
ECE/CS 250
Computer Architecture

Fall 2023

Basics of Logic Design:
Storage Elements and the Register File

(Sequential Logic)

John Board
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Alvy Lebeck (Duke), Tyler Bletsch (Duke), John Board

(Duke), and Drew Hilton (Duke)

2

So far…

• We can make logic to compute “math”
• Add, subtract … and you can do mul/div in 350

• Assume for now that mul/div can be built
• Bitwise: AND, OR, NOT,…
• Shifts (left or right)
• Selection (MUX)
• …pretty much anything

• But processors need state (hold value)
• Registers
• …

3

Storage

• All the circuits we looked at so far are combinational circuits:
the output is a Boolean function of the inputs.

• We need circuits that can remember values (registers,
memory)

• The output of the circuit is a function of the input and a
function of a stored value (state)

• Circuits with storage are called sequential circuits

• Key to storage: feedback loops from outputs to inputs

4

Ideal Storage – Where We’re Headed

• Ultimately, we want something that can hold 1 bit and we
want to control when it is re-written

• However, instead of just giving it to you as a magic black box,
we’re going to first dig a bit into the box

• I will not test you on the insides of the “flip flop”

• But in CS/ECE350 we will probe their very souls in excruciating detail!

“flip flop” =
device that
holds one
bit (0 or 1)

bit to be written
bit currently being held

bit to control
when we write

5

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S D

E
Q

Q

R

S

D Latch

D
latch

D Q

E Q

D
latch

D Q

E

D
latch

D Q

E !Q !Q

QD

C

DFF
D Q

E Q

D Flip-Flop

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)

6

FF Step #1: NOR-based Set-Reset (SR) Latch

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
0

R S Q
0 0 Q
0 1 1
1 0 0
1 1 - Don’t set both S & R to 1.

Seriously, don’t do it. Half an
entire lecture in 350 on this.

7

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

8

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes High

Output Signal Goes High

9

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes Low

Output Signal Stays High

10

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Until Reset Signal
Goes High

Then Output Signal Goes Low

11

SR Latch

• Downside: S and R at once = chaos

• Downside: Bad interface

• So let’s build on it to do better

12

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S D

E
Q

Q

R

S

D Latch

D
latch

D Q

E Q

D
latch

D Q

E

D
latch

D Q

E !Q !Q

QD

C

DFF
D Q

E Q

D Flip-Flop

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)

13

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S D

E
Q

Q

R

S

D Latch

D
latch

D Q

E Q

D
latch

D Q

E

D
latch

D Q

E !Q !Q

QD

C

DFF
D Q

E Q

D Flip-Flop

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)

14

FF Step #2: Data Latch (“D Latch”)

Starting with SR Latch

Q

Q

R

S

15

Data Latch (D Latch)

Starting with SR Latch

Change interface to
Data + Enable (D + E)

If E=0, then R=S=0.
If E=1, then S=D and R=!D

Enable is our first clock, of a sort!

Data

Enable

Q

Q

R

S

16

Data Latch (D Latch)

Data

Enable

Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Stays as output

R

S

17

Data Latch (D Latch)

Data

Enable

Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
affect Output

E goes low

Output unchanged
By changes to D

R

S

18

Data Latch (D Latch)

Data

Enable

Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Becomes new output

R

S

19

Data Latch (D Latch)

Data

Enable

Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Slight Delay

(Logic gates take time)

R

S

20

Logic Takes Time

• Logic takes time:
• Gate delays: delay to switch each gate

• Wire delays: delay for signal to travel down wire

• Other factors (not going into them here)

• Need to make sure that signals timing is right
• Don’t want to have races or wacky conditions..

21

Clocks

• Processors have a clock:
• Alternates 0 1 0 1
• Like the processor’s internal metronome
• Latch  logic  latch in one clock cycle

• 3.4 GHz processor = 3.4 Billion clock cycles/sec
One clock cycle

22

FF Step #3: Using Level-Triggered D Latches

• First thoughts: Level Triggered
• Latch enabled when clock is high
• Hold value when clock is low

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

23

Strawman: Level Triggered

• How we’d like this to work
• Clock is low, all values stable

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 111 100 001

0

Clk

24

Strawman: Level Triggered

• How we’d like this to work
• Clock goes high, latches capture and xmit new val

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

25

Strawman: Level Triggered

• How we’d like this to work
• Signals work their way through logic w/ high clk

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

26

Strawman: Level Triggered

• How we’d like this to work
• Clock goes low before signals reach next latch

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

27

Strawman: Level Triggered

• How we’d like this to work
• Clock goes low before signals reach next latch

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

28

Strawman: Level Triggered

• How we’d like this to work
• Everything stable before clk goes high

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

29

Strawman: Level Triggered

• How we’d like this to work
• Clk goes high again, repeat

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 000 000

0

Clk

30

Strawman: Level Triggered

• Problem: What if signal reaches latch too early?
• I.e., while clk is still high

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 000

0

Clk

31

Strawman: Level Triggered

• Problem: What if signal reaches latch too early?
• Signal goes right through latch, into next stage..

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 101

0

Clk

32

That would be bad…

• Getting into a stage too early is bad
• Something else is going on there  corrupted
• Also may be a loop with one latch

• Consider incrementing counter (or PC)
• Too fast: increment twice? Eeek…

D
latch

D Q

E Q

+1

3

001

010

33

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S D

E
Q

Q

R

S

D Latch

D
latch

D Q

E Q

D
latch

D Q

E

D
latch

D Q

E !Q !Q

QD

C

DFF
D Q

E Q

D Flip-Flop

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)

34

FF Step #4: Edge Triggered

• Instead of level triggered
• Latch a new value at a clock level (high or low)

• We use edge triggered
• Latch a value at an clock edge (rising or falling)

Falling Edges

Rising Edges

35

Our Ultimate Goal: D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C

36

D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables
• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C

37

(Postitive Edge Triggered) D Flip-Flop

• Rising edge triggered D Flip-flop
• Two D Latches w/ opposite clking of enables
• On Low Clk, first latch enabled (propagates value)

• Second not enabled, maintains value
• On High Clk, second latch enabled

• First latch not enabled, maintains value

D
latch

D Q

E

D
latch

D Q

E Q Q

QD

C

3838

Leader Follower Negative Edge Triggered D
Flip Flip

Output Q changes on
“negative edge” of Clock

D could change many times
while clock high, but only
value of D when clock edge
falls is captured by follower

D

ClkClk

D D

Clk

Ql

D

“arrow head” indicates
edge triggered. Circle->
negative edge

leader follower

Ql

Q = Qf

39

D Flip-Flop

• No possibility of “races” anymore
• Even if I put 2 DFFs back-to-back…
• By the time signal gets through 2nd latch of 1st DFF
1st latch of 2nd DFF is disabled

• Still must ensure signals reach DFF before clk rises
• Important concern in logic design “making timing”

D
latch

D Q

E

D
latch

D Q

E Q

D

C

D
latch

D Q

E

D
latch

D Q

E Q

C

40

D Flip-flops (continued…)

• Could also do falling edge triggered
• Switch which latch has NOT on clk

• D Flip-flop is ubiquitous
• Typically people just say “latch” and mean DFF (BUT THEY SHOULD BE

MORE PRECISE! – jab)
• Which edge: doesn’t matter

• As long as consistent in entire design
• We’ll use rising edge
• “real” designs exploit rising and falling edges separately in same

clockcycle

41

D flip flops

• Generally don’t draw clk input
• Have one global clk, assume it goes there
• Often see > as symbol meaning clk

• Maybe have explicit enable
• Might not want to write every cycle
• If no enable signal shown, implies always enabled
• Inside DFF, E signal is ANDed with Clk:

if E is off, Clk is ignored (so we don’t commit changes)

• Get output and NOT(output) for “free”

DFF
D Q

E Q
DFF

D Q

Q

DFF
D Q

> Q

42

Skipping ahead to the D Flip-flop

• There’s the Data input – what to be saved
• There’s a clock: a regular oscillation between 0 and 1 that

tells us when to save a value; it’s edge triggered
• Configured to store at every rising edge (default) or every falling edge
• Generally drawn as a > notch in the component; may be omitted in

schematics (a single global clock is implied)

• There may be an Enable line: clock edges that occur when
disabled don’t “count”. (If omitted, then always enabled)

• Stored data comes out on the Q line
• Also get its negation on the !Q line for free

Falling Edges

Rising Edges

DFF
D Q

E
Q>

43

Building up to the D Flip-Flop and beyond

SR Latch

Q

Q

R

S D

E
Q

Q

R

S

D Latch

D
latch

D Q

E Q

D
latch

D Q

E

D
latch

D Q

E !Q !Q

QD

C

DFF
D Q

E Q

D Flip-Flop

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(too awkward) (bad timing) (okay but only one bit) (nice!)

44

Stick a bunch of DFFs together to make a register

32 bit reg
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

in0

in1

in2

in31

. . .

out0

out1

out2

out31

enable

• Make an n-bit register? Combine n DFFs together!
• A MIPS register can be made with 32 flip flops

45

Next evolution: multiple registers

32 bit reg
D Q

E Q

Register

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

DFF
D Q

E Q

(nice!)

En0

En1

En30

En31

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

Register File
(Tremendous!)

46

Multiple registers: Register File

• So do we just replicate this 32 times to get the 32 registers for
a MIPS processor?

• Not exactly

• Register File (the physical storage for the regs)
• MIPS register file has 32 32-bit registers

• How do we build a Register File using D Flip-Flops?
• What other components do we need?

47

Register File Design

• Two problems: write and read

• Writing the registers
• Need to pick which reg
• Have reg num (e.g., 19)
• Need to make En19=1

• En0, En1,… = 0

• Read: Use a mux to pick?
• 32-input mux = works but slow
• Need a better method…

• Let’s talk about writing first.

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …WrData

En0

En1

En30

En31

4848

Encoder

Input 0

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Output 1

8:3 Encoder

Output 2

Output 0

Constraint: exactly one input on (can’t have all 0 inputs for instance – behavior undefined)

2n inputs n outputs

4949

Encoder

Input 0 0

Input 1 1

Input 2 0

Input 3 0

Input 4 0

Input 5 0

Input 6 0

Input 7 0

Output 1 0

8:3 Encoder

Output 2 0

Output 0 1

2n inputs n outputs

Constraint: exactly one input on

5050

Decoders

3:8 Decoder
Output 0

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

2n outputsInput 1

Input 2

Input 0

n inputs

5151

Decoders

3:8 Decoder
Output 0 0

Output 1 0

Output 2 0

Output 3 1

Output 4 0

Output 5 0

Output 6 0

Output 7 0

1 Input 1

0 Input 2

1 Input 0

n inputs 2n outputs

Exactly one output on all the times, no “off” condition! (again might add
an enable signal in a more general design

5252

0

w n 1 –

n
inputs

EnEnable

2 n

outputs

y 0

y 2 n 1 –

w

An n-to-2n binary decoder.

5353A 2-to-4 decoder.

0
0
1
1

1
0
1

y 0 w 1

0

w 0

(c) Logic circuit

w 1

w 0

x x

1
1

0

1
1

En

0
0
0

1

0

y 1

1
0
0

0

0

y 2

0
1
0

0

0

y 3

0
0
1

0

0

y 0

y 1

y 2

y 3

En

w 0

En

y 0
w 1 y 1

y 2
y 3

(a) Truth table (b) Graphical symbol

X: Don’t Care

54

First: A Decoder

• First task: convert binary number to “one hot”
• N bits in
• 2N bits out
• 2N-1 bits are 0, 1 bit (matching the input) is 1

D
ec

od
er

3

101
0

0
0

0
0

1
0

0

55

Decoder Logic

• Decoder basically AND gates for each output:
• Out0 only on if input 000

In0

In1

In2

Out0

3-input gates are fine.
In theory, gates can have any # of inputs
In practice >4 converted to multiple gates

56

Decoder Logic

• Decoder basically AND gates for each output:
• Out1 only on if input 001

In0

In1

In2

Out0

Out1

Repeat for all outputs:
AND together right bits
(gets messy fast on a slide)

57

Register File

• Now we know how to write:
• Send write data to all regs
• Use decoder to convert reg # to one hot
• Use one hot encoding of reg # to enable right reg

• Still need to fix read side
• 32 input mux (the way we’ve made it) not realistic
• To do this: expand our world from {1,0} to {1, 0, Z}

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

Rd

D
ec

od
er …

5

58

Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• This wire is 0 (it has no water)

59

Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• This wire is 1 (it is full of water)

60

Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• Suppose a gate drives a 0 onto this wire
• Think of it as sucking the water out

0

61

Kind of like water in a pipe…

• To understand Z, let’s make an analogy
• Think of a wire as a pipe

• Has water = 1
• Has water = 0

• Suppose the gate now drives a 1
• Think of it as pumping water in

1

62

Remember this rule?

• Remember I told you not to connect two outputs?

• If one gate tries to drive a 1 and the other drives a 0
• One pumps water in.. The other sucks it out
• Except it’s electric charge, not water
• “Short circuit”  lots of current  lots of heat – something literally

burns up

a
b

c
d

BAD!

63

Another read port implementation

• A read port that uses muxes is fine for 4 registers
– Not so good for 32 registers (32-to-1 mux is very slow)

• Alternative implementation uses tri-state buffers
• Normal buffer: Q=1 -> current flowing out of buffer (High voltage)
• Normal buffer: Q=0 -> current flowing in to buffer (Low voltage)
• Add additional buffer enable signal E:
– Truth table (E = enable, D = input, Q = output)

E D → Q
1 D → D
0 D → Z

– Z: “high impedance” state, no current flowing
– Mux: connect multiple 3-stated buses to one output bus
– Key: only one input “driving” at any time, all others must be in “Z”

D Q

E

from Sorin / Roth / Lebeck 63

64

So this third option: Z

• There is a third possibility: Z (“high impedance”)
• Neither pushing water in, nor sucking it out
• Just closed off/blocked
• Prevents electricity from flowing through

• Gate that gives us Z : Tri-state

D E Q
0 1 0
1 1 1
- 0 Z

D Q

E

65

We’ve had this rule one day… and you break it

It’s ok to connect multiple outputs together
Under one circumstance:

All but one must be outputting Z at any time

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

66

Mux, implemented with tri-states

• We can build effectively a mux
from tri-states

• Much more efficient for large #s of
inputs (e.g., 32)

D
ec

od
er

5

11110
0

0

1
0

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

… …

67

En0

En1

En30

En31

Register File

• Now we can write and read in one clock cycle!

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

WrData

En0

En1

En30

En31

…

These enables come from a
decoder for which register to write

These enables come from a
decoder for which register to read

68

Ports

• What we just saw: read port
• Ability to do one read / clock cycle
• May want more: read 2 source registers per instr

• Maybe even more if we do many instrs at once
• This design: can just replicate port

• Another decoder
• Another set of tri-states
• Another output bus (wire connecting the tri-states)

• Earlier: write port
• Ability to do one write/cycle
• Could add more

69

Minor Detail

• FYI: This is not how a modern register file is implemented
• (Though it is how other things are implemented)
• Actually done with SRAM
• We’ll see that later this semester…

70

Summary

Can layout logic to compute things
Add, subtract,…

Now can store things
D flip-flops
Registers

Also understand clocks

Just about ready to make a datapath!

	ECE/CS 250�Computer Architecture��Fall 2023
	So far…
	Storage
	Ideal Storage – Where We’re Headed
	Building up to the D Flip-Flop and beyond
	FF Step #1: NOR-based Set-Reset (SR) Latch
	Set-Reset Latch (Continued)
	Set-Reset Latch (Continued)
	Set-Reset Latch (Continued)
	Set-Reset Latch (Continued)
	SR Latch
	Building up to the D Flip-Flop and beyond
	Building up to the D Flip-Flop and beyond
	FF Step #2: Data Latch (“D Latch”)
	Data Latch (D Latch)
	Data Latch (D Latch)
	Data Latch (D Latch)
	Data Latch (D Latch)
	Data Latch (D Latch)
	Logic Takes Time
	Clocks
	FF Step #3: Using Level-Triggered D Latches
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	Strawman: Level Triggered
	That would be bad…
	Building up to the D Flip-Flop and beyond
	FF Step #4: Edge Triggered
	Our Ultimate Goal: D Flip-Flop
	D Flip-Flop
	(Postitive Edge Triggered) D Flip-Flop
	Leader Follower Negative Edge Triggered D Flip Flip
	D Flip-Flop
	D Flip-flops (continued…)
	D flip flops
	Skipping ahead to the D Flip-flop
	Building up to the D Flip-Flop and beyond
	Stick a bunch of DFFs together to make a register
	Next evolution: multiple registers
	Multiple registers: Register File
	Register File Design
	Encoder
	Encoder
	Decoders
	Decoders
	Slide Number 52
	Slide Number 53
	First: A Decoder
	Decoder Logic
	Decoder Logic
	Register File
	Kind of like water in a pipe…
	Kind of like water in a pipe…
	Kind of like water in a pipe…
	Kind of like water in a pipe…
	Remember this rule?
	Another read port implementation
	So this third option: Z
	We’ve had this rule one day… and you break it
	Mux, implemented with tri-states
	Register File
	Ports
	Minor Detail
	Summary

