ECE/CS 250
Computer Architecture

Fall 2023

C Programming

John Board
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), Tyler Bletsch (Duke), John Board (Duke), and Amir Roth
(Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty

e Previously:
e Computer is a machine that does what we tell it to do

e Next:
e How do we tell computers what to do?
e First a quick intro to C programming
e Goal: to learn C, not teach you to be an expert in C
e How do we represent data?
e What is memory?

What is C?

e The language of UNIX — designed to be a language operating
systems could be written in, with direct access to low-level
details of memory systems

e Procedural language (no classes)
e Low-level access to memory

e Easy to map to machine language
e Not much run-time stuff needed

e Surprisingly cross-platform (runs well on many different
architectures/microarchitectures)

Why teach it now?
To expand from basic programming to
operating systems and embedded development.

Also, as a case study to understand computer architecture in general.

C and its offspring are still really important

IEEE Spectrum Top Programming Lang... Q Ty fosearch

in their browser), but first let’s get into what the

&4 v f
in rankings tell us this year.
s IEEE Spectrum’s Top Programming
A Languages 2022
Top Programming Languages
PROGRAMMING LANG. 2022
Click a button to see a differently weighted ranking

M Jobs Trending

Python

SQL

HTML

TypeScript

The Origin of C

Hey, do you want to build a system that
will become the gold standard of OS
design for this century?

We can call it UNIX.

Ken Thompson

AT&T Bell Labs, 1969-1972

Okay, but only if we also invent a
language to write it in, and only if that
language becomes the default for all

systems programming basically forever.
We’'ll call it C!

Dennis Ritchie

it worked!

Cool,

T2 ﬁ....n.r:ﬂn e %
__iﬁ .

T!..l.lt.,dwrn‘{!lr..e e

What were they thinking?

e Main design considerations:

e Compiler size: needed to run on PDP-11 with 24KB of
memory (Algol60 was too big to fit)

e Code size: needed to implement the whole OS and
applications with little memory

e Performance
e Portability

e Little (if any consideration):
e Security, robustness, maintainability
e Legacy Code

C vs. other languages

C# Mﬁo_séft-t Rubv THE
c;i > Java

PROGRAMMING
LANGUAGE

@ python perl'&
Most modern languages - c

Develop applications Develop system code (and applications)
(the two used to be the same thing)
Computer is an abstract logic engine Near-direct control of the hardware
Prevent unintended behavior, Never doubts the programmer,
reduce impact of simple mistakes subtle bugs can have crazy effects
Runs on magic! (e.g. garbage collection) Nothing happens without developer
intent
May run via VM or interpreter Compiles to native machine code
Smart, integrated toolchain Discrete, UNIX-style toolchain
(press button, receive EXE) make — g++ (compilation) — g++ (linking)
b Debug . (even more discrete steps behind this)

$ make

g++ -o thing.o thing.c
O e ||° ll‘ 0)

e Why C for humanity?
e It's a “portable assembly language”

o Useful in OS and embedded systems and HPC (High Performance
Computing), and for highly optimized code

e Why C for this class?

e Need to understand how computers work

e Need a high-level language that can be traced all the way down to
machine code

e Need a language with system-level concepts like pointers and memory
management

e Java hides too much to do this

Example C superpowers

Task: Blink an LED

O led =@
L7 while (true):
= S Atmel ATTINY4 microcontroller : led = NOT led
QMM o< Entire computer (CPU, RAM, & storage)! set_led(led)
‘i\i{_ L_‘,/ 1024 bytes storage, 32 bytes RAM. delay for 1 sec
[TET [Size of Size of Total size RAM used
executable runtime
(ignoring libraries)
Java
Python
Desktop C
Embedded C
(Arduino)

12

What about C++?

e Originally called “C with Classes”
(because that’s all it is)

e All C programs are C++ programs,
as C++ is an extension to C

o Adds stuff you might recognize Plame Stiousirup developed
from Java (only uglier):
e Classes (incl. abstract classes & virtual functions)
e Operator overloading
e Inheritance (incl. multiple inheritance)
e Exceptions

C and Java:

A comparison

C

#tinclude <stdio.h>
#include <stdlib.h>

int main(int argc, const char* argv[]) {
int i;

printf("Hello, world.\n");
for (i=0; i<3; i++) {

printf("%d\n", 1i);

return EXIT_ SUCCESS;

$ g++ -o thing thing.c && ./thing
Hello, world.

Java

class Thing {
static public void main (String[] args) {
int i;

System.out.printf("Hello, world.\n");
for (i=0; i<3; i++) {

System.out.printf("%d\n", 1i);
}

$ javac Thing.java && java Thing
Hello, world.

14

Common Platform for This Course

e Different platforms have different conventions for end of
line, end of file, tabs, compiler output, ...

e Solution (for this class): compile and run all programs
consistently on one platform

e Our common platform:

PDuke Linux Machines!

15

How to access Duke Linux machines?

HLL = Assembly Language

High Level Language temp = vik];

Program vik] = v[k+1l];
v[k+1l] = temp;

Compiler
1w $15, 0($2)
Assembly Language 1w $16, 4($2)
Program sw $16, 0($2)
sw $15, 4($2)

e Every computer architecture has its own assembly
language

e Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly (250 and 350
students among them!)

e But most code is written in HLLs and compiled
e Compiler is a program that automatically converts HLL to assembly

17

Assembly Language - Machine Language

High Level Language temp = vik];

Program v[k] = v[k+l];

v[k+1l] = temp;
Compiler
1w $15, 0($%2)
Ass;mbly Language 1w $16, 4(52)
rogram
g SW $16, 0($2)
Assembler Sw S15, 4(32)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 00OOO 1001 1100 0110 1010 1111

e Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

e Easy 1:1 mapping to/from assembly statements and
binary 1

Machine Language - Inputs to Digital System

High Level Language temp = vik];

Program vik] = v[k+1];
v[k+1l] = temp;

Compiler
1w $15, 0($%2)
Ass;mbly Language 1w $16, 4(52)
rogram
g SW $16, 0($2)
Assembler Sw S15, 4(32)
0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 00OOO 1001 1100 0110 1010 1111

Machine Interpretation

Control Signals for
Finite State Machine

Transistors (switches) turning on and off

19

How does a Java program execute?

e Compile Java Source to Java Byte codes
e Java Virtual Machine (JVM) interprets/translates Byte codes
e JVM is a program executing on the hardware

Java has lots of features that make it easier to program without
making mistakes - training wheels are nice

JVM handles memory for you

e What do you do when you remove an entry from a hash table,
binary tree, etc.?

20

The C Programming Language

e No virtual machine
e No dynamic type checking, array bounds, garbage collection, etc.
o Compile source file directly to machine code

e Closer to hardware

e Easier to make mistakes — it will let you (encourage you?!?) to shoot
yourself in the foot

e Because in writing an operating system rather than a general
application you often do things that would be really strange in a
“normal” program, especially with memory!

e Can often result in faster code - training wheels slow you down

e Generally used for ‘systems programming’
e Operating systems, embedded systems, database implementation
e C++ is object-oriented version of C (C is a strict subset of C++)

21

Creating a C source file

e We are not using a development environment (IDE)
e You will create programs starting with an empty file!
e Files should use .c file extension (e.g., hello.c)

e On a Linux machine, edit files with your chosen editor,
e.g. Visual Studio Code (executable from command line
as code <file>)

22

The vscode window

e Visual Studio Code is a fancy editor, but we'll use it like a
simple editor

o Feel free to use any text editor (vim, emacs, etc.)

hello.c - Visual Studio Code

File Edit Selection View Go Debug Terminal Help

C hello.c

int main() {

printf("Hello world

Ln6,Col2 Spaces:4 UTFB LF C & 0

Compiling and Running the Program

e Use the
* g++
* g++

g++ compiler to turn .c file into executable file
-g -0 <outputfile> <sourcefile>

-g -0 hello hello.c

(you must be in same directory as hello.c)

e If nO

—o option, then default output name is a.out (e.g., g++ hello.c)

e The -g option turns on debug info, so tools can tell you what's up when it breaks

e To run, type the program name on the command line
o ./ before “hello” means look in current directory for hello program

Fle Edit View

ubuntu@cs250-
ubuntu@cs250-
Hello world!

ubuntu@cs250-

Terminal
Terminal Tabs Help

az-03:' - $ g++ -g -0 hello hello.c
az-03:- $./hello

az-03.~- $

Breaking the third wall: gcc -S

[login0Ol.egr.duke.edu]44: cat hello.c
#include <stdlib.h>
$include <stdio.h>

int main () {

printf("Hello World!\n"):

[login(0l.egr.duke.edu]l45: gcc -5 hello.c
[login0l.egr.duke.edu]46: cat hello.s

file "hello.c™
.section .rodata
LCO:
.string "Hello World!™
.text
+glokl main
.type main, @function
main:
.LFBZ:
.cfi startproc
pushg irbp
.cfi def cfa offset 16
.cfi offset 6, -16
mowg %rsp, %rbp
.cfi def cfa register 6
mowvl 2.LCO, %edi
call puts
popd Frbp
.cfi def cfa 7, 8
ret
.cfi endproc
.LFEZ:
.8ize main, .-main
.ddent "GCC: (GHU) 4.8.5 20150623 (Red Hat 4.8.5-44)"
.section .note.GHNU-stack, "", Eprogbhits

[login(Ol.egr.duke.edul]47:

« EEP! Intel assembly language! The compiler will happily show us
the assembly code corresponding to our C (or any other language) codels

Key Language Issues (for C)

e Variable types: int, float, char, etc. £,

e Operators: +, -, *, ==, >, etc. =

e Expressions Black: C same as Java
Blue: C very similar to Java

e Control flow: if/else, while, for, etc. Red: C different from Java

e Functions

e Arrays

e Java: Strings - C: character arrays

e Java: Objects - C: structures

e Java: References = C: pointers

Java

: Automatic memory mgmt - C: DIY mem mgmt

26

Variables, operators, expressions — just like Java

e Variables types
e Data types: int, float, double, char, void
e signed and unsigned int
- char, short, int, long, long long can all be integer types
e These specify how many bits to represent an integer

e Operators
e Mathematical: + - * / %
e logical: ! g& || == != < > <= >=
e Bitwise: & | ~ ~* << >>
(we'll get to what these do later)

e EXpressions: varl = var2 + var3;

w n Y
';E(ﬂﬁéi\\
LAY

27

C Allows Type Conversion with Casts

e Use type casting to convert between types =
e variablel = (new type) variable?Z; e
e Be careful with order of operations — cast often takes precedence

e Example
main () {
float x;
int 1i;
X = 3.6;
i = (int) x; // 1 is the integer cast of x
printf (“x=%f, i=%d”, x, 1)

result: x=3.600000, i=3

28

Control Flow — just like Java

e Conditionals &
if (a < b) { ..} else {..} as Javal

switch (a) {
case 0: s0; break;
case 1: sl; break;
case 2: s2; break;

default: break;
}

e Loops
for (1 = 0; 1 < max; i++) { ... }

while (1 < max) {..}

29

Variable Scope: Global Variables

e Global variables are accessible from any function =

e Declared outside main ()

#include <stdio.h>
int X = 0;
float Y = 0.0,
voilid setX () {
int main ()

{

X =78; }

X = 23;
Y =0.31234;
setX () ;

// value of X here?

|

#include <stdio.h>

int X
float Y
void setX(
int main ()

{

0;
= 0.0;
) { X = 78; }

Makes a local X — separate from global X
(this hides the global X within main)

-)

int X = 23;
=0.31234;

setX (),

// value of X here?

Which X?
Global X = 78
Main’s local X = 23

Is this a good idea? In most cases no, but it is legal and there

are cases where it makes sense!

30

Functions — mostly like Java

e C has functions, just like Java <
e But these are not methods! (not attached to objects)
e Must be defined or at /least declared before use

int div2(int x,int vy); /* declaration here */

int main () {

int a;
a = div2 (10, 2);
}

int div2 (int x, int y) { /* implementation here */

return (x/vy);

}
o Or you can just put functions at top of file (before use)

31

Arrays — same as Java

Same as Java (for now...) <

char buf[256];
int grid[256] [512]; /* two dimensional array */
float scores[4096];

double speed[100];

for (int 1 = 0; 1< 25; i++)
bufl[i] = "A'+1; /* what does this do? */

These are statically declared — i.e. of known max size before the program
even runs, dynamically declared arrays will follow and are much more fun!

32

Memory Layout and Bounds Checking

FFFFFFFFF

Storage for array int days _in month[12];

Storage for other stuff J\ Storage for some more stuff
N e

—

(each location shown here is an int)

e There is NO bounds checking in C

e i.e,, it's legal (but not advisable) to refer to
days in month[219] oOr
days in month[-35] |

e who knows what is stored there?

33

Memory Layout and Bounds Checking

Storage for array int days _in month[12]; orresey

Storage for other stuff J\ Storage for some more stuff
\ f ~ (
\

(each locatien.shown here is an int)

e Very specifically, "days in month”is here — the address
of the beginning of days in month[0]

34

Strings — not quite like Java

e Strings =
e char strl1[256] = “hi”; -
e strl[0] = ‘h’, strl[l] = ‘i’,strl[2] = 0O;

« 0 is value of NULL character *\0’, identifies end of string
e What is C code to compute string length?

int len=0;

while (strl[len] !'= 0){
len++;

}

e Length does not include the NULL character itself
e C has built-in string operations

e #include <string.h> // includes string operations

e strlen(strl) ;

35

Structures are sort of like Java objects s

o ——
DIFFERENT

e They have member variables

e But they do NOT have methods!

Structure definition with struct keyword
struct student record {
int 1id;
float grade;

} recl, rec2;

Declare a variable of the structure type with struct keyword

struct student record onerec;

Access the structure member fields with dot (*.7), e.9. structvar.member

onerec.id = 12;

onerec.grade = 79.3;

36

Array of Structures

#include <stdio.h> L,

o

struct student record { to St
int 1id;

float grade;
I

struct student record myroster[200]; /* declare array of structs */
int main ()
{

myroster[23].1id = 99;

myroster[23] .grade = 88.5;

Remember these run from myroster[0] to myroster[199]!
Thereis nomyroster[200] (well there is, but it is just the next

unrelated thing in memory and almost certainly an error! .

Console 1/10Oin C

e I/O is provided by standard library functions

e available on all platforms
e To use, your program must have

#include <stdio.h> <

e ...and it doesn’t hurt to also have

#include <stdlib.h> ¢

FFFFFFFFF

“Standard 10"

Not "studio”!

“Standard library”

o These "#” are preprocessor statements; the .h files define
function types, parameters, and constants from the standard
library. With #include, the contents of these files (which
you can look at!) are simply included before compilation
begins, but we don’t clutter each file with all the gory

detalls.

o There are other preprocessor statements we may or may

not need!

38

Back to our first program

o #include <stdio.h> defines input/output functions in C
standard library (just like you have libraries in Java)

e printf(args) writes to terminal

hello.c - fhome/home5 falvy/courses 250/ Code/

File Edit 3Search Preferences 3Shell Macro Windows Help

#include <stdio. k:

it main()

{

printf ("Hello CompsciZ50lhn®) ;.
}

39

Input/Output (1/O)

e Read/Write to/from the terminal =
e Standard input, standard output (defaults are terminal)

e Character I/O

e putchar (), getchar ()

e Formatted I/0O

e printf (), scanf ()

40

Character I/O

#include <stdio.h> /* include the standard I/0 function defs */ L,
int main() { rom seval
char c;

/* read chars until end of file */

while ((c = getchar()) != EOF) {
if (c == ‘e’)
c = ‘-'; FIXFIXEFIX

putchar (c) ;
}

return 0;

}
e EOF is End Of File (type Ctrl+D), 0x04 in ASCIIZ

41

Formatted 1/O

#include <stdio.h> _ _ mﬁEiT
int main() { printf() = print formatted
int a = 23; scanf() = scan (read) formatted

float £ =0.31234;
char strl[] = “satisfied?”;

/* some code here.. */

printf (“The variable values are %d, %f , %s\n”, a, f, strl);

scanf (“%d %f”, a, £);

scanf (“%s”, strl);

printf (“The variable values are now %d, %$f , %s\n”,a,f,strl);
}
e printf (“format string”, vl,v2,..);

« \n is newline character

e scanf (“format string”,..);
e Returns number of matching items or EOF if at end-of-file

42

About printf and scanf

printf (“Hello %s, you are %d years old.\n”, name, age);

e Format specifiers:

Decimal integer (char/short/int/long/long long) < yo sseat..
Hexadecimal integer (char/short/int/long/long long)< 2orsscan
Float (float or double) < usssseiorevar

Character (char) < use s befors vr.

String (char[] or char*)

e Modifying them:

[}
o0 o o° o° oP
Hh

Q.

X

Q

n

« $3d Minimum 3-characters, space padded right aligned 52

« $-3d Same, but left aligned 52

« $03d Same, but pad with zeroes instead of spaces 052

« $.2f Float, two digits after decimal 2.52
- $5.2f Float, two digits after decimal, space padded to 5 chars 2.52

mentation for more exciting !

43

Example: Reading Input in a Loop

#include <stdio.h> ;%:3
int main () o Javal

{
int x= 0;
while (scanf ("%d", &x) != EOF) {

printf ("The value is %d\n",x);

This reads integers from the terminal until the user types ~d (ctrl-d)
e Canuse ./prog < file.in to redirectin from a file instead

WARNING THIS IS NOT CLEAN CODE!!!

o If the user makes a typo and enters a non-integer it can loop indefinitely!!!
How to stop a program that is in an infinite loop on Linux?
Type ~c (ctrl-c). It kills the currently executing program.

44

Example: Reading Input in a Loop (better)

#include <stdio.h> <

DIFFERENT

int main () from Javal
{

int x= 0;

while (scanf ("%d", &x) == 1) {

printf ("The value is %d\n",x);

}

e Now it reads integers from the terminal until there’s an EOF ora non-integer
IS given.

e Type “man scanf” on a linux machine and you can read a lot about scanf.
¢ You can also find these “manual pages” on the web, such as at die.net.

45

sscanf vs. atoi

e You can parse in-memory strings with sscanf (string scanf): =

DIFFERENT
from Java!

char mystring[] = “29”;

int r;

int n = sscanf (mystring, “%d”, &r) ;
// returns number of successful conversions (0 or 1)

e You could use the atoi function to convert a string to an
integer, but then you can't detect errors.
char mystring[] = “29”;
int r = atoi (mystring);

e The atoi function just returns 0 for non-integers, so
atoi(“0")==atoi(“hurfdurf”) ®

46

Header Files, Separate Compilation, Libraries

e C pre-processor provides useful features &
. #include filename just inserts that file (like #include <stdio.h>) ™=
e #define MYFOO 8, replaces MYFOO with 8 in entire program
e Good for constants

* #define MAX STUDENTS 100 (functionally equivalent to const int)

e Separate Compilation

e Many source files (e.g., main.c, students.c, instructors.c, deans.c)
e g++ -0 prog main.c students.c instructors.c deans.c

e Produces one executable program from multiple source files

e Libraries: Collection of common functions (some provided, you can build
your own)
e We've already seen stdio.h for I/O
e libc has I/O, strings, etc.
e libm has math functions (pow, exp, etc.)
e g++ -0 prog file.c —1m (says use math library)

47

Command Line Arguments

e Parameters to main (int argc, char *argv(]) &
- argc = humber of arguments (0 to argc-1)
« argv IS array of strings
« argv[0] = program name

e Example: ./myprogram dan 250

e argc=3
e argv[0] = “./myProgram”, argv[l]=“dan”, argv[2]=%250"
int main(int argc, char *argv([]) {
int 1i;

printf ("%$d arguments\n", argc);
for (1=0; i< argc; 1i++) {

printf ("argument %d: %s\n", i, argvi[il]);

48

Command-line arguments vs stdin

#include <stdio.h>
int main (int argc,

if (arge != 2)

printf ("Syntax:

return O;

}
printf ("Name:
char name|[64];

char* argv|]) {

{

")

scanf ("%s", name) ;

printf ("%s 1is
return 0O;

5

%$s.\n",

name, argv/ll);

4 Ubuntu 18.04 LTS

kbletsc@DONNA $./1
yntax: ./is <adjective>

kbletsc@DONNA $./is cool

Mame: Tyler
Tyler is cool.
kbletsc@DONNA

./1s <adjective>\n") ;

Command-line arguments
« Typed after program name

in shell

« Come in via argv[]

« Strings — can be parsed
with sscanf

Stdin

« Typed into the running
program

« Can be read with scanf

49

Also: DO ERROR CHECKING!

#include <stdio.h>
int main(int argc, char* argv/[]) {

What if this
were removed?

printf ("Name: ") ;

char name|[64];

scanf ("%s",name) ;

printf ("%s is %$s.\n", name, argv|[1l]);
return 0O;

' Ubuntu 18.04 LTS

et sc@DONMNA

Tyler
entation fault (core dumped)
etsc@DONNA:~ $

im confused an

oh no now

50

The Big Differences Between C and Java

1) Java is object-oriented, while C is not

2) Memory management

e Java: the virtual machine worries about where the variables “live” and
how to allocate memory for them

o C: the programmer does all of this

51

Memory is a real thing!

e Most languages — o C — flat memory space
protected variables

user_info shopping_cart user_info i
J/ shopping_cart
! Lo NI
(UL | (OO LU
7

@ o -

inventory

52
Figure from Rudra Dutta, NCSU, 2007

Let’s look at memory addresses!

e You can find the address of ANY variable with: &

FFFFFFFFF
!

The address-of operator

int v = 5;
printf(“%d\n”’,v);
printf(“%p\n”,&v); gx7fffd232228c

$ g++ x.c && ./a.out

Testing where variables live

int x=5; .
Params kernel

char msg[] = "Hello";
Bookkeeping

int main(int argc, const char* argv[]) { o stack
int v;
float pi = 3.14159; Params
Bookkeeping libs
printf("&x: %p\n",&x);]
printf("&msg: %p\n",&msg); Locals
printf("&argc: %p\n",&argc); : ;
printf("&argv: %p\n",&argv); : 1
printf("&v: %p\n",&v); $ g++ x.c && ./a.out heap
printf("&pi: %p\n",&pi); [static
} &argc: Ox7fff85b78c2c

code

&argv: Ox7fff85b78c20
&v: Ox7fff85b78c38
&pi: Ox7fff85b78c3c

54

What'’s a pointer?

e It's a memory address you treat as a variable :%
e You declare pointers with:

X

The dereference operator
int V<=53/- Append to any data type
int* p = &v;
printf(“%d\n”,v);
printf(“%p\n”,p);

$ g++ x.c & & ./a.out
)

Ox7fffe@e60b7cC

A s

What'’s a pointer?

e You can look up what's stored ata pointer! g
 You dereference pointers with: |

X

The dereference operator

int v = 5;

int* P = &V3 Prepend to any pointer variable or expression

printf(“%d\n”,v);

printf(“%p\n”,p);
. $ g++ x.c & & ./a.out
printf(“%d\n”, *p); 5

Ox7fffe@eb60b7cC

K 5

Different types use different amounts of memory

e If I have an n-bit integer:
e And it's unsigned, then I can represent{0 .. 2" -1}

Don‘t worry about this “signed” vs

e Result: "Unsigned” st yer. o
s s | T
Datatype Unsigned range

8 1 char 0 .. 255

16 2 short 0 .. 65,535

32 4 int 0 .. 4,294,967,295

0 ..
64 8 long long 18,446,744,073,709,600,000

e A float is 32 bits (4 bytes); a double is 64 bits (8 bytes)

e Size of a pointer? Depends on the platform!
e Our x86 platform for C: pointers are 64 bits (8 bytes)

e The MIPS platform we'll learn soon:

57

What is an array?

The shocking truth:
You've been using pointers all along!

Every array IS a pointer to a block of memory

Pointer arithmetic: If you add an integer N to a pointer P,
you get the address of N £Aings later from pointer P

e "Thing” depends on the datatype of the P
Can dereference such pointers to get what's there

e Interpreted according to the datatype of P
e E.g. *(nums-1) is a number related to how we represent the letter ‘0’.

int x = 9;
char msg[] = “hello”;
short nums[] = {6,7,8};

&X msg nums

y y y
oo Loo o0 oo b Lo it e 00 o0 loe oo o7 00 s

- msg-4 msg-3 msg-2 msg-1 msg+1 msg+2 msg+3 msg+4 msg+5 msg+6 - T
1\ nums+1

nums-1

T

nums+2

59

Array lookups ARE pointer references!

int x[] = {15,16,17,18,19,20}; (In case you don’t believe me)
int n=2;
printf("%p %p\n", x , X);
Array Pointer Type printf("%d %d\n", x[0] , *x);
look f printf("%d %d\n", x[5] ,*(x+5));
OoOoKUp rererence orintf("%d %d\n"

x[n] ,*(x+n));

- - - -

X X int* printf("%p %p\n",&x[0], X)
_ printf("%p %p\n",&x[5], X+5);
X[0] *X Int printf("%p %p\n",&x[n], x+n);
X[5] *(X4—5) int $ g++ x.c & & ./a.out
: ox7fffa2debode ox7fffa2debode
x[n] *(x+n) int g x/rra
&x[0] X int* is ig
&x[5] X+5 int* ox7fffa2debode ox7fffa2debode
oy ox7fffa2dob9ed ox7fffa2doboes
&x[n] X+n Int Ox7fffa2debods8 Ox7fffa2debods

e This is why arrays don’t know their own length:
they're just blocks of memory with a pointer!

Definition of array brackets: A[i] < *(A+i)

|

Creepy-side effect: A[5] = *(A+5) = *(54+A) = 5[A], so 5[A] is legal & equivalent! (Don't do this, it's gross.)

60

Using pointers

1. Start with an address of something that exists =

DIFFERENT
from Java!

2. Manipulate according to known rules
3. Don't go out of bounds (don't screw up)

void underscorify(char* s) {
char* p = s;
while (*p !'= 0) {
if (*p==""){
=0
}

p++;

int main() {

char msg[] = "Here are words";
puts(msg);

underscorify(msg);

puts(msg);

$ g++ x.c & & ./a.out

Here are words
Here_are_words

61

Shortening that function

// how a developer might code it

void underscorify(char* s) { void underscorify2(char* s) {
char* p = s; char* p;
while (*p != 0) { for (p = s; fp'; p++) {
if (%p == " ") { lf*é*? =,)
*po= "7 } .
) }
p++; }
}
} // how a kernel hacker might code it

void underscorify3(char* s) {
for (; *s ; s++) {
if (*s == " ') *s = "' ',
}
}

62

Pointers: powerful, but deadly

e What happens if we run this?
#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c & ./a.out

p: (nil)
Segmentation fault (core dumped)

63

Pointers: powerful, but deadly

e Okay, I can fix this! TI'll initialize p!

#include <stdio.h>

int main(int argc, const char* argv[]) {
int* p = 100000;

printf(" p: %p\n",p);
printf("*p: %d\n",*p);

$ g++ x2.c
x2.c: In function ‘main’:
X2.C:4:9: warning: initialization makes pointer from

integer without a cast [enabled by default]
$./a.out

p: ©x186a0
Segmentation fault (core dumped)

A more likely pointer bug...

void underscorify bad(char* s) { int main() {
char msg[] = "Here are
puts(msg);
underscorify bad(msg);

puts(msg);

char* p = s;
while (*p != '0") {

tkbletsc@doc ~ § gcc x3.C && . /a.out
Here are words
Here are words_ ES08

X [ox =R [o
SE e — e

: -

./ a. OUT_TERM=XTerm_5HELL=/bin/bash_XDG_SESSION_COOKIE=le
Obdeealb345b2e73fb1092000026bc-1386809487.335162-1765344744

Bus error (core dumped)

tkbletsc@®doc:~ § []

Almost fixed...

void underscorify bad2(char* s) {

char* p = s;
while (*p != '0") {
if (*p=="") {
p= "0
}

p++;

SEQWEHT -'_"-I.t-l [|r|
(@

Here

Her

--J.I"-'-' I..III""J
--:.l"-'-' words

are words
--J.I"-'-' wWord:

are words
--J.I"-'-' wWord:

are words

int main() {
char msg[] = "Here are words";

puts(msg);
underscorify bad2(msg);

puts(msg);

Worked but

crashed on exit
TﬂH1T 'r'ru duupud-

— Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!
Worked totally!!

! IJI IJI ! IJI IJI { IJI IJI F Ty I 'S

ords —© Worked totally!!

Worked totally!!

66

Effects of pointer mistakes

No visible effect

Access an array out of bounds
or some other invalid pointer location?

/

Totally weird behavior

ash [EE] =]

Silent corruption & bad results

T
H
He
tkb
H
H
T
H
He
tkb
H
H
T
H
H
T
H
H
T
H
H
T

Program crash with OS error

The application M_PROGRAM=iTerm.app quit
fmynrogram unexpectedly.

Mac OS5 X and other applications are not affected.

Click Relaunch to launch the application again. Click
Report to see more details or send a report to Apple.

Ignore | (Report... Y (" Relaunch)

Error: Access wiolation at 0x00736002 (tried ko read from 0x0000001F), program kerminated.

(8]4

67

Pointer summary

e Memory is linear, all the variables live at an address
e Variable declarations reserve a range of memory space

e You can get the address of any variable with
the address-of operator &

int x; printf(“%p\n”’,&x);

e You can declare a pointer with the dereference operator * appended
to a type:

int* p = &x;

e You can find the data at a memory address with the dereference
operator * prepended to a pointer expression:

printf(“%d\n”, *p);
e Arrays in C are just pointers to a chunk of memory

e Pointer math is done in units of the underlying type
(An array of ints walks 4 bytes at a time)

e Don't screw up

68

Pass by Value vs. Pass by Reference

void swap (int x, int y) { void swap (int *x, int *y) {
int temp = x; int temp = *x;
X =Yy *x o= *y;
y = temp; *y = temp;
} }
int main () { int main () {
int a = 3; int a = 3;
int b = 4; int b = 4;
swap (a, b); swap (&a, &b);
printf (Ya = %d, b= %d\n”, a, Db); printf (Ya = %d, b= %d\n”, a, b);

69

About “About printf and scanf”

e Remember this slide?

e In scanf, why do %d, $x, $£, $c use a & before the variable?

* Need to pass a pointer so scanf can mess with the content of them!
e Why doesn’t $s use a & before the variable?

e Because strings are arrays, and
arrays are just memory addresses!

age) ;

T

" name ,
2d years old.”,
rlntg,,(He —

o Format specifiers:

Doing scanf?
Decimal integer (char/short/i__n__t/\ong/long \ong)‘ Use) v
o Hexadecimal integer (char/short/i_n___t__/ long/long 10Ng) < use s before ver.
) %x Doing scanf?
%f F‘Oat (ﬂOat Or dOUb‘e) Use &%efcreva(_
. oing scanf?
¢ %C CharaCter (Char) UEe &%efore var.

Doing seant?
DON'T use & before val

riable.

} . %S String (charl] or char*)

70
- I

C Memory Allocation: introducing the heap

e So far, we have local variables and global variables =
e Locals are short-lived (die when function returns). -
e Globals are long-lived but fixed-size (defined at compile time).

e What if we want memory that is allocated at runtime and
long-lived?
e You had this in Java: objects!

e C doesn’t have objects, but you can allocate memory for stuff!
e This is called heap memory.
e Most memory used by programs is in heap memory!
e Think: Tabs in your web browser.
e Make a tab? Allocate
e Close a tab? Deallocate

71

C Memory Allocation

e How do you allocate an object in Java? =
e The new keyword o

e What do you do when you are finished with object?
e Nothing, you just stop using it
e How? JVM provides garbage collection
e Counts references to objects, when refs== 0 can reuse

e How do you allocate heap memory in C?
e Themalloc, calloc, and realloc functions

e What do you do when you're finished with the memory?
e You free it manually with the £ree function

e C doesn't have garbage collection! Must explicitly manage memory.
e The power is yours!

72

C Memory Allocation

e void* malloc (nbytes) &,

e Obtain storage for your data (like new in Java)

e Often use sizeof (type) built-in returns bytes needed for type
e int* my ptr = (int*) malloc(64); // 64 bytes = 16 ints
e int* my ptr = (int*) malloc(64*sizeof (int)); // 64 ints

« free (ptr)

e Return the storage when you are finished (no Java equivalent)
« ptr must be a value previously returned from malloc

73

C Memory Allocation

* void* calloc(num, sz) &
e Like malloc, but reserves num*sz bytes, and initializes the memory to
Zeroes

e void* realloc(ptr, sz)
e Grows or shrinks allocated memory
- ptr must be an existing heap allocation

e Growing memory doesn't initialize new bytes
e Memory shrinks in place

e Memory may NOT grow in place

e If not enough space, will move to new location and copy
contents

e Old memory is freed
e Update all pointers!!!
e Usage: ptr = realloc (ptr, new size);

74

Memory management examples

#include <stdio.h>

#include <stdlib.h>

int main() {
// kind of silly, but let's malloc a single int
int* one_integer = (int*) malloc(sizeof(int));

*one integer = 5;

// allocating 10 integers worth of space.
int* many integers = (int*) malloc (10 * sizeof(int));

many integers[2] = 99;

// using calloc over malloc will pre-initialize all values to 0
float* many floats = (float*) calloc (10, sizeof(float));
many floats[4] = 1.21;

// double the allocation of this array
many floats = (float*) realloc(many floats, 20*sizeof(float));
many floats[15] = 6.626070040e-34;

free (one_integer) ;

free (many integers);

free (many floats);

75

Pointers to Structs

struct student rec {
int 1d;
float grade;
b7

struct student rec* my ptr = malloc(sizeof (struct student rec));

// my ptr to a student rec struct

To access members of this struct via the pointer:
(*my ptr).id = 3; // not my ptr.id
my ptr->id = 3; // not my ptr.id
my ptr->grade = 2.3; // not my ptr.grade

76

Linked lists: C vs Java

public class LinkedList {

struct Node { public static class Node {
int id; public int id;
struct Node* next; protected Node next;

}i

struct Node* new_node (int id) { Node (int id) {

struct Node* newguy =

(struct Node*) malloc (sizeof (struct Node)) ;
newguy->id = id; this.id = id; _
newguy->next = NULL; itialT— this.next = null;

return newguy;

}

struct Node* prepend to_list(struct Node* head, int id) public static Node prepend to_list (Node head, int id) {
struct Node* newguy = new node (id); Node newguy = new Node (id) ;
newguy->next = head; newguy.next = head;
return newguy; return newguy;
} }
void insert_after (struct Node* target, int id) { public static void insert_after (Node target, int id) {
struct Node* newguy = new node (id); Node newguy = new Node (id) ;
newguy->next = target->next; newguy.next = target.next;
target->next = newguy; target.next = newguy;
} }
void print list(struct Node* head) ({ public static void print list (Node head) {
for (struct Node* p = head; p != NULL; p = p->next) { for (Node p = head; p != null; p = p.next) {
printf ("%d ", p->id); System.out.printf ("sd ", p.id);
} }
printf ("\n"); System.out.printf ("\n");

77
Note: full runnable versions of these programs are available from the course site: LinkedList.c and LinkedList.java

Linked lists: Freeing the listin C

e When done, need to walk the list and free each node
e May be tempted to write the following:

void free_list naive (struct Node* head) {

while (head) M Free the block, okay }
free (head);
head = head->next; A\ This arrow means dereference:
} } we’re using the memory we just freed!

e This is a use-after-free bug! It may crash!
e You cannot rely on a freed piece of memory!
e Solution: rescue out the next pointer into a local first:

void free list(struct Node* head) {
while (head) {
struct Node* nextguy = head->next;
free (head);
head = nextguy;
}

} 78

Source Level Debugging

e Symbolic debugging lets you single step through program,
and modify/examine variables while program executes

e On the Linux platform: gdb

e Source-level debuggers built into most IDEs

79

Gdb

e O start:
$ gdb ./myprog

e To run:
(gdb) run arguments

tkbl3@reliant:~ % gdb . /myprog

GNU gdb (Ubuntu ?.ll.l—DuEuntul~lE.5} 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL wversion 3 or later {http:ffgnu.Drg;1icensesfgp1.htw1m
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, To the extent permitted by law. Type "show copying”
and "show warranty” for details.

This GDB was configured as "xB6_64-T11inux-gnu”.

Type "show configuration™ for configuration details.

For bug reporting instructions, please see:

<http://www. gnu. org/software/qdb/bugs/>.

Find the GDE manual and other documentation resources online at:
{httF:ffwww.gnu.Dr /software/gdb/documentation/>.

For nelp, type "help”.

Type "apropos word" to search for commands related to "word"...

rReading symbols from . /myprog...done.

(gdb) run

starting program: /home/tkbl3/myprog

5

i
[Inferior 1 (process 74213) exited normally]

(gdb) N

gdb commands

list <line>
list <function>

list <line>,<line>

list (show) 10 lines of code at specified
location in program

List from first line to last line

run start running the program
continue continue execution

step single step execution, including into
next functions that are called

single step over function calls

print <var>
printf “fmt”, <var>

display <var>
undisplay <var>

show variable value

show variable each time execution
stops

gdb commands

break <line>
break <function>
break <line> if <cond>

set breakpoints (including
conditional breakpoints)

info breakpoints
delete breakpoint <n>

list, and delete, breakpoints

set <var> <expr>

set variable to a value

backtrace full
bt

show the call stack & args
arguments and local variables

82

gdb quick reference card

e GDB Quick Reference.pdf — print it!

o Also available annotated by me with most important commands for a
beginner:
GDB Quick Reference - annotated.pdf

GDB QUICK REFERENCE coo vesion +~ Breakpoints and Watchpoints ‘' Execution Control
break [fle:]line sct breakpoiat st line sumber [in fie] continue [wun] continue runming: i count specified. ignore
Essential Commands b [fe:}time ox break satn.cist) o S
] G e braak [flet]fune et breakpoint at fanc [in f2] step [cound] xceute umtil another line reached; repeat
b [fte:]function set breakpoint at function [in fild break voffsct sct brcak at ofsct lines from curreat stop o [coun] count tmes i specifid
break -ofict
run farst stast your prograim [with argls] .
o faro st o "d,"s.. [m .,...'f.,(]k preek o s breakpoint st address addr stepi [coun] step by machine instructions rather than Source Files
e A bresk et breakpoint ot next instruction sl e lnes B internal paraimeters dir names wcld disectory names to front of source
oo e = break ... if cpr beeak conditionally on nonsero czpr "
e continue sunming youe prog next. [coune] exccute next line, including any function ing of paracter b
N S R comtn fop] e comitinn cpremi v bt S = f e . cloas source path
. next line, stepping into function calls uake wnconditional i no expr e mumal syembole anow 0t S et s i
r— temporary breaks dieable whers senched sexts [erun] ot i st s e enj————
. etk e e e 21 [cound wouce lne 1o S S —
Starting GDB pheegliia it & mtrpeink o g g feoend] ne command-lne 1at - o previous ton lines
B, with o debuggin Sles cated 5 ek 8 €4 hanles for exveption = untt) [location] run until next instruction (or location) o= beiers Atet bines ey oomres smreiing e epasiid
3 : & lines, =p
o Emsam o preey B — DB expresions (Bt & or
&8b program core debu coredump core produced by tato break s defne breakpints xeturn [copr] pop selected sinck fame withont TN [t T [t
b —hel; e oy S e cxccuting [actting setum value] OB prompt [fe: |fumction ing of function [in named fic]
® i " elaar Aelete breskpoints at next instruction signad num wtion witk signal s (sone £0) |17 N e o off lines after lnet printed
poits o Jump tine e execution at specited fme number | o b e e it
Stopping GDB elear [flcilfun delste breakpointe st entey Lo funl) Jump wadiress ire igem when loading xymbols waddreas e contatning, addeeee
quie cxit GDB; abo q ox EOF (cg C-d) Clear [flei]tine delete breakepoiate om scwrc line Set. var=crpr mwmlv crpr without displaying it; we s etre e e
INTERRUPT (e Coc) terminate current command, or detete [1] Aclete breskpoints [or breakpoint =] for ahertug prograss varisbles i patching binssy, <ore Blex
e i i crec o "
aisadte] disable breakpoints [or breakpaiat o] Display el options
Gemne Help. enable [n] cnable breakpoints [or breakpoint] prant [/f] [expr] show value of cxpr [or Last value 8] ¢ reatiing sy xpansion
sk el of commanis e 18] [exer aecorling to forat ¥ e ek proentin souree lnee o et
o s e e o mable breskpoints [or bre 2 hexadecimal
el n mad At
Rilp rmmmd | i oy enable el [] i [et } N e g GDB under GNU Emacs
whea reached -
° I e ol options: ol
P e e ignore m count ignoe beeakpsint n, count times : [o
[p— stast vour program with srglit S ceute (DB commanditie every time : FE It e 2 ke, vl -
run P Lreakpoist m s reached. [s3165¢ : Soasiog poine i e b e - e o (cepy
i . agled) o nternal form for e e e thanta
un .. Cinf >outf start your program with input, outpit commeni-list suppressen defaalt display] call [/s] copr ke print but docs ot display void o) cect ik e stk o intan)
il e encdof command-lict x [/of] expr examine memory at address expr optional | '+ symbls in machise -
= mocn ¥ o org framen (87}
wn e e . S—— Mivin . s e D)
Program Stack Pt cornt of how many nits to display oy clements ta display i e foscrt at e
vty dev v s stdin soc stdont for nest run becktrace [prin race of e i sk o of 1 B ettt ived types for chiccts e sre (i somrce 1) set break at point
ot args ol e v] o o 400 etk 32 SEE compact or ndented
= specky oty gt ot = e (i bytes)
e Giaplay argumen l s ¥ words (fou Ertes) “ GDB License
txame 2] it frmrme rramber o et i g C4 virbual function tablex N . .
o dieplay current inok worls (cight bytes) show copying Display GNU General Public License
show eny shonw all environment variables e s o 7 rini e Ay B oo, o A hov varansy Thire s NO WARRANTY for GDB.
Show env v.,‘ o e f e bl oo et frame m fenmen np + it oommnde e n Display full norsmrasty statement
St env car string. set coviroumet vasiable var e ot
unset env rubipoar-vera 1nte rmma [raa] demslbr sbetnd B o e 2t cutic disaamen [ndd] display smemory ne machine instructions s
info args et of mlecied Eene
g 1nfo locals local vaiabics of sdlected frame
Shell Commands. info reg [rm. .. register values [for regs] in sclected Automatic Display .
<d dir chnge working directory to dir s = sth symbale o cacentable
pud Print working dircetory info all-reg . 01-seg e st e e e diseard Lot Conyighe (o0, 1992, 1093 Free Software Fouadation, Inc.
ke ol e info catch exception hardlers active in sclecte feame s [acoorting o focmst ety o divcica o 1 e
Shell e execute asbitrary shell command steing diepley g ensicd seprone o okl o o dicard e suthor ammes 16 seponebily for any <orore o thi casd
undiplay n remove mumber(s) n from list of =
o iy iepes epeesicns bl from fl o dincaed T s b frsly disributad under the tarms of the N
[] mursound optionst seguments .. shom ane. ox mere seguments forget to do "goc-g” to include debug symbols! —~ Ty 101916 414D n diable diopley for exprsion() s n | i il snd add it sl Geomst Pt L
samble diep . nable dply for presion() e a1 symabeis from fle Pkt e o i casd by ot
(@193, 1992, 1928 oo Softare Foondation, Inc. Feemioions on back 1 . infodisplay mumbered list of display cxpressions loned 2t addr D et e e sk, yo v welcome 5o diestbute coplos of
L e e e b tems of he 3 U G B i Tt s
= sont of path searched for e
dstach releame tacget from GDB contrel crccmtable and sybel Sl
show path dieplay execotable and symbol Sle path
into share Lik s of sbared Bbrarios carcently
loaded

83

Valgrind: detect memory errors

e Can run apps with a process monitor to fry to detect illegal
memory activity and memory leaks

| C %b13@login-teer-15:~

tkbl3@login-teer-15:~ § cat memleak. c
#include <stdlib. h>
void £ () {

char* p = (char*®*) malloc(20);

int main() {
char* c (char®*) malloc(10);
0N

[

13@Togin-teer-15:~ % valgrind --leak-check=yes . /memleak

7572== Memcheck, a memory error detector

Copyr1ght (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using valgrind-3.8.1 and LibvEX; rerun with -h for copyright info
command: . /memleak

HEAP SUMMARY :
in use at exit: 30 b¥tes in 2 blocks
total heap usage: 2 allocs, 0 frees, 30 bytes allocated

10 bytes in 1 blocks are definitely lost in loss record 1 of 2
at Ox4AD06A2E: malloc (vg_replace_malloc.c:270)
by O0x4005CD: main (memleak.c:7)

bytes in 1 blocks are definitely lost in loss record 2 of 2
at Ox4A06A2E: malloc (vg_replace_malloc.c:270)

by 0x400585: T() (memleak.c:3)

by O0x4005D6: main (memleak.c:8)

LEAK SUMMARY :
definitely lost: 30 bytes in 2 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
in-teer-15:~ $ []

D 2 1 o o o e e e e B e e

i B Bt Bt Bt e et Bt e Bt Bt e et Bt B e Bt Bt e et Bt e Bt Bt Bt e Bt B

&~

Cm | (O (O Y (Y |
| O [| (| (Y | | | (| Y (Y | | Y (=

757
757
737
757
757
757
757
757
757
757
757
737
757
757
757
737
757
757
757
737
757
757
757
757
757
757
757
3

_II‘\JI‘\JI‘\JNNNNNNNNNNNNNNMNNNNNNNN
SOl wnwn

(| (| | | | (| | | O (Y | O

Debugging our bad free code

e Remember this broken code?

void free list naive (struct Node* head) {
while (head) {
free (head) ;
head = head->next;

}

o |et's test it! First, we compile and run:

® Ubuntu 20.04 on Windows = O

g++ -0 ./LinkedlList Linkedlist.c .) .
. /LinkedList first ten Fibonacci numbers backwards.

Program uses a linked list to show the
Correct output...

Aborted (core dumped)

(But then it crashed ® J

e Dang, time to debug...

85

Debugging our bad free code

@ Ubuntu 20.04 on Windows
$ gdb ./LinkedlList G

<

Launch gdb with the
Copyright (C) 2828 Free Software Foundationm, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>» program as the argument
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying” and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu”.
Type "show configuration” for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”. -
Type "apropos word” to search for commands related to "word”... Use run to aCtua"y execute it
Reading symbols from .

(No debugging symbols found in =

(gdb) run =

Starting program: /mnt/c/Users/tkbletsc/Dropbox/Duke/ECE250/51lides/resources/linkedlist/LinkedList

34 211385321168 ane

free(): double free detected in tcache 2 Hmm, where did it crash

i . exactly? bt will show us the
Program received signal SIGABRT, Aborted.
|_GI_raise (sig-sig@entry=6) at e stack backtrace

..lsysdepsfunifoysuflinuxIrai=ﬂ W=t T1le or directory.

sigl@entry=6) at 158

in _ GI_abort () at

in _ libc_message (action=action@entry=do_abort, fmt=fmt@entry=8x7fffff76a285 "%s\n")

1155

in malloc_printerr (, .

r@entry=ex7fffff76c5de@ "free(): double free detected in tcache 2") at Well that’s the funCtlon, but
o1 in _int free (av=0x7fffff79bb8@ <main_arena>», p=-0x*88850080, have lock where’s the dang line
in free list naive(Node*) () <=
in main ()

NO0O0O0O00O0000000

o We forgot to compile with -g so there’s no debug symbols!

Debugging our bad free code

'!' Ue 2004 on Windows

g++(-g)-0 ./LinkedlList LinkedlList.C g
gdb ./LinkedlList

Recompile with —g!

Copyright (C) 2820 Free Software Foundation, Inc.
License GPLw3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> Then gdb again.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying” and "show warranty” for details.
This GDB was configured as "x86_64-linux-gnu”.
Type "show configuration”™ for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help”. ;
Type "apropos word” to search for commands related to "word”... Use run agaln
Reading symbols from .

(gdb) run e

Starting program: /mnt/c/Users/tkbletsc/Dropbox/Duke/ECE258/51lides/resources/linkedlist/LinkedList
34 21 13 853 21168

free(): double free detected in tcache 2

Use bt for stack backtrace

Program rec91ued 51gnal SIGABRT, Aborted.
| ry=6) at o
50 Isysdeps!unlequ:wf1 ST 0 such file or directory.
(gdb) bt <
__ GI raise (sip=sip@entry=6) at
in __GZ_aﬂ“ﬂ {} at
in _ libc_ actio @entry=do_abort, fmt=fmt@entry=8x7ff{ff76a285 "¥s\n™)
155
in ra'ic:_ﬂﬂ nterr (

r@entry=Bx7fffff76c5d@ "free(): double free detected in tcache 2") at HE)
in _int_free (av=8x7f{f{ff79bb86 <main_arena>, p-0x8805008, have_lock=8)

4201 | i |
T 2 Wow! Such line numbers!

5 x7Ffffffedbds) at : Much arguments!

Debugging our bad free code

!‘ Ubuntu 20.04 on Windows

{gdb) bt
_ GI_raise (=6) at 158
in _ GI_abort () at
in _ libc_message (=do_abort,
1155
in malloc_printerr (
=@x7fffff7ec5de "free(): double free detected in tcache 2") at
in _int_free (av=0x7fffff79bb88 <main_arena», p=6x8085860,
14281

: in free list_naive (=Bx8885018) at 142
ida] in main (=1, =@x7ffffffedbds) at 167
(gdb) print head
No symbol "head"™ in current context.
(gdb) frame 5 =

=Bx7fff{f76a285 "%s\n")

15347
=)

#5 in free_list_naive (=Bx8085018) at
42 free(head);

(gdb) print head
$1 = (Node =)

printf("\n");

void free_list_naive(struct MNode* head) {
while (head) {
free(head);
head = head-»next;

Use frame to set what
stack frame we’re “in” for
printing purposes.

We can print variables and
list code, and much more!

e But suppose this isn't clear enough? It doesn’t actually say we
used after free...

Debugging our bad free code

e Valgrind is a great tool for memory issues and crashes

m Ubuntu 20.04 on Windows Run valgrind f0||owed
valgrind ./LinkedList < by the full command to

1936== Memcheck, a memory error detector
1938-= Copyright (C) 2082-2017, and GNU GPL'd, by Julian Seward et al. debug
1938== Using Valgrind-3.15.@ and LibVEX; rerun with -h for copyright info

1936== Command: ./LinkedList
-=1930-= Normal program output
==1938==

error calling PR_SET_PTRACER, vedb misbi blocl
34 21 13 85321168 <= . .
--1030-= Tnvalid read of size 8 On line 43, we tried to read a

P

==1938== at @x1892CE: free_list naive(Node*) (LinkedlList.c:43) ~ H i H
==1938== by @x189396: main (LinkedlList.c:67) piece of data 8 bytes In size

=1938== Address ©8x4a4b318 is 8 bytes inside a block of size 16 free’d |||ega“y

1938== at Ox483CA3F: free (in fusr/lib/x86_64-linux-gnu/valgrind/vgpreload memcheck-amdé4-linux.so)

1938== by @x1892C9: free list naive(Node*) (LinkedlList.c:42)

19308== by ©x1@9396: main (LinkedList.c:67) The address in question is
1938== Block was alloc’'d at T .

1938== at @x483B7F3: malloc (in fusr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64- L1 analyzed, it's inside a block
1938== by @x1891C1: new node(int) (LinkedList.c:15)

1938== by @x1891FD: prepend to_list(Node®, int) (LinkedlList.c:22) that V’VGS recently free_d'
1938== by 6x10935D: main (LinkedList.c:6@) Here’s exactly where it was

1930-- ,
1936-- freed (line 42).
1930-= HEAP SUMMARY:

1938== in use at exit: @ bytes in 8 blocks By the way, here’s where this

1938== total heap usage: 11 allocs, 11 frees, 4,256 bytes allocated o
1938-- P / block was originally

All heap blocks were freed -- no leaks are possible a"ocated’ too’ in case that

For lists of detected and suppressed errors, rerun with: -s helps.
1936== ERROR SUMMARY: 18 errors from 1 contexts (suppressed: @ from @)

)

=
Y=}
)
&
]
(]

1938==

=
o
L
=
]
]

e Wow, that tells the whole story! Thanks, valgrind!
e Read the whole story that valgrind tells you, it's helping you!

C Resources

e MIT Open Course

e Courseware from Dr. Bletsch’s NCSU course on C
(linked from course page)

e Video snippets by Prof. Drew Hilton (Duke ECE/CS)
e Doesn’t work with Firefox (use Safari or Chrome)

90

e Previously:
e Computer is machine that does what we tell it to do

e Next:
e How do we tell computers what to do?
e First a quick intro to C programming
e How do we represent data?
e What is memory, and what are these so-called addresses?

91

	ECE/CS 250�Computer Architecture��Fall 2023
	Outline
	What is C?
	C and its offspring are still really important
	The Origin of C
	Slide Number 6
	What were they thinking?
	C vs. other languages
	Why C?
	Example C superpowers
	What about C++?
	C and Java: A comparison
	Common Platform for This Course
	How to access Duke Linux machines?
	 HLL  Assembly Language
	 Assembly Language  Machine Language
	 Machine Language  Inputs to Digital System
	How does a Java program execute?
	The C Programming Language
	Creating a C source file
	The vscode window
	Compiling and Running the Program
	Breaking the third wall: gcc -S
	Key Language Issues (for C)
	Variables, operators, expressions – just like Java
	C Allows Type Conversion with Casts
	Control Flow – just like Java
	Variable Scope: Global Variables
	Functions – mostly like Java
	Arrays – same as Java
	Memory Layout and Bounds Checking
	Memory Layout and Bounds Checking
	Strings – not quite like Java
	Structures
	Array of Structures
	Console I/O in C
	Back to our first program
	Input/Output (I/O)
	Character I/O
	Formatted I/O
	About printf and scanf
	Example: Reading Input in a Loop
	Example: Reading Input in a Loop (better)
	sscanf vs. atoi
	Header Files, Separate Compilation, Libraries
	Command Line Arguments
	Command-line arguments vs stdin
	Also: DO ERROR CHECKING!
	The Big Differences Between C and Java
	Memory is a real thing!
	Let’s look at memory addresses!
	Testing where variables live
	What’s a pointer?
	What’s a pointer?
	Different types use different amounts of memory
	What is an array?
	Array lookups ARE pointer references!
	Using pointers
	Shortening that function
	Pointers: powerful, but deadly
	Pointers: powerful, but deadly
	A more likely pointer bug…
	Almost fixed…
	Effects of pointer mistakes
	Pointer summary
	Pass by Value vs. Pass by Reference
	About “About printf and scanf”
	C Memory Allocation: introducing the heap
	C Memory Allocation
	C Memory Allocation
	C Memory Allocation
	Memory management examples
	Pointers to Structs
	Linked lists: C vs Java
	Linked lists: Freeing the list in C
	Source Level Debugging
	Gdb
	gdb commands
	gdb commands
	gdb quick reference card
	Valgrind: detect memory errors
	Debugging our bad free code
	Debugging our bad free code
	Debugging our bad free code
	Debugging our bad free code
	Debugging our bad free code
	C Resources
	Outline

