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So far…

• We can make logic to compute “math”
• Add, subtract … and you can do mul/div in 350

• Assume for now that mul/div can be built
• Bitwise: AND, OR, NOT,…
• Shifts (left or right)
• Selection (MUX)
• …pretty much anything

• But processors need state (hold value)
• Registers
• …
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Storage

• All the circuits we looked at so far are combinational circuits: 
the output is a Boolean function of the inputs.

• We need circuits that can remember values  (registers, 
memory)

• The output of the circuit is a function of the input and a 
function of a stored value (state)   

• Circuits with storage are called sequential circuits

• Key to storage: feedback loops from outputs to inputs
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Ideal Storage – Where We’re Headed

• Ultimately, we want something that can hold 1 bit and we 
want to control when it is re-written

• However, instead of just giving it to you as a magic black box, 
we’re going to first dig a bit into the box

• I will not test you on the insides of the “flip flop”

• But in CS/ECE350 we will probe their very souls in excruciating detail!

“flip flop” = 
device that  
holds one 
bit (0 or 1)

bit to be written
bit currently being held

bit to control 
when we write
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Building up to the D Flip-Flop and beyond
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FF Step #1: NOR-based Set-Reset (SR) Latch
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1  1  - Don’t set both S & R to 1.

Seriously, don’t do it. Half an
entire lecture in 350 on this.
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SR Latch

• Downside: S and R at once = chaos

• Downside: Bad interface

• So let’s build on it to do better
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Building up to the D Flip-Flop and beyond
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Building up to the D Flip-Flop and beyond
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FF Step #2: Data Latch (“D Latch”)

Starting with SR Latch

Q

Q

R

S
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Data Latch (D Latch)

Starting with SR Latch

Change interface to 
Data + Enable (D + E)

If E=0, then R=S=0.
If E=1, then S=D and R=!D

Enable is our first clock, of a sort!

Data

Enable

Q

Q

R

S
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Data Latch (D Latch)
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Data Latch (D Latch)

Data

Enable

Q

Q

D   E   Q
0   1   0
1   1   1
- 0   Q

Time

D 0
1

E
0
1

Q
0
1

Does not
affect Output

E goes low

Output unchanged
By changes to D

R

S



18

Data Latch (D Latch)
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Data Latch (D Latch)
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(Logic gates take time)

R
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Logic Takes Time

• Logic takes time:
• Gate delays: delay to switch each gate

• Wire delays: delay for signal to travel down wire

• Other factors (not going into them here)

• Need to make sure that signals timing is right
• Don’t want to have races or wacky conditions..
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Clocks

• Processors have a clock:
• Alternates 0 1 0 1
• Like the processor’s internal metronome
• Latch  logic  latch in one clock cycle

• 3.4 GHz processor = 3.4 Billion clock cycles/sec 
One clock cycle
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FF Step #3: Using Level-Triggered D Latches

• First thoughts: Level Triggered
• Latch enabled when clock is high
• Hold value when clock is low

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3
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Strawman: Level Triggered

• How we’d like this to work
• Clock is low, all values stable
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0

Clk
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Strawman: Level Triggered

• How we’d like this to work
• Clock goes high, latches capture and xmit new val

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk



25

Strawman: Level Triggered

• How we’d like this to work
• Signals work their way through logic w/ high clk
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Strawman: Level Triggered

• How we’d like this to work
• Clock goes low before signals reach next latch
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Strawman: Level Triggered

• How we’d like this to work
• Clock goes low before signals reach next latch
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Strawman: Level Triggered

• How we’d like this to work
• Everything stable before clk goes high
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Strawman: Level Triggered

• How we’d like this to work
• Clk goes high again, repeat
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Strawman: Level Triggered

• Problem: What if signal reaches latch too early?
• I.e., while clk is still high
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Strawman: Level Triggered

• Problem: What if signal reaches latch too early?
• Signal goes right through latch, into next stage..
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That would be bad…

• Getting into a stage too early is bad
• Something else is going on there  corrupted
• Also may be a loop with one latch

• Consider incrementing counter (or PC)
• Too fast: increment twice?  Eeek…

D
latch

D Q

E Q

+1

3

001

010
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Building up to the D Flip-Flop and beyond
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FF Step #4: Edge Triggered

• Instead of level triggered
• Latch a new value at a clock level (high or low)

• We use edge triggered
• Latch a value at an clock edge (rising or falling)

Falling Edges

Rising Edges
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Our Ultimate Goal: D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C
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D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables
• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C
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(Postitive Edge Triggered) D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables
• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value
• On High Clk, second latch enabled

• First latch not enabled, maintains value 

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C
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Leader Follower Negative Edge Triggered D 
Flip Flip

Output Q changes on 
“negative edge” of Clock

D could change many times 
while clock high, but only 
value of D when clock edge 
falls is captured by follower

D

ClkClk

D D

Clk

Ql

D

“arrow head” indicates 
edge triggered. Circle->
negative edge

leader follower

Ql

Q = Qf
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D Flip-Flop

• No possibility of “races” anymore
• Even if I put 2 DFFs back-to-back…
• By the time signal gets through 2nd latch of 1st DFF
1st latch of 2nd DFF is disabled

• Still must ensure signals reach DFF before clk rises
• Important concern in logic design “making timing” 

D
latch

D Q

E

D
latch

D Q

E Q

D

C

D
latch

D Q

E

D
latch

D Q

E Q

C
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D Flip-flops (continued…)

• Could also do falling edge triggered
• Switch which latch has NOT on clk

• D Flip-flop is ubiquitous
• Typically people just say “latch” and mean DFF (BUT THEY SHOULD BE 

MORE PRECISE! – jab)
• Which edge: doesn’t matter

• As long as consistent in entire design
• We’ll use rising edge
• “real” designs exploit rising and falling edges separately in same 

clockcycle
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D flip flops

• Generally don’t draw clk input
• Have one global clk, assume it goes there
• Often see > as symbol meaning clk

• Maybe have explicit enable
• Might not want to write every cycle
• If no enable signal shown, implies always enabled
• Inside DFF, E signal is ANDed with Clk: 

if E is off, Clk is ignored (so we don’t commit changes)

• Get output and NOT(output) for “free”

DFF
D Q

E Q
DFF

D Q

Q

DFF
D Q

> Q
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Skipping ahead to the D Flip-flop

• There’s the Data input – what to be saved
• There’s a clock: a regular oscillation between 0 and 1 that 

tells us when to save a value; it’s edge triggered
• Configured to store at every rising edge (default) or every falling edge
• Generally drawn as a > notch in the component; may be omitted in 

schematics (a single global clock is implied)

• There may be an Enable line: clock edges that occur when 
disabled don’t “count”. (If omitted, then always enabled)

• Stored data comes out on the Q line
• Also get its negation on the !Q line for free

Falling Edges

Rising Edges

DFF
D Q

E
Q>



43

Building up to the D Flip-Flop and beyond
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Stick a bunch of DFFs together to make a register

32 bit reg
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

in0

in1

in2

in31

. . .

out0

out1

out2

out31

enable

• Make an n-bit register? Combine n DFFs together!
• A MIPS register can be made with 32 flip flops
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Next evolution: multiple registers

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(nice!)

En0

En1

En30

En31

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

Register File
(Tremendous!)
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Multiple registers: Register File

• So do we just replicate this 32 times to get the 32 registers for 
a MIPS processor?

• Not exactly

• Register File (the physical storage for the regs)
• MIPS register file has 32 32-bit registers

• How do we build a Register File using D Flip-Flops?
• What other components do we need?
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Register File Design

• Two problems: write and read

• Writing the registers
• Need to pick which reg
• Have reg num (e.g., 19)
• Need to make En19=1

• En0, En1,… = 0

• Read: Use a mux to pick?
• 32-input mux = works but slow
• Need a better method…

• Let’s talk about writing first.

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …WrData

En0

En1

En30

En31
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Encoder

Input 0

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Output 1

8:3 Encoder

Output 2

Output 0

Constraint: exactly one input on (can’t have all 0 inputs for instance – behavior undefined)

2n inputs n outputs
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Encoder

Input 0  0

Input 1  1

Input 2  0

Input 3  0

Input 4  0

Input 5  0

Input 6  0

Input 7  0

Output 1   0

8:3 Encoder

Output 2   0

Output 0   1

2n inputs n outputs

Constraint: exactly one input on
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Decoders

3:8 Decoder
Output 0

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

2n outputsInput 1

Input 2

Input 0

n inputs
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Decoders

3:8 Decoder
Output 0  0

Output 1  0

Output 2  0

Output 3  1

Output 4  0

Output 5  0

Output 6  0

Output 7  0

1 Input 1

0 Input 2

1 Input 0

n inputs 2n outputs

Exactly one output on all the times, no “off” condition! (again might add
an enable signal in a more general design
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0 

w n 1 –

n 
inputs

EnEnable

2 n 

outputs 

y 0 

y 2 n 1 –

w 

An n-to-2n binary decoder.
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0 
0 
1 
1 

1 
0 
1 

y 0 w 1 

0 

w 0 

(c) Logic circuit 

w 1 

w 0 

x x

1 
1 

0 

1 
1 

En

0 
0 
0 

1 

0 

y 1 

1 
0 
0 

0 

0 

y 2 

0 
1 
0 

0 

0 

y 3 

0 
0 
1 

0 

0 

y 0 

y 1 

y 2 

y 3 

En

w 0 

En

y 0 
w 1 y 1 

y 2 
y 3 

(a) Truth table (b) Graphical symbol 

X: Don’t Care
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First: A Decoder

• First task: convert binary number to “one hot”
• N bits in
• 2N bits out
• 2N-1 bits are 0, 1 bit (matching the input) is 1

D
ec

od
er

3

101
0

0
0

0
0

1
0

0
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Decoder Logic

• Decoder basically AND gates for each output:
• Out0 only on if input 000

In0

In1

In2

Out0

3-input gates are fine.
In theory, gates can have any # of inputs
In practice >4 converted to multiple gates
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Decoder Logic

• Decoder basically AND gates for each output:
• Out1 only on if input 001

In0

In1

In2

Out0

Out1

Repeat for all outputs:
AND together right bits
(gets messy fast on a slide)
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Register File

• Now we know how to write:
• Send write data to all regs
• Use decoder to convert reg # to one hot
• Use one hot encoding of reg # to enable right reg

• Still need to fix read side
• 32 input mux (the way we’ve made it) not realistic
• To do this: expand our world from {1,0} to {1, 0, Z}

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

Rd

D
ec

od
er …

5
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Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• This wire is 0 (it has no water)
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Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• This wire is 1 (it is full of water)
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Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• Suppose a gate drives a 0 onto this wire
• Think of it as sucking the water out

0
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Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• Suppose the gate now drives a 1
• Think of it as pumping water in

1
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Remember this rule?

• Remember I told you not to connect two outputs?

• If one gate tries to drive a 1 and the other drives a 0
• One pumps water in.. The other sucks it out
• Except it’s electric charge, not water
• “Short circuit”  lots of current  lots of heat – something literally 

burns up

a
b

c
d

BAD!
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Another read port implementation

• A read port that uses muxes is fine for 4 registers
– Not so good for 32 registers (32-to-1 mux is very slow)

• Alternative implementation uses tri-state buffers
• Normal buffer: Q=1 -> current flowing out of buffer (High voltage)
• Normal buffer: Q=0 -> current flowing in to buffer (Low voltage)
• Add additional buffer enable signal E:
– Truth table (E = enable, D = input, Q = output)

E D → Q
1 D → D 
0 D → Z

– Z: “high impedance” state, no current flowing
– Mux: connect multiple 3-stated buses to one output bus
– Key: only one input “driving” at any time, all others must be in “Z”

D Q

E

from Sorin / Roth / Lebeck 63
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So this third option: Z

• There is a third possibility:  Z (“high impedance”)
• Neither pushing water in, nor sucking it out
• Just closed off/blocked
• Prevents electricity from flowing through

• Gate that gives us Z : Tri-state

D  E  Q
0  1  0
1  1  1
- 0  Z

D Q

E
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We’ve had this rule one day… and you break it

It’s ok to connect multiple outputs together
Under one circumstance: 

All but one must be outputting Z at any time

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1
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Mux, implemented with tri-states

• We can build effectively a mux
from tri-states

• Much more efficient for large #s of 
inputs (e.g., 32)

D
ec

od
er

5

11110
0

0

1
0

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

… …
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En0

En1

En30

En31

Register File

• Now we can write and read in one clock cycle!

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

These enables come from a 
decoder for which register to write

These enables come from a 
decoder for which register to read
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Ports

• What we just saw: read port
• Ability to do one read / clock cycle
• May want more: read 2 source registers per instr

• Maybe even more if we do many instrs at once
• This design: can just replicate port

• Another decoder
• Another set of tri-states
• Another output bus (wire connecting the tri-states)

• Earlier: write port
• Ability to do one write/cycle
• Could add more
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Minor Detail

• FYI:  This is not how a modern register file is implemented
• (Though it is how other things are implemented)
• Actually done with SRAM
• We’ll see that later this semester…
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Summary

Can layout logic to compute things
Add, subtract,…

Now can store things
D flip-flops
Registers

Also understand clocks

Just about ready to make a datapath!
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