to read data from (write data to) L1
 - t_{miss}: time to read data into M from lower level
- Performance metric
 - t_{avg}: average access time
 - $\mathbf{t}_{\text{avg}} = \mathbf{t}_{\text{hit}} + (\%_{\text{miss}} * \mathbf{t}_{\text{miss}})$

Abstract Hierarchy Performance

Where to Put Blocks in Cache

- How to decide which frame holds which block?
 - And then how to find block we're looking for?
- Some more cache structure:
 - Divide cache into sets
 - A block can only go in its set → there is a 1-to-1 mapping from block address to set
 - Each set holds some number of frames = **set associativity**
 - E.g., 4 frames per set = 4-way set-associative
- At extremes
 - Whole cache has just one set = **fully associative**
 - Most flexible (longest access latency)
 - Each set has 1 frame = 1-way set-associative = "direct mapped"
 - Least flexible (shortest access latency)

Cache structure math

- Given capacity, block_size, ways (associativity), and word_size.
- Cache parameters:
 - num_frames = capacity / block_size
 - sets = num_frames / ways = capacity / block_size / ways
- Address bit fields:
 - offset_bits = log₂(block_size)
 - index_bits = log₂(sets)
 - tag_bits = word_size index_bits offset_bits
- Way to get offset/index/tag from address (bitwise & numeric):
 - block_offset = addr & ones(offset_bits) = addr % block_size
 - index = (addr >> offset_bits) & ones(index_bits) = (addr / block_size) % sets
 - tag = addr >> (offset_bits+index_bits) = addr / (sets*block_size)

ones(n) = a string of n ones = ((1<<n)-1)

Tag

Index

Block offset

Cache Replacement Policies

- Set-associative caches present a new design choice
 - On cache miss, which block in set to replace (kick out)?
- Some options
 - Random
 - LRU (least recently used) This is what you usually want
 - Fits with temporal locality, LRU = least likely to be used in future
 - NMRU (not most recently used)
 - An easier-to-implement approximation of LRU
 - NMRU=LRU for 2-way set-associative caches
 - FIFO (first-in first-out)
 - When is this a good idea?

ABCs of Cache Design

- Architects control three primary aspects of cache design
 - And can choose for each cache independently
- A = Associativity
- B = Block size
- C = Capacity of cache
- Secondary aspects of cache design
 - Replacement algorithm
 - Some other more subtle issues we'll discuss later

Analyzing Cache Misses: 3C Model

- Divide cache misses into three categories
 - **Compulsory (cold)**: never seen this address before
 - Easy to identify
 - Capacity: miss caused because cache is too small would've been miss even if cache had been fully associative
 - Consecutive accesses to block separated by accesses to at least N other distinct blocks where N is number of frames in cache
 - Conflict: miss caused because cache associativity is too low would've been hit if cache had been fully associative
 - All other misses

Stores: Write-Through vs. Write-Back

- When to propagate new value to (lower level) memory?
 - Write-through: immediately (as soon as store writes to this level)
 - + Conceptually simpler
 - + Uniform latency on misses
 - Requires additional bandwidth to next level
 - Write-back: later, when block is replaced from this level
 - Requires additional "dirty" bit per block \rightarrow why?
 - + Minimal bandwidth to next level
 - Only write back dirty blocks
 - Non-uniform miss latency
 - Miss that evicts clean block: just a fill from lower level
 - Miss that evicts dirty block: writeback dirty block and then fill from lower level

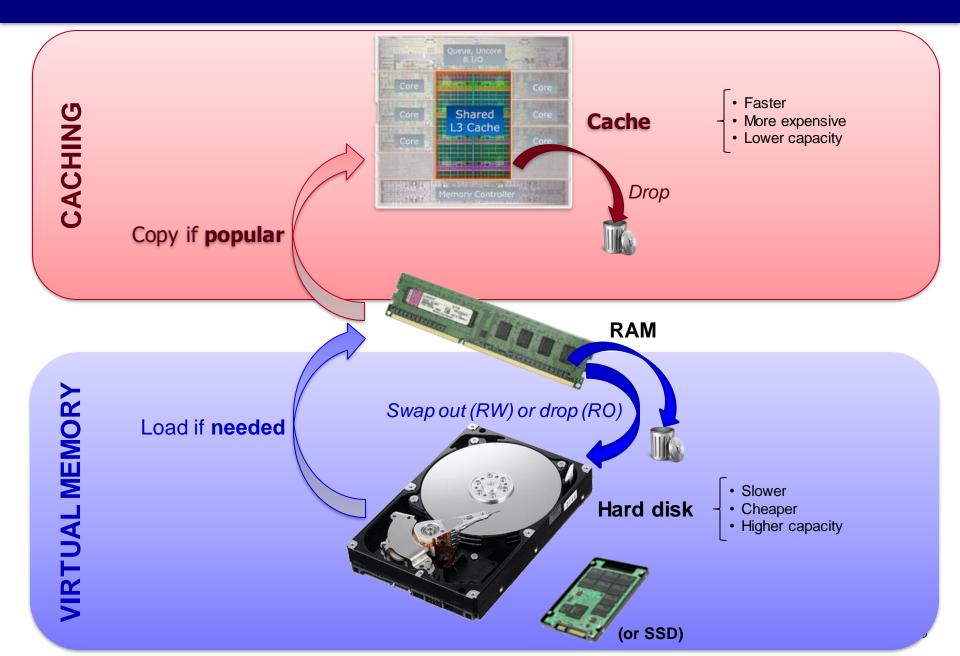
Stores: Write-allocate vs. Write-non-allocate

- What to do on a write miss?
 - Write-allocate: read block from lower level, write value into it
 - + Decreases read misses
 - Requires additional bandwidth
 - Use with write-back
 - Write-non-allocate: just write to next level
 - Potentially more read misses
 - + Uses less bandwidth
 - Use with write-through

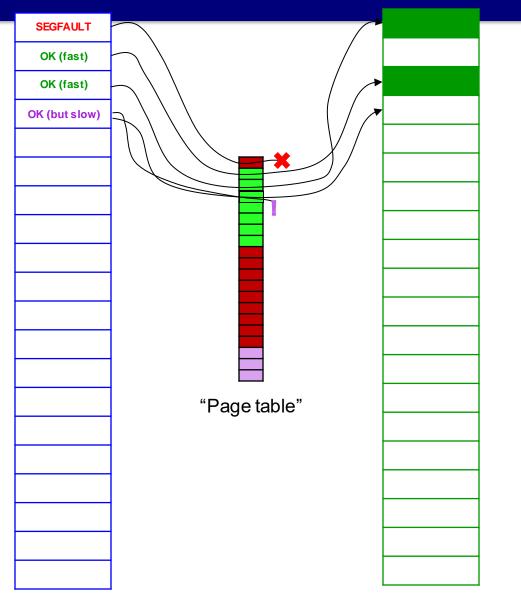
Example cache trace

Term	Value	Equation
cache size	4096	given
block size	32	given
ways	2	given
frames		cache size / block size
sets		frames / ways
bits:index		log ₂ (sets)
bits:offset		$\log_2(block size)$
bits:tag		64 minus the above

addr-dec	addr-hex	tag	index	offset	result
38	0026				
30	001E				
62	003E				
5	0005				
2049	0801				
2085	0825				
60	003C				
4130	1022				
2085	0825				


Example cache trace

Term	Value	Equation
cache size	4096	given
block size	32	given
ways	2	given
frames	128	cache size / block size
sets	64	frames / ways
bits:index	6	log ₂ (sets)
bits:offset	5	$\log_2(block size)$
bits:tag	53	64 minus the above


addr-dec	addr-hex	tag	index	offset	result
38	0026	0	1	6	miss compulsory
30	001E	0	0	30	miss compulsory
62	003E	0	1	30	hit
5	0005	0	0	5	hit
2049	0801	1	0	1	miss compulsory
2085	0825	1	1	5	miss compulsory
60	003C	0	1	28	hit
4130	1022	2	1	2	miss compulsory
2085	0825	1	1	5	miss conflict

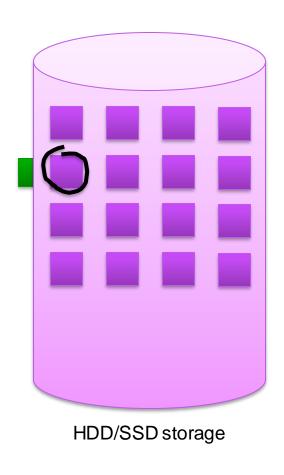
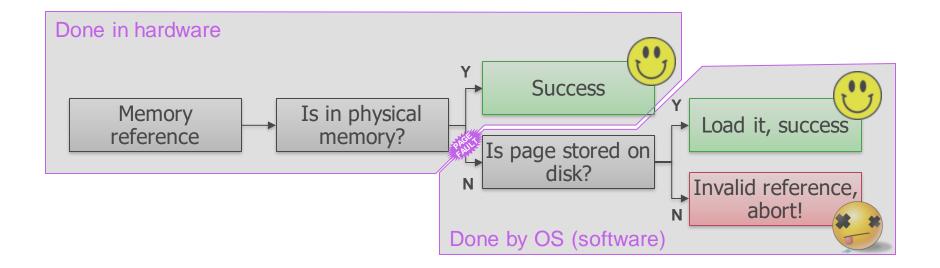
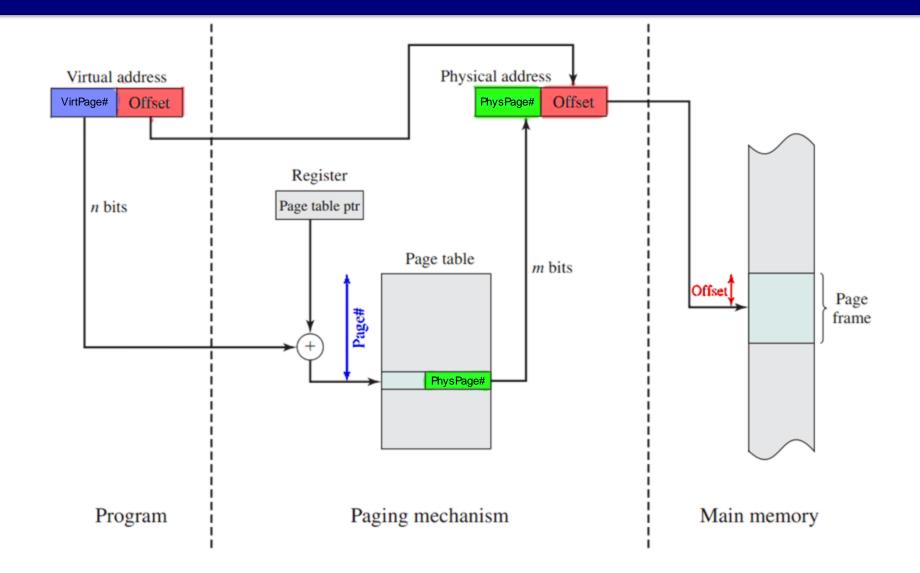

Virtual memory

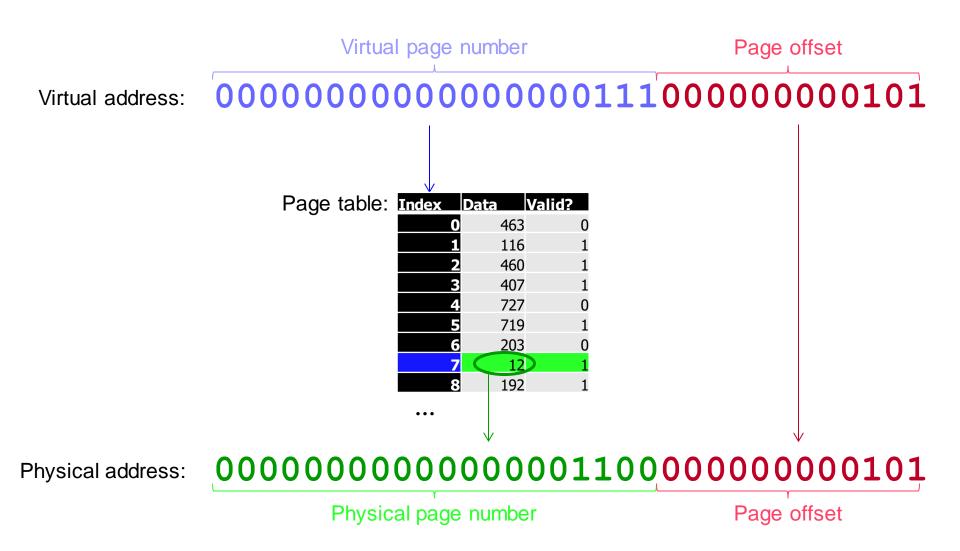
Figure: caching vs. virtual memory

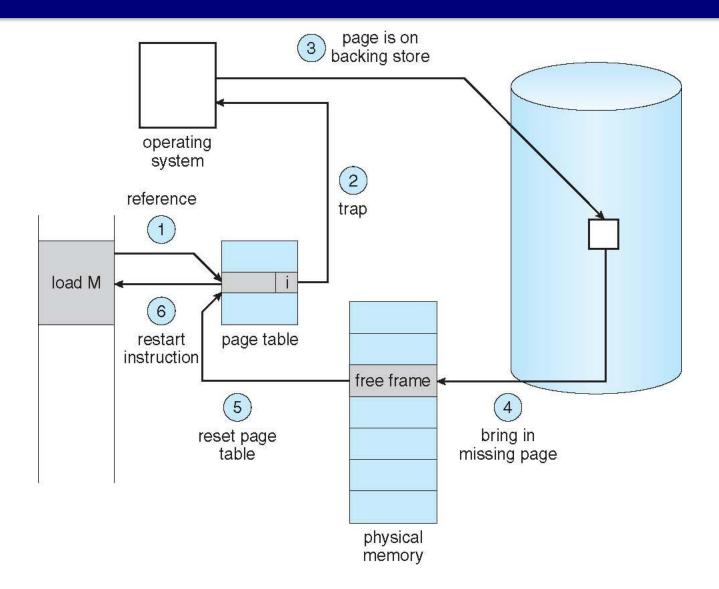
High level operation

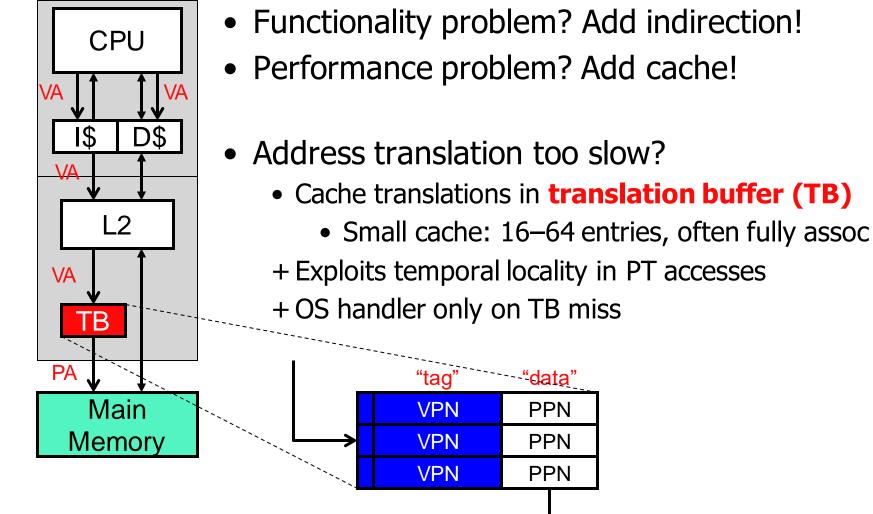



Virtual memory

Physical memory


Demand Paging


Address translation


Address translation

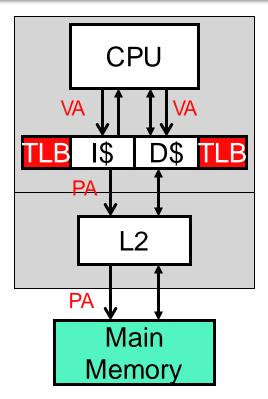
Steps in Handling a Page Fault

Translation Buffer

Functionality problem? Add indirection!

"data"

PPN


PPN

PPN

Performance problem? Add cache!

Daniel J. Sorin from Roth

Virtual Physical Caches

Compromise: virtual-physical caches

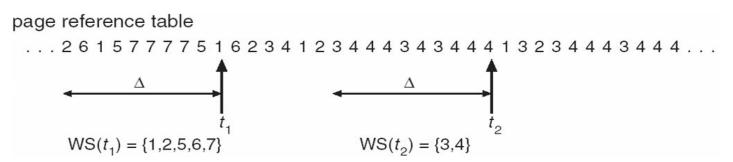
- Indexed by VAs
- Tagged by PAs
- Cache access and address translation in parallel
- + No context-switching/aliasing problems

+ Fast: no additional t_{hit} cycles

- A TB that acts in parallel with a cache is a **TLB**
 - Translation Lookaside Buffer
- Common organization in processors today

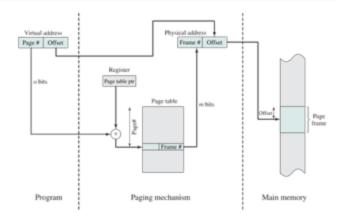
What Happens if There is no Free Frame?

- Page replacement find <u>some page</u> in memory, but not really in use, page it out
 - Algorithm?
 - Want an algorithm which will result in minimum number of page faults
 - This decision is just like choosing the caching replacement algorithm!



Thrashing

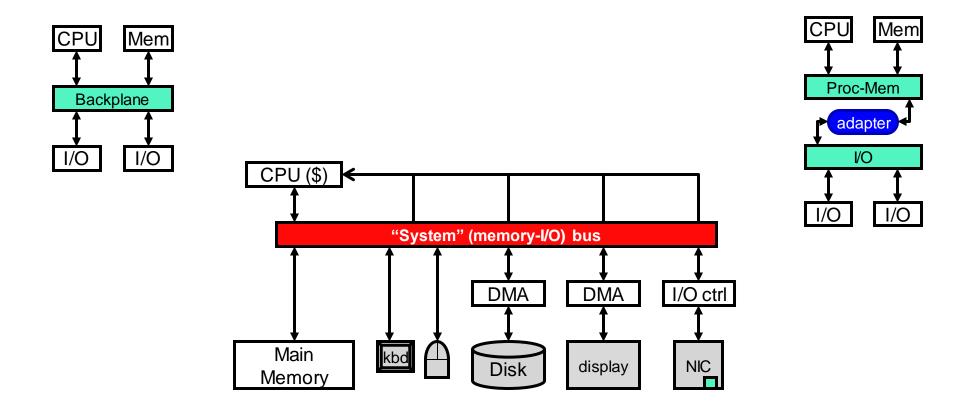
- If a process does not have "enough" pages, the page-fault rate is very high
 - Page fault to get page
 - Replace existing frame
 - But quickly need replaced frame back
 - This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system
- Thrashing = a process is busy swapping pages in and out


Working-set model

- $\Delta =$ working-set window = a fixed number of page references Example: 10,000 instructions
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent ∆ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \Sigma WSS_i \equiv \text{total demand frames}$
 - Approximation of locality
- if $D > m \Rightarrow$ Thrashing
- Policy if D > m, then suspend or swap out one of the processes

Address translation via page table

- Page table turns VPN to PPN (noting the valid bit)
- Page is marked 'i'? Page fault.
 - If OS has stored page on disk, load and resume
 - If not, this is invalid access, kill app (seg fault)
- Governing policies:
 - Keep a certain number of frames loaded per app
 - Kick out frames based on a **replacement algorithm** (like LRU, etc.)
- Looking up page table in memory too slow, so cache it:
 - The **Translation Buffer (TB)** is a hardware cache for the page table
 - When applied at the same time as caching (as is common), it's called a Translation Lookaside Buffer (TLB).
- Working set size tells you how many pages you need over a time window.
- **DRAM** is slower than SRAM, but denser. Needs constant refreshing of data.

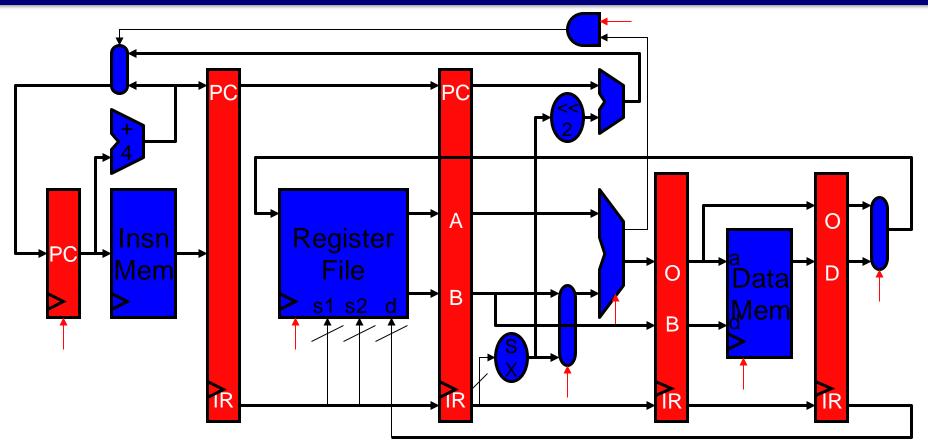


Protection and access

- I/O should be protected, with device access limited to OS
- User processes request I/O through the OS (not directly)
- User processes do so by triggering an **interrupt**, this causes the OS to take over and service the request
- The interrupt/exception facility is implemented in hardware, but triggers OS software

Connectivity

- Bus: A communication linkage with two or more devices on it
- Various topologies are possible



Communication models

- **Polling**: Ask continuously
 - Often a waste of processor time
- **Interrupts**: Have disk alert the CPU when data is ready
 - But if data packets are small, this interrupt overhead can add up
- **Direct Memory Access (DMA)**: The device itself can put the requested data directly into RAM without the CPU being involved
 - The CPU is alerted via interrupt when the *whole* transaction is done
 - Complication!
 - Now memory can change without notice; interferes with cache
 - Solution: cache listens on bus for DMA traffic, drops changed data

Pipelining

5 Stage Pipelined Datapath

- Temporary values (PC,IR,A,B,O,D) re-latched every stage
 - Why? 5 insns may be in pipeline at once, they share a single PC?
 - Notice, PC not re-latched after ALU stage (why not?)

Pipeline Diagram

• **Pipeline diagram**: shorthand for what we just saw

- Across: cycles
- Down: insns
- Convention: X means 1w \$4,0(\$5) finishes execute stage and writes into X/M latch at end of cycle 4

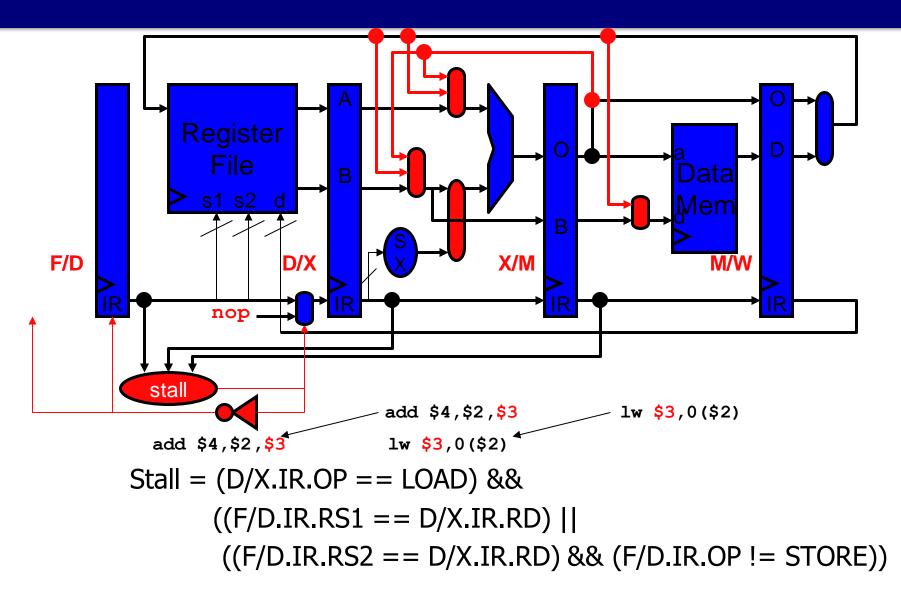
	1	2	3	4	5	6	7	8	9
add \$3,\$2,\$1	F	D	Х	Μ	W				
lw \$4,0(\$5)		F	D	X	Μ	W			
sw \$6,4(\$7)			F	D	Х	М	W		

Pipeline Hazards

- Hazard: condition leads to incorrect execution if not fixed
 - "Fixing" typically increases CPI
 - Three kinds of hazards

Structural hazards

- Two insns trying to use same circuit at same time
- Fix by proper ISA/pipeline design: Each insn uses every structure exactly once for at most one cycle, always at same stage relative to Fetch


• Data hazards

- Result of dependencies: Need data before it's ready
- Solve by (a) **stalling** pipeline (inject NOPs) and (b) having **bypasses** provide data before it formally hits destination memory/register.

Control hazards

- Result of jump/branch not being resolved until late in pipeline
- Solve by flushing instructions that shouldn't have been happening after branch is resolved
- This incurs overhead: wasted time! Reduce with:
 - Fast branches: Add hardware to resolve branch sooner
 - **Delayed branch**: Always execute instruction after a branch (complicates compiler)
 - **Branch prediction**: Add hardware to speculate on if/where the branch goes

Stalling and Bypassing together

Pipeline Diagram: Data Hazard

- Even with bypasses, stalls are sometimes necessary
- Examples:
 - Memory load -> ALU operation
 - Memory load -> Address component of memory load/store
- Example pipeline diagram for a stall due to a data hazard:

	1	2	3	4	5	6	7	8	9
add \$3,\$2,\$1	F	D	Х	Μ	W				
lw \$4,0(\$3)		F	D	Х	М	W			
addi \$6,\$4,1			F	d*	D	Х	М	W	

Pipeline Diagram: Control Hazard

- Control hazards indicated with **c*** (or not at all)
 - "Default" penalty for taken branch is 2 cycles:

	1	2	3	4	5	6	7	8	9
addi \$3,\$0,1	F	D	Х	Μ	W				
bnez \$3,targ		F	D	Х	М	W			
sw \$6,4(\$7)			C *	C *	F	D	Х	Μ	W

• Fast branches reduce the penalty to 1 cycle:

	1	2	3	4	5	6	7	8	9
addi \$3,\$0,1	F	D	Х	Μ	W				
bnez \$3,targ		F	D	Х	Μ	W			
sw \$6,4(\$7)			C *	F	D	Х	Μ	W	

Multicore

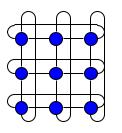
Types of parallelism

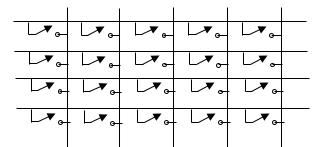
- Pipelining tries to exploit instruction-level parallelism (ILP)
 - "How can we simultaneously do steps in this otherwise sequential process?"
- Multicore tries to exploit thread-level parallelism
 - "How can we simultaneously do multiple processes?"
- **Thread**: A program has one (or more) threads of control
 - A thread has its own PC
 - Threads in a program share resources, especially memory (e.g. sharing a page table)

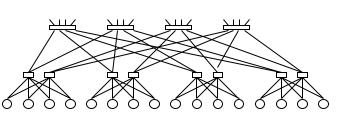
Two cases of multiple threads

- **Multiprogramming**: run multiple programs at once
- **Multithreaded programming**: write software to explicitly take advantage of multiple threads (divide problem into parallel tasks)

Multiprocessors


- Multiprocessors: have more than one CPU core
 - Historically: multiple discrete physical chips
 - Now: a single chip with multiple cores




Multiprocessor: Two drive-throughs, each with its own kitchen

Challenges of multicore

- Two main challenges:
 - Topologies of connection (rings, cubes, meshes, buses, etc.)

- Cache coherence: If each core has a cache, then each CPU can have a diverging view of memory !! (BAD)
 - Solution: Intelligent caches that use snooping on the memory bus to spot sharing and react accordingly
 - Different coherence algorithms (performance/complexity tradeoffs)

Intel x86

Basic differences

	MIPS	Intel x86
Word size	Originally: 32-bit (MIPS I in 1985) Now: 64-bit (MIPS64 in 1999)	Originally: 16-bit (8086 in 1978) Later: 32-bit (80386 in 1985) Now: 64-bit (Pentium 4's in 2005)
Design	RISC	CISC
ALU ops	Register = Register \otimes Register (3 operand)	Register ⊗= <reg memory> (2 operand)</reg memory>
Registers	32	8 (32-bit) or 16 (64-bit)
Instruction size	32-bit fixed	Variable: up to 15 *bytes*!
Branching	Condition in register (e.g. "slt")	Condition codes set implicitly
Endian	Either (typically big)	Little
Variants and extensions	Just 32- vs. 64-bit, plus some graphics extensions in the 90s	A bajillion (x87, IA-32, MMX, 3DNow!, SSE, SSE2, PAE, x86-64, SSE3, SSE4, SSE5, AVX, AES, FMA)
Market share	Small but persistent (embedded)	80% server, similar for consumer (defection to ARM for mobile is recent)

64-bit x86 primer

- Registers:
 - General: rax rbx rcx rdx rdi rsi r8 r9 .. r15
 - Stack: rsp rbp
 - Instruction pointer: rip
- Complex instruction set
 - Instructions are variable-sized & unaligned
- Hardware-supported call stack
 - call / ret
 - Parameters in registers {rdi, rsi, rdx, rcx, r8, r9}, return value in rax
- Little-endian
- These slides use Intel-style assembly language (destination first)
 - GNU tools like gcc and objdump use AT&T syntax (destination last)

Binary modification (applies to *all* ISAs)

- Can disassemble binaries (turn into human-readable assembly)
- Do a bunch of cross-referencing to understand functionality (that's what IDA Pro does)
- Basic blocks of code ending in branches form a flow chart
- Identify behavior and make inferences on author intent
- Can modify by overwriting binary with new instructions (can also *insert* instructions, but this changes layout of binary program, so various pointers have to be updated)
- Cheap and easy technique on x86: overwrite stuff you don't want with NOP (0x90)

