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Where We Are in This Course Right Now

e So far:

e We know how to design a processor that can fetch, decode, and
execute the instructions in an ISA

e We understand how to design caches and memory

e Now:
e We learn about the lowest level of storage (disks)
e We learn about input/output in general

e Next:
e Faster processor cores
e Multicore processors
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e Patterson and Hennessy dropped the ball on this topic

e It used to be covered in depth (in previous editions)
e Now it's sort of in Appendix A.8



Computers Interact with Outside World

e Input/output (I/0)
e Otherwise, how will we ever tell a computer what to do...
o ...0r exploit the results of its work?

e Computers without I/O are not useful
e ICQ: What kinds of I/O do computers have?



One Instance of 1/0O

e Have briefly seen one instance of I/O
CPU e Disk: bottom of memory hierarchy
| | | e Holds whatever can't fit in memory
1$ | D$ e ICQ: What else do disks hold?
\ 2 /
L2
\ 4 \ 4
Main
Memory

EDisk(swap)j




A More General/Realistic I/0 System

e A computer system
e CPU, including cache(s)
e Memory (DRAM)
e I/0 peripherals: disks, input devices, displays, network cards, ...
e With built-in or separate I/O (or DMA) controllers
e All connected by a system bus

CPU (3) |e will define DMA later

A\ 4

“System” (memory-1/O) bus

A A

DMA DMA /O ctrl

A A 4 ) 4 A\ 4 A\ 4 A\ 4

Main |m display NIC
Memory [




Bus Design

data lines
address lines
control lines

Goals

High Performance: low latency and high bandwidth
Standardization: flexibility in dealing with many devices

Low Cost

e Processor-memory bus emphasizes performance, then cost

e [/O & backplane emphasize standardization, then performance

Design issues

1

2
3
4

. Width/multiplexing: are wires shared or separate?

. Clocking: is bus clocked or not?

. Switching: how/when is bus control acquired and released?
. Arbitration: how do we decide who gets the bus next?



Standard Bus Examples

PCle USB 2.0 USB 3.1
Type Backplane I/0 I/0
Width 1 bit per lane 1 bit 4 bit

(1-16 lanes)
Multiplexed? Yes Yes Yes
Clocking 2.5 -8 GHz Asynchronous Asynchronous
Data rate 0.250 — 120 GB/s | 60 MB/s 10 Gbit/s
Arbitration Distributed weird weird
Maximum masters | 255 127 127
Maximum length | ~8 inches - -

USB Type-C Pin Layout
-

USB PD Communication

USB3.1

USB3.1 usB2.0 | | .
Data Line Data Llp?J

Data Line
pin 2 | white | DATA-
pin 3 | green | DATA +

\pin4 | black | GND

or ease of use
PCle x1 SATA card USB PD utilizes a dedicated line that

does not affect data transmission

PCle x16 GPU card USB 2.0 ‘A’ plug 10
USB 3.1 ‘C’ plug
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Operating System (OS) Plays a Big Role

e I/O interface is typically under OS control

e User applications access I/O devices indirectly (e.g., SYSCALL)

e Why?

e Device drivers are “programs” that OS uses to manage devices
e Virtualization: same argument as for memory

e Physical devices shared among multiple programs

e Direct access could lead to conflicts — example?

e Synchronization
e Most have asynchronous interfaces, require unbounded waiting
e OS handles asynchrony internally, presents synchronous interface

e Standardization
e Devices of a certain type (disks) can/will have different interfaces
e OS handles differences (via drivers), presents uniform interface
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/O Device Characteristics

e Primary characteristic
e Data rate (aka bandwidth)

e Contributing factors
e Partner: humans have slower output data rates than machines
e Input or output or both (input/output)

Device Partner I? O? Data Rate (KB/s)
Keyboard Human Input 0.01
Mouse Human Input 0.02
Speaker Human Output 0.60
Printer Human Output 200
Display Human Output 240,000
Modem (old) Machine I/0 7/
Ethernet Machine I/O0 ~1,000,000
Disk Machine I/O0 ~50,000

13



/O Device: Disk

head e Disk: like stack of record players
e Collection of platters

ﬁ e Each with read/write head
* 2 e Platters divided into concentric tracks

o Head seeks (forward/backward) to track
e All heads move in unison

e Each track divided into sectors
e /BR (zone bit recording)
e More sectors on outer tracks
e Sectors rotate under head

o Controller
e Seeks heads, waits for sectors
e Turns heads on/off
e May have its own cache (made w/DRAM) 1
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1982 96 MB disk

Computer-Aided

Engineerin

by KEVIN CLEARY

A ssisted by a gift from Data General Corporation, the
engineering school has set up the university's first
large scale interactive cormputing network, according to
Jc)hn Bcam a graduate student in electrical engineering.

“This is the first time that a Duke department has setup
aprogrem that is this comprehensive,” said Board, whois
responsible for running the systern. "Now that we have
our own computing facilities, we're finally in control of our
own destiny.”

The new facility centers around what is known as a
“maxi-computer.” Data General donated sucha machine,
the MV 8000, to the electrical engineering department last
summer. A similar machine was also given to the
engineering school at North Carolina State University. The
donation represents a gift worth about %200,000, said
Craig Casey, chairman of the electrical engineering
department.

cards. In the Duke system, operator terminals resembling
typewriters with television screens attached are located
throughout the engineering building. These terminals are
electronically linked to the MV 8000.

The new facility has already been incorporated into
some of the school's classes. In assistant mechanical
engineering and materials science professor Tim Hight's
design class, ME 141, students are using the computerto
study the effects of varying loads on a concrete beam.
Students merely input the required data, such as the
magnitude and position of the load and the size and shape
of the beam. The computer then displays the results, both
graphically and numerically.

“Right now, its main advantage is the visualization of
problems,” said Hight. “A student can set up th
F{,{LE‘ILI(JI')‘; and get a visual display of what's happening.”
It's k'nd of neat to see the pictures come up on the

...... LIS 55 7 W RO N S T S Py € S K 1

B

1987 20MB disk
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Understanding disk performance

e One  equals 1 microsecond
e Time to read the “next” 512-byte sector (no seek needed):

® O ~2ps

e Time to read a random 512-byte sector (with seek):

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%g@hﬂ“m0®®®®®®®®®®®®®®®®®®

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QQ@@%@'m'®®

00000000000
OOOOOOOOOOON

)@@@@@@@@@@@ ~1840us
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Disk Bandwidth

e Disk is bandwidth-inefficient for page-sized transfers
e Actual data transfer (t,...r) @ Small part of disk access (and cycle)

e Increase bandwidth: stripe data across multiple disks
e Striping strategy depends on disk usage model
e "File System” or “web server”: many small files

e Map entire files to disks (and several small files can be read
simultaneously from different disks)

e “"Supercomputer” or “database”: several large files

e Stripe single file across multiple disks (if 2 disks: say odd blocks
from 1 disk, even from others, double the bandwidth of a single
disk)

e Both bandwidth and individual transaction latency important

17



What about Solid State Drives (SSDs)?

[
. e
u17°.C802

Adapted from “Solid State Drives” by Andrew Bondi 19



http://www.cs.colostate.edu/%7Ecs451/Slides/SSD-Bondi.pptx

o Multiple NAND flash chips operated in parallel (like DRAM, but
nonvolatile! Maintains the bits with the power off)

e Pros:
e Extremely good "“seek” times (since “seek” is no longer a thing)
¢ Almost instantaneous read and write times
e The ability to read or write in multiple locations at once

e The speed of the drive scales extremely well with the number of NAND ICs on
board

o Way cheaper than disk per IOP (performance)

e Cons:
e Way more expensive than disk per GB (capacity)

e Limited number of write cycles possible before it degrades
(getting less and less of a problem these days)

e Fundamental problem: Write amplification

e You can set bits in “pages” (~4kB) fast (microseconds), but
you can only clear bits in “blocks” (~512kB) slooow (milliseconds)

e Solution: controller that is managing NAND cells tries to hide this

Adapted from “Solid State Drives” by Andrew Bondi 20



http://www.cs.colostate.edu/%7Ecs451/Slides/SSD-Bondi.pptx

Typical read and write rates: SSD vs HDD

e Benchmark data from HD Tune (Windows benchmark)

HDD

-

# HD Tune Pro 5.50 - Hard Disk/S5D Utility E=ARCEx
File Help
Heachi HDS724040ALES40 4000gB) = | § |a1c B|E@[e|e [ [ = | Samsung 55D 850 EVO (500 GB) - §-< | % | REa
Benchmark | g
I:"j File Benchmark m Disk monitor ":"F' AAM D Random Access Extra tesis ¢ Benchma i Info | o Health | 9, Emor Scan
Banchmark i -
Y Banchm i Irfa + Heaith q Error Scan D Folder Usage “ Erase 4cp MBlses | —Start
200 g 40 L Seas 400 w . Transfer Rate
@ Read Minimum
Wiite a5 . 4007 MB
Shert strokee
150 30
gk
| Transfer rate
Minimuim
100 - EEITE

Mapamum

Awerage

| Access time

Burst Rate

91.0 MB/=ec

S0

CPU Uszage

| Burst rate -
187.4 MB/s I ==
CPUusage

0 400 BOD

1200 1600 2000 2400 2800 3200 3E00 4000gB
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/O Control and Interfaces

e Now that we know how I/O devices and buses work...

e How does I/O actually happen?
e How does CPU give commands to I/O devices?
e How do I/O devices execute data transfers?
e How does CPU know when I/O devices are done?

23



Sending Commands to I/O Devices

e Remember: only OS can do this! Two options ...

e I/0 instructions
e OS only? Instructions must be privileged (only OS can execute)
e E.g., IA-32 (and our own processor with IN and OUT instructions)

e Memory-mapped I/0

e Portion of physical address space reserved for I/0

e OS maps physical addresses to I/O device control registers

e Stores/loads to these addresses are commands to I/O devices
e Main memory ignores them, I/O devices recognize and respond
o Address specifies both I/O device and command

e The contents of these address are never cached — why?

e OS only? I/O physical addresses only mapped in OS address space

e E.g., almost every architecture other than IA-32 (see pattern??)

24



Memory mapped IO example (1)

1

A 2426
—|A10_ - 2428
—{a10 - - 2423

c a1p - - - 243
J a10 - - . 242e

—2430
2432
. 2434
2436
| IR T :

A1 3433
—{ai0 243
Haip 243
o - 2440
Wi 2442

5
A0

o
A0 9424FDE

0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0ooo
0000 0000
0000 0000
0000 0000

JData_out

e Non-special read — comes from memory
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Memory mapped IO example (2)

............ D e .
------------ Data_in
O

o
(3

T :}:"U'::::::::::::
15, 555535 ............
M1 'riteEnabIel]

_ir-nz- Ooutput Enable]- - - -

[+]

S ofe2
—A10 Dfed
~&10 - Dfe6
~xip - Ofed
"‘Fﬂfea
1 Pr—

1D
Haip - -
s

=

" Ofee
Offo
off2
Off4

P8 off
l.ﬁ;1|3"'0n'8

A1D - - Offa

' 10 - - - Offe
s,q‘-m- .. DOffe
Apqp - - 1000
o ~1002

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

BEEE
0000 8858

JData_out

e Write to address 1000 — routed to TTY!
e Mem write disabled, TTY write enabled; signal goes to both
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Memory mapped IO example (3)

5]

a0 ofe2
A0 ofed
~A1D - 0fed
~aip - - - Ofed

taip - - - Ofea
“ap - Ofec

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

IData_out

= (0fee (0000 0000
0ff0 (0000 0000
0ff2 (0000 0000
] Off4 (0000 0000
&' offs (0000 0000
=1~10 * (fg [0000 0000
—{~1D - - DOffa |000D 0000
Heip - - - Offc 0000 0000
“loip - Offe [0000 0000
“laip 1000

A1D
L] .A,1B P

e Read from address 1001 — data comes from keyboard

e Mux switches to keyboard for that address

27



Querying I/O Device Status

e Now that we've sent command to I/O device ...

e How do we query I/O device status?
e So that we know if data we asked for is ready?
e So that we know if device is ready to receive next command?

e Polling: Ready now? How about now? How about now???
e Processor queries I/O device status register (e.g., with MM load)
e Loops until it gets status it wants (ready for next command)
e Or tries again a little later
+ Simple
— Waste of processor’s time
e Processor much faster than I/0 device

28



Polling Overhead: Example #1

e Parameters
e 500 MHz CPU
e Polling event takes 400 cycles

e Overhead for polling a mouse 30 times per second?
e Cycles per second for polling = (30 poll/s)*(400 cycles/poll)
e > 12000 cycles/second for polling
e (12000 cycles/second)/(500 M cycles/second) = 0.002% overhead
+ Not bad

29



Polling Overhead: Example #2

e Same parameters
e 500 MHz CPU, polling event takes 400 cycles

e Overhead for polling a 4 MB/s disk with 16 B interface?
e Must poll often enough not to miss data from disk
e Polling rate = (4MB/s)/(16 B/poll) >> mouse polling rate
e Cycles per second for polling=[(4MB/s)/(16 B/poll)]*(400 cyc/poll)
e 2 100 M cycles/second for polling
e (100 M cycles/second)/(500 M cycles/second) = 20% overhead
— Bad
e This is the overhead of polling, not actual data transfer
e Really bad if disk is not being used (pure overhead!)

30



Interrupt-Driven I/O

e Interrupts: alternative to polling
I/O device generates interrupt when status changes, data ready
OS handles interrupts just like exceptions (e.g., page faults)
e Identity of interrupting I/O device recorded in ECR
e ECR: exception cause register

I/O interrupts are asynchronous
e Not associated with any one instruction
e Don't need to be handled immediately

I/O interrupts are prioritized
e Synchronous interrupts (e.g., page faults) have highest priority

e High-bandwidth I/O devices have higher priority than low-
bandwidth ones

31



Interrupt Overhead

* Parameters Note: when disk is
e 500 MHz CPU transferring data, the interrupt
e Polling event takes 400 cycles rate is same as polling rate
e Interrupt handler takes 400 cycles
e Data transfer takes 100 cycles
e 4 MB/s, 16 B interface disk, transfers data only 5% of time

e Percent of time processor spends transferring data
e 0.05 * (4 MB/s)/(16 B/xfer)*[(100 c/xfer)/(500M c/s)] = 0.25%

e Overhead for polling?
e (4 MB/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%

e Overhead for interrupts?
+0.05 * (4 MB/s)/(16 B/int) * [(400 c/int)/(500M ¢/s)] = 1%
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Direct Memory Access (DMA)

e Interrupts remove overhead of polling...

o But still requires OS to transfer data one word at a time
e OK for low bandwidth I/O devices: mice, microphones, etc.
e Bad for high bandwidth I/O devices: disks, monitors, etc.

e Direct Memory Access (DMA)
e Transfer data between I/O and memory without processor control
e Transfers entire blocks (e.g., pages, video frames) at a time
e Can use bus “burst” transfer mode if available
e Only interrupts processor when done (or if error occurs)

33



DMA Controllers

e To do DMA, I/0O device attached to DMA controller

e Multiple devices can be connected to one DMA controller
o Controller itself seen as a memory mapped I/O device

e Processor initializes start memory address, transfer size, etc.
o DMA controller takes care of bus arbitration and transfer details

e So that’s why buses support arbitration and multiple masters!

CPU ($) I«

A\ 4

Bus

34



DMA Overhead

e Parameters
e 500 MHz CPU
o Interrupt handler takes 400 cycles
e Data transfer takes 100 cycles
e 4 MB/s, 16 B interface, disk transfers data 50% of time
o DMA setup takes 1600 cycles, transfer 1 16KB page at a time

e Processor overhead for interrupt-driven I/O?
e 0.5 * (4M B/s)/(16 B/xfer)*[(500 c/xfer)/(500M c/s)] = 12.5%

e Processor overhead with DMA?

e Processor only gets involved once per page, not once per 16 B
+ 0.5 * (4M B/s)/(16K B/page) * [(2000 c/page)/(500M c/s)] = 0.05%

35



DMA and Memory Hierarchy

e DMA is good, but is not without challenges

e Without DMA: processor initiates all data transfers
o All transfers go through address translation
+ Transfers can be of any size and cross virtual page boundaries
e All values seen by cache hierarchy
+ Caches never contain stale data

e With DMA: DMA controllers initiate data transfers

e Do they use virtual or physical addresses?
e What if they write data to a cached memory location?

36



DMA and Caching

e Caches are good
e Reduce CPU’s observed instruction and data access latency
+ But also, reduce CPU’s use of memory...
+ ...leaving majority of memory/bus bandwidth for DMA I/O

e But they also introduce a coherence problem for DMA
e Input problem
e DMA write into memory version of cached location
e Cached version now stale
e QOutput problem: write-back caches only
e DMA read from memory version of “dirty” cached location
e QOutput stale value

37



Solutions to Coherence Problem

e Selective flushing/invalidations of cached data
e Flush all dirty blocks in “I/O region”
e Invalidate blocks in “I/O region” as DMA writes those addresses
+ The high performance solution
 Hardware cache coherence mechanisms for doing this
— Expensive in yet a third way: must implement this mechanism

38



H/W Cache Coherence (more later on this)

CPU

e D$ and L2 “snoop” bus traffic

e Observe transactions

e Check if written addresses are resident

o Self-invalidate those blocks

+ Doesn’t require access to data part

— Does require access to tag part
e May need 2nd copy of tags for this
e That's OK, tags smaller than data

e Bus addresses are physical
e L2 is easy (physical index/tag)
e D$ is harder (virtual index/physical tag)

39



Summary

e Storage devices
e HDD: Mechanical disk. Seeks are bad. Cheaper per GB.
e SSD: Flash storage. Cheaper per performance.

e Can combine drives with RAID to get aggregate performance/capacity
plus fault tolerance (can survive individual drive failures).

e Connectivity
e A bus is shared between CPU, memory, and/or and multiple IO devices

e How does CPU talk to IO devices?

e Special instructions or memory-mapped IO
(certain addresses don't lead to RAM, they lead to IO devices)

e Either requires OS privilege to use
e Methods of interaction:
e Polling (simple but wastes CPU)
o Interrupts (saves CPU but transfers tiny bit at a time)

e DMA-+interrupts (saves CPU+fast, but requires caches to snoop
traffic to not become wrong) 0



EXTRA MATERIAL



Disk Parameters

Seagate 6TB

Seagate Savvio

Toshiba MK1003

Enterprise HDD | (~2005) (early 2000s)

(2016)
Diameter 3.5” 2.5" 1.8
Capacity 6 TB /3 GB 10 GB
RPM 7200 RPM 10000 RPM 4200 RPM
Cache 128 MB 8 MB 512 KB
Platters ~6 2 1
Average Seek 4.16 ms 4.5 ms 7 ms
Sustained Data Rate 216 MB/s 94 MB/s 16 MB/s
Interface SAS/SATA SCSI ATA
Use Desktop Laptop Ancient iPod

Density
improving

Caches
improving

Seek time
not really
improving!
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Disk Read/Write Latency

e Disk read/write latency has four components
o Seek delay (t....): head seeks to right track
e Fixed delay plus proportional to distance
e Rotational delay (t,,..:i,n): right sector rotates under head
» Fixed delay on average (average = half rotation)
e Controller delay (t_,,.+o1er): CONtroller overhead (on either side)
e Fixed cost

e Transfer time (t,,,..): data actually being transferred
e Proportional to amount of data
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