
ECE/CS 250 – Prof. Board, using Prof. Bletsch’s
materials

Recitation #1 – Unix
Objective: This recitation works in concert with the skills you’re gaining in the Unix course from
Homework 0. Here, you will learn about different computing environments available to you and
practice using them. You’ll also do some basic file manipulation and text editing and test out a basic
C program. You will need these skills so that you can develop C programs, and they’re also useful
skills if you plan to have a career in computing.

Complete as much of this as you can during recitation. If you run out of time, please complete the
rest at home.

Note: The auto-magic power of Eclipse or IntelliJ will not be here to help you. You need to be able
to navigate Unix-style systems using the basics: shell interaction, file upload/download, and a plain
text editor. In industry, if you can only code if you have an IDE, your career is going to be painfully
limited and simple tasks will seem needlessly complex. Let the Unix flow through you.

There’s lots of IMPORTANT explanation here, not just for this course, but for computing for the
rest of your life. Actual tasks you’re asked to do are highlighted cyan for your convenience, but
read everything. Thanks!

PART 1

1. Your choice of computing environments

We’ll use a variety of software in the course, and you have your choice of three ways to get work
done. Each have their tradeoffs, and you’ll become familiar with both them in this recitation. Your
choices:

I. Duke Docker Container from Container Manager (https://cmgr.oit.duke.edu/)
Instantly conjure up a GUI environment accessible via web browser. The environment lives in
a Docker container, a lightweight and restricted form of virtualization. No admin access or
easy means of file transfer, but simple. Does not work well on low-bandwidth connections.

II. Local tools on your own computer
With the proper software and setup, your own Windows, Mac, or Linux machine can do
what you need. Takes some setup, but once it’s working, gives the smoothest UI experience,
since you aren’t working over a network. But beware, your environment may differ from
ours, so the Docker or GradeScope environment is the official testing environment. Note:
support for this option is best-effort, as computing system vary, and not every member of the
teaching staff is familiar with every system.

First, we’ll get the Duke Docker Container working, then set up Local Tools later on.

For both approaches, we will be using git source code control to both back up our data and track
its changes.

https://cmgr.oit.duke.edu/

2. Introducing the Duke Docker Container and git

With the help of OIT, ECE/CS 250 provides a container-based online development environment. The
containers we provide have all of the programs needed in the class preinstalled.

In addition, we will be using GitLab to distribute test kits for assignments. You can fork an
assignment (details later on) to get started. Make sure that your forked project is private! Not
doing so is considered a violation of the Duke Community Standard. Once you fork an assignment,
you can clone the project to your development environment, make changes, commit them and push
changes back to GitLab. You are expected to regularly commit changes and push them to GitLab.
Because this is a very easy way to keep up-to-date backups, corrupted or lost files will not warrant
an extension for homework assignments.

NOTE: File corruption and loss is not a hypothetical scenario, it happens every semester. You should
take backing up your work seriously.

Getting an ECE/CS 250 Container Instance
Go to https://cmgr.oit.duke.edu/ and reserve the “CS250 - CS 250 – Computer Architecture”
container. Once it’s reserved, from now on you should be able to choose “CS250” and hit “Login” to
view connection options. For now, you can connect to your container in your browser with “Web
VNC Session”. If you want a faster/nicer way of connecting, see “APPENDIX: Connecting with
Remote Desktop protocol”. If you intend to use the docker container as your main system, using
Remote Desktop is strongly recommended! Connect to your container.

https://cmgr.oit.duke.edu/

You should see the following screen once you log in:

That’s it! You now have your own ECE/CS 250 container instance for the semester!

Things to keep in mind:

• DO NOT bookmark the container, but rather https://cmgr.oit.duke.edu/.
• DO NOT use the ECE/CS 250 containers to run your own programs because extra load will

slow down the system for other students. If you need compute for research purposes OIT
has other container instances available.

• If your container is hanging use the “Request restart” button on the VM Manage page

Clicking on in the top left of the screen will bring up a menu to select a program to open.

Preinstalled Programs:

• Firefox: for browsing the web.
• Xfce Terminal: preferred terminal to use.
• Visual Studio Code: preferred IDE for writing code.
• QtSpim: program to execute MIPS code for MIPS assignments (HW2)
• Logisim Evolution: a GUI circuit design program for the digital logic and processor

assignments (HW3, HW4).

You can drag and drop programs from the start menu onto the task bar at the top to create quick-
launch icons.

https://cmgr.oit.duke.edu/

About the clipboard
Your docker environment is a separate computing environment from your actual computer, so it has
a separate clipboard. This means that copying text on your real computer will not automatically let
you paste into your docker environment.

There is a workaround for this: in the upper right is a clipboard button that opens up a textbox. This
textbox represents the state of the clipboard of the docker environment. You can copy/paste into
the docker’s clipboard buffer.

Further, you should note that the terminal in docker (and indeed many terminals) will copy to
clipboard automatically upon highlighting – no Ctrl+C or Command+C needed. Below is a screenshot
where I’ve copied some terminal text, then accessed the clipboard buffer to see it on my real
computer:

Similarly, I can put content into that box from my real computer then use paste within the docker
environment. An example of this:

Note: If you think this sucks, see “APPENDIX: Connecting with Remote Desktop protocol” to connect
with a shared clipboard and avoid this issue entirely.

Open Visual Studio Code, start a new file, and practice copying text into and out of your container.

Potential issue: Does your Visual Studio Code not launch? There’s currently a known issue on the
container that OIT is working on. To launch it manually, open a terminal and type:

code –no-sandbox

3. Terminal warm-up

Poke around your container environment, then open up a terminal (Xfce Terminal). You’ll pick up
more in Homework 0, but for now, try out these commands.

Useful Commands
• ls: list directory contents
• pwd: print name of current/working directory
• cd path/to/directory: change the working directory

o Note, ~ is shorthand for the home directory. For example, the Desktop is at path
~/Desktop.

• cd ..: go up one directory level
• cp src dst: copy files and directories from src to dst (use -a flag for directories)
• mv src dst: move and rename files by moving from src to dst
• mkdir dir: make directory dir
• rm filename: remove file filename
• rm -r dir: recursively remove directory dir
• touch filename: create file with name filename
• cat filename: print contents of file filename to the console
• history: print previous command

Two things you NEED to do on the command line to survive and thrive
1. Tab completion: You can use tab to complete directory paths and filenames. For example,

try typing cd ~/Desk and hit tab. This will autocomplete the path as ~/Desktop/. If the
completion is ambiguous (e.g., “pot<TAB>” when there’s “potato.jpg” and “potato.txt”, it
will complete as much as it can, then beep or flash. Hit tab again for a list of the choices,
then type a few characters to disambiguate, and hit tab again.

 Only fools type entire filenames by hand: Always be tabbing!!
2. Arrow history: Use the up arrow to access recently used commands (and down arrow go to

the other way, too). This can save a lot of time retyping long commands!1

READ THE ABOVE AGAIN. PRACTICE DOING IT CONSTANTLY.
NEVER NOT TAB COMPLETE. NEVER RETYPE A COMMAND.

I KNOW THE FUTURE. YOU WANT TO PRACTICE THIS.

1 If you want to be really efficient, you can hit Ctrl+R in the shell, then type part of a command you want to go back to.
This is a reverse-search of your command history, basically searching the up arrow for a given string.

4. Git and GitLab

Git is a source code control tool that will allow you to track changes over time. GitLab is a central
repository for Git projects; Duke has a deployment of it here: https://gitlab.oit.duke.edu/2

Local Git Setup on ECE/CS 250 Container

First, we need to make sure git is setup properly on your ECE/CS 250 container. Open the terminal
and enter the following commands, replacing “NetID” and “Your Name” appropriately:

git config --global user.email "NetID@duke.edu"
git config --global user.name "Your Name"

We now need to set up SSH keys so you can access GitLab. An SSH key is a cryptographic pair of data
files called the “public key” and “private key”; these files are mathematically related. We provide
the public key to Gitlab, then we can use our corresponding private key to login to Gitlab in the
future. Don’t sweat the details – the tools do most of this for you3. To make a pair of keys, run the
following command in the terminal, replacing “NetID” appropriately:

ssh-keygen -t rsa -b 4096 -C NetID@duke.edu

Press enter when prompted to enter a path to save the SSH key and also bypass adding a
passphrase by pressing enter. Now run:

cat ~/.ssh/id_rsa.pub

and copy the output. This is your public key. Navigate to
https://gitlab.oit.duke.edu/ and sign in using the “Duke
Shibboleth Login” option. Click on the profile icon in the
upper right corner and select “Edit profile”. Now choose SSH
Keys on the left sidebar. Paste your SSH public key and give
it a descriptive title such as “ECE/CS 250 Container” and click
“Add key”.

You will need to do the above setup on every system you
intend to use git on for this class (including the Docker
container and your personal laptop).

2 Note: You may find outdated documentation referring to “coursework.cs.duke.edu” – ignore that in favor of
gitlab.oit.duke.edu.
3 You can learn all about this sort of thing by taking an intro computer security class, such as CS 351 or ECE 560.

https://gitlab.oit.duke.edu/
mailto:NetID@duke.edu
https://gitlab.oit.duke.edu/

Helpful Git Commands
• git add filename: add file filename to stage for commit

 You’ll do this for all your source code files, e.g. byseven.c in Homework 1!
• git status: display the state of the working directory and the staging area
• git commit -m "MESSAGE": commit stages changes with the commit message MESSAGE
• git push: push changes upstream (to GitLab)
• git pull: pull changes from upstream (from GitLab)

There are many online resources on how to use Git. Git is very powerful and has many cool features.
For this class the simple commit and push workflow should be sufficient but if you want to dive
deeper into Git try using branches to work on features and merging those features into the master
branch! The Git documentation is a good place to start.

The diagram shows the major steps involved in git. One-time steps are shown in grey, whereas steps
you do repeatedly during development are in black.

https://git-scm.com/about

Your First GitLab Assignment
Git step 1: Fork
Now let’s fork a project (aka repo) from the “Computer Architecture F23” GitLab group, clone the
forked project, make changes, commit those changes and push the changes to GitLab. This is the
exact same workflow you will use to fork homework assignments, make changes, and backup these
changes on GitLab.

Navigate to https://gitlab.oit.duke.edu/ and log in if needed. Now navigate to Menu > Groups >
Your Groups > Kits > w Computer Architecture F23. Here you should click on a project titled “Getting
Started”. If you have trouble finding the project, this link will take you right there.

On the upper right click to fork the project and, under “select a namespace”, pick
your NetID:

Make it private:

You should see the icon next the project name if it is private:

If the project is not private, navigate to Settings > General on the left side bar. Then expand the
“Visibility, project features, permissions” section and change the “Project visibility” to “Private”.

Make sure to fork a project before making changes. DO NOT clone and make changes before
forking a project since you will not be able to push changes.

ALWAYS MAKE SURE THE FORKED PROJECT IS PRIVATE! Make sure to make it private if it is not already.
Not doing so is considered a violation of the Duke Community Standard.

https://gitlab.oit.duke.edu/
https://gitlab.oit.duke.edu/kits/computer-architecture-f23/getting-started

Git step 2: Clone to your local environment
Now click on in the upper right and copy the link for “Clone with SSH” to clone the project.
Open the terminal, navigate to the Desktop (run cd ~/Desktop) or where ever you want to store
this code, then run:

git clone PASTE_LINK_HERE

This command will clone the project to your environment. Navigate to your local copy of the project
(cd getting-started). Use ls to see what’s there. What file(s) are present?

Git step 3: Mess with some code!
Let’s compile and run welcome.c:

g++ -g -o welcome welcome.c
./welcome

The first line compiles welcome.c into an executable program called welcome, and the second line
runs the program welcome. The “-o welcome” part of the first line tells g++ to create an
executable called welcome. By default, it would’ve otherwise created an executable called a.out.
The “-g” tells g++ to include debug symbols, which will make debugging the program easier
(important later on!). In the second line, you may wonder what the deal is with the “./”. That tells
the terminal to look in the current directory for the file to run, which is necessary for running a
program from the current directory4, but not necessary for reading, moving, renaming, etc. (Your
current directory can be referred to with “.” and its parent directory can be referred to with “..”.
So if you type “cd ..” that’ll take you to the parent directory.)

Interact with the program and observe what it does.

Open welcome.c in Visual Studio Code. You can do this by running Visual Studio Code then
opening the program, or by running “code welcome.c” on the command line. Change the
program to indicate that the so-named person is, in fact, very cool. Compile and run it again to
confirm your changes worked.

Git step 4: Commit and push changes
Lastly, and importantly, let’s commit this change and push it to GitLab so there’s a backup online.
From the getting-started directory, run:

git add welcome.c Adds the changed file to staging
git commit -m "now it’s very cool" Commits change locally
git push Pushes change to remote gitlab repo

4 The reason for this requirement is security. Imagine a malicious person put a program called “ls” in the current
directory. When you type ls, you might run that program instead of the usual ls command. To disambiguate the
situation, Linux requires you to be explicit when running a program from the current directory by prefixing it with “./”.

Go to the Getting Started project on GitLab. You should see the changes reflected there!

Create, compile, and run Hello World
Now let’s create a Hello World C program from scratch and execute it.

First open Visual Studio Code and create a file named hello.c. Save this file.

Write the following to hello.c:

#include <stdio.h>
#include <stdlib.h>

int main() {
 printf("Hello World!!\n");
 return EXIT_SUCCESS;
}

Compile the program with g++ and run it:

g++ -o hello hello.c
./hello

Add your new hello.c program to git, commit it, push it, and confirm it landed in the web
interface of GitLab. Don’t add the compiled programs welcome or hello – it’s customary for git to
hold source code, not compiled programs!

END OF PART 1

If you’re in recitation now, please continue and dig into PART
2 until recitation ends.

PART 2
NOTE: There is a connection between this part of the recitation and stuff you need to
submit for Homework 0. You may want to give it a read before proceeding.

5. Getting acquainted with the tester, hwtest.py

For all the homeworks in this course, you will be provided a student self-test tool, hwtest.py.

The tester is not meant to be opaque or mysterious – it’s a tool to empower you, because
software testing is the cornerstone of software development. Let’s dig into it!

To get you acquainted with the tool, it’s been included in getting-started. There is no grade for
this, but we’ll walk you through using the tool to debug a provided program and submit it to
GradeScope for mock grading.

The program we’ll be fixing is square.c. It takes a single integer as a command line argument and
it’s supposed to print the square of that argument, but it gets it wrong now. Here’s how the tool is
supposed to work:

$./square 7
49

This is called the expected output. However, what happens when you compile and run the program?

What you see is the actual output. When expected differs from actual, that means the software isn’t
meeting the requirements – a bug! This program and its bug are simple, so you could probably just
figure it out manually, but let’s explore the tester.

The tool runs tests described in the tests subdirectory. Key files in there:

• tests/settings.json: The settings for the tester – this describes the tests. We provide
it. Tests are divided into test suites, with each suite running against a separate program. In
this example, you just have one suite called “square” to test the square program.

• tests/<SUITENAME>_expected_<TESTNUM>.txt: The expected output, provided.
• tests/<SUITENAME>_actual_<TESTNUM>.txt: The actual output, generated by hwtest

by running your program.
• tests/<SUITENAME>_diff_<TESTNUM>.txt: The tool will compare the expected and

actual outputs. This file is generated to describe how the two differ; it’s a diff, which is a
common UNIX concept.

Let’s try out the tester. Run it with “./hwtest.py” and it will tell you the arguments:

usage: hwtest.py [-h] [-C] [-v] [-t TESTDIR] <SUITE_NAME>

Student auto-tester version 3.0.0.

positional arguments:
<SUITE_NAME> A test suite name to run ('square'), or
 'ALL' for all of them.

optional arguments:
-h, --help show this help message and exit
-C, --clean Remove generated actual and diff files for chosen suite(s).
-v, --verbose Verbose mode. Shows the commands executed.
-t TESTDIR Choose the directory with the tests and test content.
 Default: tests

No need to sweat all those options – the most common thing you’ll do is just run all the suites, so do
that like this:

Ah, we’re passing two cases and failing three. Let’s see what’s up with test 1 (“n = 1”). You could use
your GUI to navigate there and click files, but you’ll become more proficient if you use the
command line.

Let’s look in tests. Use cat to see square_expected_1.txt and square_actual_1.txt within
the tests directory (use tab-completion constantly!). Weird bug, huh?

Let’s look at the diff between these files; this summarizes how the files differ. In this program it’s
obvious, but in later assignments reading a diff will be helpful (otherwise, how can you spot one
difference within thousands of lines of output?). Use cat to view square_diff_1.txt.

Here, “1c1” which means “on line 1 of the first file, there’s a conflict with line 1 of the second file”.
Then it shows the difference, with “<” prefixed to the first file and “>” prefixed to the second file.
The files in question are the expected and actual outputs. You can read more about diff files here.

Look at the other test cases (both passing and failing). Generate a hypothesis about what is
happening.

https://www.computerhope.com/unix/udiff.htm

Now open square.c in Visual Studio Code and check your hypothesis. Find the bug, fix it,
recompile, and confirm that all test cases now pass.

Now submit to GradeScope
The very same tester provided to you is also used to grade your programs automatically. The only
difference is that we have more tests than are provided to you, so passing the student tester is not a
guarantee of getting a perfect score – you will need to do additional tests on your own. This is true
in real life – there’s never a level of software testing that’s complete or perfect!

The auto-grader runs in the GradeScope environment, which has been configured to hide the
results of hidden instructor tests until after the deadline. A GradeScope assignment called
Getting Started has been created that will examine your modified square.c. Submit your code to
GradeScope by uploading the square.c file). You should get 5/5 points.

This submission will constitute part of your Homework 0 grade.

6. Set up your local computer

We just used the container, which works, but is kind of clunky to use. Let’s get your local computer
set up to do assignments as well, then you have your choice of which to use.

The way you get appropriate local tools depends on your operating system. We’ve provided basic
directions for Windows, Mac, and Linux, but you may need to do your own research to fully utilize
this approach.

For users of Windows
The computing environment for the course is Linux, specifically Ubuntu Linux 20.04. If you’re
running Windows 10 or 11, you can use the Windows Subsystem for Linux (WSL) to create an
Ubuntu Linux environment inside of Windows. This isn’t a full virtual machine, but is sufficient for
our use in most ways.

Note: If you’re running another version of Windows or otherwise can’t use WSL, you might
consider running hypervisor that will allow a full virtual machine, such as Virtual Box. Then you
can install Ubuntu 20.04 from scratch (though we can’t offer support for this approach).

First, to enable WSL at all, run powershell as administrator (right click powershell in start menu and
choose “Run as administrator”). In the powershell, run:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

Then, because this is Windows, you have to restart.

You could install Ubuntu from Windows Store, but instead you can just download this URL:
 https://aka.ms/wslubuntu2004

Run the downloaded package and it will install an Ubuntu 20.04 environment. Run the Ubuntu bash
shell. The following command will install C and related build tools, as well as stuff we use later in the
course (Java and spim):

sudo apt update
sudo apt install build-essential valgrind make git openjdk-8-jre spim

Choose a native Windows text editor to use (Visual Studio Code is a common pick), and install it.

Note: Your virtual Linux home directory is separate from your regular Windows files. To access your
Linux files from regular Windows, navigate to \\WSL$ in Explorer, open dialogs, etc. From there,
you can pick Ubuntu, “home”, and your Linux account.

If you need to access regular Windows files from Linux, you’ll find your C: drive in /mnt/c and your
Windows user directory in /mnt/c/Users/<username>. It’s recommended to put your code in
your Linux area and access via \\WSL$ rather than put them in your Windows area and access via
/mnt/c.

Proceed to the “Put that local computer to use!” section.

For users of Mac OSX
Mac OSX comes with the C compiler and related tools (and if it doesn’t, prompts on the command
line should walk you through getting it). Note: when compiling with g++ on Mac, you may get a
warning about C++ being treated as C – that’s fine and safe to ignore.

Note: Currently, valgrind does not work on Mac. This sucks, because you REALLY want Valgrind for
Homework 1.

As a result, we recommend using the Docker environment via Remote Desktop (see APPENDIX:
Connecting with Remote Desktop protocol) for Homeworks 1 and 5 on Mac. Homeworks 2-4 don’t
involve C programming and work just fine natively on Mac.

For users of Linux
If you’re running Ubuntu Linux 20.04, you’re set. Just install some stuff:

sudo apt install build-essential valgrind make git openjdk-8-jre spim

If you’re running a different Linux, you’re still probably fine, just install the things above via your
native package manager.

https://aka.ms/wslubuntu2004

Put that local computer to use!
Using your newly configured local machine, do the following:

1. Prepare git as described earlier
2. Check out the getting-started repository
3. Modify, compile, and run the welcome.c program
4. Run hwtest.py and confirm your square.c is still passing.

ALL DONE?

Nice! Don’t head out, though. Work on the current
homework and talk to the TAs for help. You can leave if your
homework tester shows all passing and you’ve turned in all

the written & code materials.

~ END ~

There are some appendices past here if you’re curious about alternative approaches.

7. APPENDIX: Connecting with Remote Desktop protocol

The web-based connection to your container is easy, but can be cumbersome:

• The clipboard is not shared with your local computer
• The virtual display size of the container doesn’t match your local display
• Certain shortcut keys won’t work
• Performance isn’t great, especially if remote

OIT provides an alternative: you can connect with a remote desktop client using the RDP protocol.
Connection details are given in Container Manager:

On Mac, launch Remote Desktop Connection, and set it as
shown on the right. The PC name should be the “server”
listed above. Set “user account” to “ask when required” so
you can paste in the credentials given. Save and connect, and
you should see the same container environment, but in your
native resolution with a shared clipboard and better
performance.

On Linux, install and use a remote desktop client and provide
it these settings.

On Windows, use the pre-installed remote desktop client. Paste in the server, then hit the Show
Options button:

In the options that appear, put in the username given by Container Manager, then check “Allow me
to save credentials”. Hit connect, and paste in the password given by Container Manager.

8. APPENDIX: login.oit.duke.edu (Duke shared Linux cluster)

Duke maintains a cluster of x86/Linux machines for your use that you can access through the magic
of networking. To connect, we need to use a secure shell (SSH) client.

NOTE: If you are not on campus, you will need to connect to campus via VPN. See this page for
details and connect to the campus network via VPN before proceeding.

Mac/Linux Windows
Open the Terminal App. You can find it in the
Applications/Utilities folder or by searching in
Spotlight for Terminal

At the command prompt, type

ssh netID@login.oit.duke.edu

where netID is your Duke NetID. This
command initiates a secure shell connection
to a Linux machine in the cluster.

Enter your password and MFA.

Download and install PuTTY from here.

Open a PuTTY terminal window. In the
connection screen, for Host Name put
login.oit.duke.edu. Ensure connection
type is SSH and port is 22.

You can save a session for subsequent use by
giving it a name and saving the session. Then
you can later reload the session by selecting it
and clicking “load”.

Click Open to start the PuTTY session. This will
open a Terminal Window and prompt you for
your NetID (i.e., login as:), password, MFA.

Congratulations – you are now successfully connected to a remote Linux machine!

Sidebar if you login via passwordless SSH key

If you’ve configured SSH keys for auto-login, you’ll run into a quirk here based on how Duke
runs things – your home directory won’t be available by default! You can tell this because
you’ll appear in the root directory of the system instead of your home directory:

Note the slash at the end – this means “root”. Your files aren’t there :-(

To fix this, run “kinit” and input your password. Then you can type “cd” to go to your
home directory. Linux abbreviates your home directory to a tilde (~), so when successful,
this will be your prompt:

Note the tilde…you’re home! :-)

Via SSH, clone your git repository so we can do work from here.

https://oit.duke.edu/what-we-do/services/vpn
https://oit.duke.edu/what-we-do/services/vpn
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html

How to edit
It is certainly possible to use a text editor remotely – there are editors that work entirely from
within the terminal (nano, vim, emacs – see appendix if interested) as well as means to see
remotely-running editors on your local machine (not covered here).

However, it’s easier to use local tools to edit remote files. We can do that by mounting (attaching)
our remote home directory to your local computer so that any program can read/write remote files.
In this case, every time you hit “save”, the file will be sent over the network and saved on the file
server, visible immediately to the login.oit.duke.edu environment.

Duke is set up to use the “CIFS” protocol (also known as “Windows sharing”) to do this. This
technique requires you to either be on campus or to use Duke VPN (which makes it like you’re on
campus). Duke OIT provides documentation on this here:

• General OIT guidance.
• Tutorial for Windows.
• Tutorial for Mac.
• If you run Linux personally or want to mount from your VCM machine, see appendix.

Below is a screenshot on my local Windows machine showing my getting-started assignment in
my local file explorer, my local Visual Studio Code, and the remote login.oit.duke.edu terminal.
Using the procedure appropriate for your OS, get this setup going on your own machine.

https://oit.duke.edu/help/articles/cifs-technical-specifications
https://oit.duke.edu/help/articles/cifs-how-connect-windows
https://oit.duke.edu/help/articles/kb0013637

Put login.oit.duke.edu to use!
Using your newly configured local editor + remote machine, do the following:

1. Prepare git as described earlier
2. Check out the getting-started repository
3. Modify, compile, and run the welcome.c program
4. Run hwtest.py and confirm your square.c is still passing.

9. APPENDIX: Terminal editors

This is optional, but sometimes useful. You can skip it if you want.

In addition to using GUI editors, there are text editors that live entirely in your terminal. The benefit
is that you can run them on any machine you can SSH to, so you never have to worry about how to
edit remote files with a local tool. The downside is that they’re missing some of the nice graphical
features GUI editors have. That said, it’s useful to have basic proficiency in a pinch, since you don’t
always have your preferred local editor available in all situations.

Let’s test a simple terminal text editor, nano. Clone your git repository if you haven’t already, then
navigate to it. To start editing a file with nano, you can type the following at the command line:

nano hello.c

This line will start nano for use in editing a file called hello.c. If that file already exists, it will be
opened for editing. If it doesn’t already exist, a new file with that name will be created and opened
for editing.

Once the file is open, modify your hello world program in some way. To save the file and exit the
editor, hit Ctrl+X and follow the prompts. Compile and run the program, then use git to commit and
push your changes.

I do not recommend nano for long-term use in this course – it’s a tiny little editor that’s good at
small quick stuff. For a powerful terminal editor, consider vim or emacs. Both have a steep learning
curve, but people swear by them.

10. APPENDIX: Synchronization via SFTP

This is optional, but sometimes useful. You can skip it if you want.

Not all remote files are on file servers available via CIFS. In these cases, you can use the SFTP
protocol to synchronize local and remote files. SFTP can be used on any host that provides SSH
access (such as login.oit.duke.edu). This can be achieved by using an editor with a built-in
SFTP client (such as Notepad++ on Windows), or using a standalone SFTP client (such as WinSCP) to
synchronize local files to the Duke Linux environment. You can also use command-line tools for the
purpose, such as rsync and scp.

Note: The two-factor authentication on login.oit.duke.edu confuses some of these tools, so you
might have to play with it.

11. APPENDIX: Mounting a CIFS share on Ubuntu Linux

This is optional, and only applies if you want to attach your shared home directory from a Linux
machine you control, such as a personal computer running Ubuntu Linux or your VCM machine.

Note: You must have root (sudo) access on the Linux machine in question.

First, install the CIFS utilities:

sudo apt install cifs-utils

Then, make a directory to serve as the mountpoint. For example:

mkdir ~/dukehome

The following command will actually mount the network server directory. Here, <NFIRST> is the
first letter of your NetID, <NETID> is your Duke NetID, and <LOCALID> is the username on your
Linux machine. If on your VCM machine, these will be the same. The command will prompt for your
Duke password:

sudo mount -t cifs //homedir.win.duke.edu/users/<NFIRST>/<NETID>
~/dukehome -o username=<NETID>,uid=<LOCALID>,dom=WIN

Note: this is all one command. Example execution:

To later detach the share:

sudo umount ~/dukehome

	PART 1
	1. Your choice of computing environments
	2. Introducing the Duke Docker Container and git
	Getting an ECE/CS 250 Container Instance
	About the clipboard

	3. Terminal warm-up
	Useful Commands
	Two things you NEED to do on the command line to survive and thrive

	4. Git and GitLab
	Helpful Git Commands
	Your First GitLab Assignment
	Git step 1: Fork
	Git step 2: Clone to your local environment
	Git step 3: Mess with some code!
	Git step 4: Commit and push changes

	Create, compile, and run Hello World

	PART 2
	5. Getting acquainted with the tester, hwtest.py
	Now submit to GradeScope

	6. Set up your local computer
	For users of Windows
	For users of Mac OSX
	For users of Linux
	Put that local computer to use!

	7. APPENDIX: Connecting with Remote Desktop protocol
	8. APPENDIX: login.oit.duke.edu (Duke shared Linux cluster)
	How to edit
	Put login.oit.duke.edu to use!

	9. APPENDIX: Terminal editors
	10. APPENDIX: Synchronization via SFTP
	11. APPENDIX: Mounting a CIFS share on Ubuntu Linux

