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Abstract—Over the past few years, a number of different (RC), has also been applied to dispersive dielectrics [7], [8]
finite-difference time-domain (FDTD) methods for modeling elec-  and magnetized cold plasma [9]. Other methods are based on
tromagnetic propagation in an isotropic cold plasma have been , yansforms [5] and the transmission-line matrix method [6].
published. We have analyzed the accuracy and stability of these - . . . Y .
methods to determine which method provides the greatest accu- The aim of this .Study is to determine, quqntltatlvely, Wh!Ch
racy for a given computation time. For completeness, two new Of these methods is the most accurate for a fixed computational
FDTD methods for cold plasma, one of which is based on the effort. To be all inclusive, we also develop two new FDTD
concept of exponential fitting, are introduced and evaluated along methods for propagation in a cold plasma. We also suggest
with the existing methods. We also introduce the concept of cutoff an improvement, which we call cutoff modification, that can

modification which can be easily applied to most of the FDTD b lied t f th d isti thod d
methods, and which we show can improve the accuracy of these € applied to some o € new and exising methods an

methods with no additional computational cost. Von Neumann’s €an improve the accuracy significantly in certain parameter
stability analysis is used to evaluate the stability of the various regimes. Briefly, it is a technique by which the medium
methods, and their accuracy is determined from a straightfor- parameters in the numerical simulation are slightly perturbed

ward time-and-space harmonic analysis of the dispersion and j, sych a way that the properties of the physical medium are
dissipation errors. Results of numerical experiments to verify bett deled by th ical thod

the accuracy analysis are presented. It is found that for low- etier moaeled by t.a.numerlca method. . .
loss plasma, the PLRC method [4] is the most accurate, but AS the two key qualities of an FDTD method are its stability

the method of Young [1] can use less memory and is nearly and its accuracy, we evaluate both of these parameters for all of
as accurate. In this low-loss plasma regime, cutoff modification the new and existing methods considered herein. For the accu-
can significantly reduce the error near cutoff at the expense of y5¢y analysis, we derive the numerical dispersion relations for
slightly greater error at lower frequencies. For strongly collisional . .
plasmas, the PLRC method also provides the most accurate the dlfferent m.ethods.and .compare them tq the Co”_eSPO”‘?'“g
solution. analytical relation, which yields the dispersion and dissipation
error for each method. This method has been used with success
in [12] and [13] for evaluating the accuracy of methods for
dispersive dielectric. However, differing from these analyses,

|. INTRODUCTION we attempt to evaluate the accuracy not for fixedor Az, but

VER the past few years, a number of different finitefor a fixed computational effort. The operation count for each
Odifference time-domain (F,DTD) methods to model eledN€thod considered is different allowing for a greater spatial
tromagnetic propagation in isotropic cold plasma have be@Rd temporal resolution (leading to better accuracy) in some
published [1]-[3], as have other FDTD methods for dispersiJ@ethOds for fixed simulation run times. Since the ultimate goal

media that can be applied to an isotropic cold plasma [4]-[ f all numerical simulations is to produce the best answer in

Some of these techniques are based on direct finite-differeffag |€ast amount of time, this difference should be accounted
approximations of the complete field equations of the mediufff In the accuracy analysis.

[1], [2] that consist of Maxwell's equations coupled to an

auxiliary ordinary differential equation, which models the I
response of the current to the fields. These methods are ] ) ]
commonly referred to as direct integration (DI) methods. The There are many different numerical methods for the simu-
majority of the other methods are based on a difference appr¥ion of electromagnetic wave propagation in a plasma. One
imation of Maxwell’s equations coupled to an iteration derivefethod for the nonlinear propagation of high-power waves
from the convolution integral form of the auxiliary differentialCoUPIes Maxwell's equations to the Boltzmann equation for

equation [3], [4]. This technique, called recursive convolutioff€ €lectron-velocity distribution function [14]. Other meth-
ods include fully kinetic particle simulations [15], magneto
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assumes zero thermal velocity for the charged species. Thishie necessary difference-equation coefficients from the for-
a good approximation as long as the thermal velocity is muahulas presented in [4]. Another RC method, the trapezoidal
less than the phase velocity of waves in the medium [18]. recursive convolution (TRC) method [7] has been developed
In magneto-ionic theory, the governing equations consist ahd applied to dispersive dielectrics. However, this method is
Maxwell’s equations coupled to an auxiliary equation relatingot directly applicable to isotropic cold plasmas [20] and thus
current and electric field. This auxiliary equation is derive not considered in this paper.
from the equation of motion of the charged particles in It has been shown [4], [7] that for a second-order dispersive
the wave electric field and (sometimes) an ambient constghorentz) dielectric, PLRC and TRC methods are much more
magnetic field. The motion of ions can be neglected undaccurate than the original RC method in [8]. Similarly, numer-
many circumstances due to the ions’ larger mass, and we caral tests show that the original RC method for cold plasmas
sider only nonmagnetized (and, therefore, isotropic) electranfar less accurate than all of the other methods mentioned
plasmas in this paper. For a nonmagnetized cold plasma, tiegein, so we do not consider this method in this analysis.

complete field equations are [17] The z-transform method described in [5] requires five state
oH variables for the iteration, and the TLM method in [6], when
VxE=— o5y (1) reduced to the isotropic plasma case, uses six state variables.
OF t As a result, these methods are more computationally intensive
VxH =g, +J (2) and more difficult to analyze than the DI and RC methods,
o3 t which need only three state variables. For this reason, we do
2
5 + v =euwpE (3) not analyze them here.
wherewp is the plasma frequency amds the electron-neutral . Two NEwW METHODS
collision frequency. A completely equivalent form is used in
[2], where the substitutiod = dP/at is made. A. A New DI Method

As mentioned above, the two existing classes of FDTD . . .
methods are DI and RC. The leapfrog approximations to We present a new DI method for isotropic plasma to include
(1) and (2) are well known [19] and common to all of" the comparisons that is very similar to the FDTD method for

the DI methods. Young's DI method couples these Ieapfr(g st-order dispersive dielectrics derived in [10]. This method,
approximations, including the terd™*+/2 for J(¢) in the W ich we refer to as the new DI method, includes the term

difference equation for (2), to the difference equation (I 4 Jm)/2 for J(#) in (2) and approximates (3) by

Jn-l—l —J» Jn-l—l + Jr En+1 + E"
n+1/2 _ n—-1/2 n+1/2 n—1/2 _ 2
J J i = cW2E"  (4) N owp——

1
At 2
L L . As with the other DI methods, it is second-order accurate.
which is a second-order accurate approximation of (3). This

method requires the storage of only one time level of ea
field component, and uses significantly fewer multiply an
add operations per time step than the other methods describeihe method of exponential fitting was originally developed
herein. in [11] and was designed to provide accurate integration of
Nickisch and Franke’s DI (NFDI) method [2] is slightlyordinary differential equations (ODE's) with solution compo-
different. It includes the terngJ™+1 + J™)/2 for J(¢) in (2) nents that vary rapidly on the order of a time step. As an
and approximates (3) by example, consider the ODE for current in (3) and its difference
approximation in (6). It is easy to show that the homogeneous
+ I = e E" (5) solution of this difference equation has a growth per time-step
2At factor of (1 — vA¢/2)/(1 + vAt/2). Notice, however, that

which is also second-order accurate. However, the meméﬂghomogeneous solution of the original differential equation

requirement for this method is greater than for Young's Dfaries ase™* and, thus, has a growth per time-step factor
method. as two time levels g must be stored. of ¢7¥2t, It is immediately apparent from a comparison of

The derivation of the recursive convolution methods {§1€Se eigenvalues that (6), when treated as a single, uncoupled
quite different, but the resulting iteration is a coupled sélifference equation, is a good approximation of (3) only for
of three first-order difference equations, just as in the mAt < 1. o o
case. These methods are based on a time-domain integral contrast, the application of one-step exponential fitting to
relatingD and E rather than an ordinary differential equatiort3) Yields the difference equation
relating J and E. For an isotropic cold plasma, the RC
method is derived in [3], and we refer the reader there J"7'=¢ VI + ZOQWAI; [(vAE 473 — 1) E*H
for de_tails. An im_proved RC method, the piecewise linear (1 _ VAt _I/Ate—uAt)En] @)
recursive convolution method (PLRC), has been developed and
applied to dispersive dielectrics [4]. This PLRC method can liee homogeneous solution of which has a growth per time-step
straightforwardly extended to a cold isotropic plasma by usirigctor of c=¥2*, and is, therefore, exponentially fitted to the
the time-domain susceptibility function from [3] to computeriginal ODE. Thus, treated as uncoupled difference equations,

. Exponential Fitting

Jn—l—l _ Jn—l
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(7) provides a more accurate integration of (3) than (6) for Maximum Stable Courant Number for PLRC
nonsmallrAt. From this, we might expect the exponentially 10 — —

fitted equation (7) to give a more accurate FDTD method for

nonsmallyAt when coupled to difference approximations of

(1) and (2) than the DI methods. However, as the accuracy

analysis in Section V will show, the exponentially fitted and

the various DI methods are comparably accurate for the entire VAL

range of plasma parameters. Like the new DI method, this

method requires two levels aF storage. o1l
As a notable aside, it can be shown that the RC method

in [3] is exactly equivalent to a particular first-order accu-

rate discretization using exponential fitting. This equivalence

demonstrates directly that this RC method is only first-order  0.01

accurate, a fact which is suggested by certain assumptions 001

in the original derivation of the methods and was pointed

out in [12]. Also, it was suggested in [3] that the recursiveig 1. A contour plot of the maximum stable courant number for the PLRC

convolution method for plasma would not be accurate at zerethod as a function afAt andwp At.

frequency due to a modification to the frequency-domain per-

mittivity that was made during the derivation. The equivalergs if the medium were free space. For Young's DI method

derivation u_sing exponential fittin_g T“a"es no Sl_JCh restric’Fio e stability requirement is slightly more restrictive. In [1], by
demonstrating that the method is indeed applicable to fiel ging a method outlined in [12], it was shown that for zero

with a dc component. collision frequency, the maximum stable Courant number
is given by /1 — (wpAt/2)2. We find from the numerical
stability analysis that this result is valid for all nonzerct

as well.

One of the two key properties that determines the utility For the NFDI method with zero collision frequency, the
of any difference approximation is stability. If a method ignaximum stable Courant number is the same as for Young's
unstable, then some (or all) spatial frequency componentsmfmethod,\/m_ However, ifvAt # 0, then the
the solution grow with time and eventually the desired solynethod is unconditionally unstable for all Courant numbers.
tion. The simplest stability analysis technique is von NeumaRthis result is not that surprising, as it is easy to show that
stability analysis [20]. Strictly speaking, this analysis is onlyye gifference approximation for the current equation in this
applicable to problems with periodic boundary conditions, angethod (5), when treated as a stand-alone ordinary difference
far more complicated techniques exist for evaluating Stabi”lé’quation, is unstable for all nonzero red2]. The instability
for a true initial-boundary value problem (e.qg., [21]). Howevegecomes more severe for increasingt.
we are concerned solely with the stability of the methods The pLRC method also has a stability criterion that varies
indppendent of boundary conditions, so von Neumann analygigh the medium parameters but that cannot be simply sum-
suits our needs. marized. Fig. 1 shows a contour plot of the maximum stable

We consider fields varying in one dimension for this sta~q,rant number as a function af-At and vAt. The max-
bility analysis, propagating in the direction with nonzero jjym stable Courant number is always less than unity and
componentsH,, E;, and J,. The spatially harmonic form pecomes significantly less than unity @ At increases. We
of the difference equations (found by assumingediv="2*  pave not considered values pfvt > 10, for at this point
variation in space) can be written in the general fan** = ' for all w that can exist in the finite-difference system. In
Bv", where A and B are matrices and is a column vector g regime, as can be seen from (3), th&/dt term becomes
containing all of the field components. The field growth P8hsignificant compared te.J, and to a good approximation
time-step factors are then given by the eigenvalues of iz medium becomes simply conducting with conductivity
matrix A~1B. If any of these eigenvalues are larger than uni%w%/y_
foranyk < 27 /Az, then the method is unstable. Alternatively, ' |nterestingly, the maximum stable Courant number for the
one could find the characteristic polynomial &~'B and qriginal RC method is actually greater than unity for all tested
determine these eigenvalues analytically as the zeros of thiggium parameters. However, the relatively low accuracy of
polynomial (an analysis of this type was performed in [13] fofyis method limits any practical utility of this property.

FDTD methods for dispersive dielectrics). However, we found || of the stability results from this section are summarized
the numerical method to be much simpler to implement angl Taple 1.
equally accurate, so we have used it here.

We have numerically determined the maximum stable
Courant number (defined agAt/Az) as a function of
the plasma medium parametetg-At and v At using this Accuracy is the second key property of a finite-difference
procedure. For the new DI and EF methods, the maximumethod. A straightforward technique that has been previously
stable Courant number is unity for allpA¢ and vAt, just used for determining the accuracy of FDTD methods [12], [13]

1.0r

0.99995
0.9999
0.99975
0.985
0.965

IV. STABILITY ANALYSIS

V. ACCURACY ANALYSIS
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TABLE |
NUMERICALLY DERIVED STABILITY LIMITS

Method Max. Courant Number

Young’s DI \/W

PLRC always < 1 (sce Figure 1)

NFDI if v =0, /1 (wpAt/2)?,
else unstable

New DI 1

Exponential Fitting 1

involves the construction of the dispersion relation relating VI,
the index of refractiom (or equivalently, the wave number

395

Finally, the dispersion relation for the PLRC method is

K =(1-¢) sin’ <wTAt> + 1Xo(l -

4
1 < A
ZAXO(l — AN Agysin? <th>
- (12)

eiwAt _ e—z/At

eiwAt)

where the expressions @, Ay, xo, and Axo are given
in [4].

From these relations, one can easily solve for the index of
refractionn(w) = ck(w)/w and then compare these numerical
indexes to those of the analytical problem.

| MPROVED ACCURACY VIA CUTOFF MODIFICATION?
It was noted in [1] that the cutoff frequency (i.e., frequency

k) to frequency for waves in the finite-difference system arfér which the wave numbek goes to zero and propagation
a subsequent comparison with the dispersion relation for ts@ps) for the collisionless finite-difference field equations
differential equations. This method allows easy evaluation bsing Young’s DI method is., = (2/At) sin™! (wpAt/2),
both the dispersion (real part @) and dissipation (imaginary which is slightly different from that of the collisionless an-
part of n) errors as a function of medium and numerical (e.galytic field equationsw., = wp. This difference increases
points per wavelength) parameters. We do not include théth increasingwpAt, which is a problem because one
NFDI method in this analysis, as it was shown to be unstabd@en wishes to run an actual simulation with the largest
for v # 0, and forr = 0, its accuracy and stability propertiespossiblewp At to keep the simulation as fast as possible.

are identical to Young’'s DI method.

Assuminge?“t=*2) variation for all of the field quantities,

the analytic plasma dispersion relation is, from (1)—(3)

2
(8)

2 Wp
N
1—e¢—

w

Ak =w

The dispersion relations satisfied by the finite-differen

approximations are found by assuming«!At—knummAz)
variation for the field quantities, witth and m enumerating

the time step and spatial grid point, respectively. L

K = (coAt/Az)? sin? (kpumAz/2). For the new DI finite-
difference method, the numerical dispersion relation is

<wpm>2 cos? <wAt

o (WAt _ 2 2

K =sin < 2 ) VAL )
l—1—c

ot wAt
2 2

(9)

It is a simple matter to change the plasma frequency used
in the FDTD model artificially to move the numerical cut-
off frequency to the physical cutoff frequency. Applying
this principle to Young's DI method, we arrive at the rela-
tion wi™ = (2/At) sin (wpAt/2), wherewp is the actual
plasma frequency to be simulated angl"™ is the plasma
frequency to be used in the numerical method. Similarly, for

Ctﬁe new DI method for which the cutoff condition is =

(2/At) tan™! (wpAt/2), this cutoff modification procedure
é/ie|d8w?)“m = (2/At) tan (wpAt/2). The application of this
ctutoff modification to the PLRC method is more complicated
due to the more complicated dispersion relation, and we do
not investigate it here.

This modification is an attempt to try to make the simulation
model the physics of the system more accurately, and we
show below that it indeed improves the numerical solution
under common conditions. Note that this change does not add
any complexity or additional work to the algorithm; it only

The diSpel’Sion relation for Young,s direct integration methomvo|ves Changing the p|asma frequency S“ghﬂy in the hopes

wpAt 2
2

is [1]
VAt WAL\’ (10)
— 1 T cot <—>

K = sin? <WAt> —
2
1
2

The dispersion relation for the exponentially fitted method

<wpm>2
2 wAt _ 2 P
K =sin < 5 ) Ap o lsin (wAt)

2sinh <I/At> sin <—WAt>
1 2 2

wAt _y I/At>

.
I/At S1n <

X

of getting a more accurate simulation.

VII. ACCURACY ANALYSIS RESULTS

We are now prepared to evaluate the accuracy of these
different methods for different plasma parameter regimes by
igomparing the numerical and analytic dispersion relations. All
of the numerical dispersion relations depend on the dimension-
less plasma parameterg- At andAt and the dimensionless
simulation parametersAt, kAz, andcoAt/Az. Given these
values,n,,m(w) can be determined and compared with the
analytical expressiom p,,1(w).

To help describe the errors in a given simulation, we exam-
ine dispersion and dissipation error as a function of frequency
for fixed medium parameters. The difference equations for
each of the four methods evaluated were rearranged so that
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10° , i i of each frequency component, is defined B8 (npum —
Nanal)/IM(Nana). Fig. 2 shows the dispersion error and the

2 o'l dissipation error as functions affor the above parameter val-
& ues. For perspective, this rangewof= 10*-107 corresponds to
bl 2l a sampling of=6000-6 points-per-period. Below the plasma
5 d frequency, Young’s DI method has slightly lower errors than
5 3 Di : N / the other three methods due to thel0% smallerAt and
o 10°F ispersion Error . . 4 . .
= Young's DI Ny Az. Had we not accounted for the different computational
=  NewDI- - - - \ [ requirements, the errors would have been even closer. Young's
£ 107y | Prponendal Pung = = = v ] DI and the PLRC methods have lower peak errors at the

plasma frequency than the others, and above the plasma
frequency, the PLRC method has the lowest error.

Strictly on the basis of accuracy, and considering that most
of the error in a real simulation would come from frequencies
near and above the plasma frequency, the PLRC method is the
_ ‘\. ! 3 best. However, accounting for memory requirements makes
///// : ! the choice less clear. A one-dimensional implementation of
/ E Young’'s DI method contains two coefficients that depend
' on the medium parametens and wp, while a equivalent
implementation of the PLRC method requires five of these
coefficients. In a simulation with an arbitrarily inhomogeneous

10° — = — 8 plasma in which these coefficients are different from cell to
10 10 1(3 10 10 cell, these coefficients should be computed ahead of time and
stored along with the field values. Such a simulation with the
::hig.l/zAt 'Z?ti ?:;;hee dispersion and dissipation errors as functions I p| RC method would thus require significantly more memory
' than one with Young's DI method. Clearly, which method is

superior depends on the intended use.
each method requires only one level of storage for each field

variable, which slightly increases the multiply and add cou%t JUAE > 1
(except for Young's DI method, which is already in this form), ~
but saves copy operations. As advertised, we account for thé\ext, we consider the plasma parameter regime where
differing computational requirements of each in this analysigdt = 1. The simulation parameters are the same as above,
by reducingAt and Az proportionally in the simulation using €xcept that we increase by a factor of 1000 to 3x 107,
Young's DI (which is faster than the other three methodsyielding At ~ 3.0 for all of the methods. Fig. 3 shows the
thereby increasing accuracy but slowing execution. The tim@ispersion error and the dissipation error versus frequency for
and space-step values used for each method are as follows e various methods.
new DI and EF methods both uget — 10-7 s andAz — 30 The four methods are fairly close in dispersion error. How-
m, the PLRC method usest = 0.9962x 10~7 s andAz = 30 €Vver, they differ more strongly in dissipation error, which is
m, and Young’s DI method usedt = 0.90075 x 107 s much larger than the dispersion error for much of the examined
and Az = 27.2727 m. These values were chosen so that f€dguency range. Young's DI method, even accounting for the
simulation of the same analytical problem with predeterminé&dnaller grid spacing, is the least accurate of the three for this
v and wp will take approximate'y the same amount of tim@arameter regime, while the PLRC has the greatest accuracy.
(within 8%) for each method and to provide the maximunthat the two DI methods do as well as the EF method is
stable Courant number for each method g5 = 3 x 106, somewhat surprising in the light of the previous observation
which is used in all of the simulations and analyses. that forvAt = 1, the integration of the equation for current is
We have divided this analysis into two regimes\t < 1 highly inaccurate for the direct integration methods.
and vAt = 1.

Dissipation Error
1g'E Young's DI

NewDI - - - -
Exponential Fitting — — —

relative error of Im(n)

C. Analysis of Cutoff Modification

A vAt < 1 Notice that forvAt < 1, there is a peak in both the
For thevAt < 1 case, the plasma parameters are chosdispersion and dissipation errors in all the methods near
to ber = 3 x 10* andwp = 3 x 10°. Using At and Az wp. This characteristic arises from the cutoff of the medium
from above givesop At = 0.3 andv At = 0.003 for all of the not being accurately modeled. As discussed in Section VI, a
methods. This choice afpAt is close to as large as it can besmall change can be made to the valuewgf used in the
and still yield accurate results (see Section VII-D below). simulation that will move the numerical cutoff frequency to
The total error can be separated into two parts: the dihe proper physical cutoff frequency. We now investigate the
persion error, which controls the phase error of each freffect that this change has on the accuracy of Young's DI
quency component, is defined B8(nyum —anal)/ Re(Nana1), Method and the new DI method. We use the same simulation
and the dissipation error, which controls the amplitude errparameters as above for the\t < 1 case.
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Fig. 3. Plots of dispersion and dissipation error as functions dor the ~ Fig- 4. A plot of dispersion and dissipation error versusfor Young's

vAt = 1 case. DI and the new DI methods with and without cutoff modification. Cutoff
modification reduces the upward spikes near the plasma frequency at the
expense of reduced accuracy at lower frequencies.

Fig. 4 shows the dispersion and dissipation error with and

without cutoff modification. For Young’s DI method, the A f dth | it q
accuracy fow < wp for the modified version is worse, but the*?” ¢ 10r a constanty, and the resulls are siraightiorward.

sharp upward spike near= wp has been eliminated in bothThe dispersion error increases linearly with- At (except

the dispersion and dissipation error. For the new DI methof r slightly more complicated behavior near> = w), and

the dispersion error fow < wp for the modified version is t 'e_ dissipation error is nearly constant with respeap faz. :

actually the same or better until < wp. The sharp upward This dgpendence can _also pe der_nonstrat_ed by a Taylor series

spike neaw = wp is also smoothed, though not quite to thémalyss of the numerical dlspersmr_] relations, but we do not

extent as for Young's DI method. present such here. Ft_thher.anaIyS|s s.ho.ws.that this general
There is a sharp change in the index of refraction inap|a8|quendence of Fhe, dispersion and dissipation error on the

as long as’ « wp (strictly speaking, a true cutoff exists Onlyparame_zter_prt IS mdepender_n of the value ofAt_. This .

for » = 0, but there is still a “cutoff” where the WavelengthreSUIt indicates that a!ong with the usual _sampllng _p_omts

becomes very large near the plasma frequency & wp). PE' Wavelength,pr_t is a_key parameter in determining

This analysis shows that the cutoff modification does a god3 accuracy of a given simulation for all of the methods

job of reducing the maximum dispersion and dissipation errspnswered.

at the expense of an accuracy reduction at low frequencies.

Reduction of the dispersion error near the cutoff is especially VIIl. N UMERICAL EXPERIMENTS

important, as these frequencies are the most dispersed due (g o\ present the results of numerical tests of the different
their slow group velocity and tend to be spread over the largestinogds to substantiate the error analysis of the previous
area of time and space in a simulation. For this reason, tigeiion. The problem to be solved is the reflection and trans-
accuracy tradeoff is often a good one to make. However, s qion at a smooth interface of free space and the medium in
v — wp, the benefit of cutoff modification is ‘Q.’UbStam'aHYquestion. As our accuracy analysis above is based on errors as
reduced because the sharpness of the cutoff in the mediym,nction of temporal frequency, we will examine the fields
drops significantly and there is a smaller peak in the numerlgfg a function of time for a fixed point in the plasma medium as

error. this allows an easier comparison between the accuracy analysis
and numerical experiments.

To compare the numerical solutions to a reference solution,
The accuracy of the various methods also clearly dependssimulations were run using the new DI method and the time
the parameterwp At, but the numerical dispersion relations forand space steps were successively decreased while maintaining

all of the methods depend similarly on this parameter. We hawgAt/Az = 1. The reference solutions were calculated using
analyzed the dispersion and dissipation error as a functiontmie and space steps 100 times smaller than those used for

D. Accuracy versus p At
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time (sec) Fig. 6. A plot of the numerical solutions computed by the various methods

of the late-time transmitted fields. The reference solution is shown for
Fig. 5. Plots of the reference solution reflected and transmitted pulses ¢@mparison. The EF and new DI methods are nearly identical.
the vAt <« 1 problem.

0.015

[ Reference: without CM:- - - - - with CM:— — |

the test solutions. The stability and consistency of the nevg
DI method guarantees convergence to the exact squtioE
and because of the second-order accuracy of this methog, 0.005
the reference solution has10000 times smaller error than %
the test solutions. Examination of the convergence of th@
solution asAt and Az were decreased showed this expecteds 9957
convergence rate, and the error in the reference solution i go1| °
safely insignificant compared to that in the test solutions. &

For each problem, a unity amplitude Gaussian pulse propa- %915 - o s o8 199 P
gating in free space is incident on a boundary with increasing time (sec)
plasma and collision frequencies having a hyperbolic tan-
gent dependence with distance, which creates a smooth éf%[.])? A plot of the numerical solution computed using Young’s DI method
; . . . . with and without cutoff modification. The reference solution is shown for
interface. The region of interest is 60 km long, with th@omparison.
plasma beginning at 27 km. The electric field is sampled each
time step at 24 km and 39 km to examine the reflected and ) )
transmitted fields, respectively. The field variations with timBéar« = wp for all of the methods (see Fig. 2) which occurs
at these output points are compared to the reference solutidAdhe frequencies with the lowest group velocity. Young's DI
A Gaussian pulse was chosen to have a nonzero dc comporélft the PRLC methods show the least error, primarily due to
to show that all of the plasma FDTD methods are valid for zefb!OWer peak error ab = wp for these methods compared to
frequency. The pulse width is such that the spectral amplitu¢ "éw DI and the EF methods.
of the pulse is down by a factor of 100 (compared to the Examining the reflected pulses gives the same results.

0.01}

zero-frequency amplitude) at = 107. The methods all yield generally good agreement with the
We again consider two plasma regimesAt < 1 and reference solution, though also with some significant phase
vAt = 1. error occurring in the later times similar to the error in the

transmitted pulses due to peak error near the plasma frequency.

A vAt < 1

For this case, we USﬁ?)la‘X =3x 106 S_l, pmax — 3y 104 B. Cutoff Modification
s~!, and At and Az, as in Section VII. Fig. 5 shows the Does the cutoff modification described in Section VI im-
reflected and transmitted pulses for the low¢ reference prove the solution? We find that the answer is a qualified
solution. Note the expected qualitative characteristics foradfirmative.
low-loss plasma: low frequencies reflected, high frequenciesFig. 7 shows the late-time transmitted fields for the ref-
transmitted, and the late-time transmitted and reflected fielelence solution and as computed using Young's DI method
approach the maximum plasma frequency, where the growjih and without cutoff modification. The difference is quite
velocity is slowest. clear: altering the plasma frequency so that the physical cutoff

Fig. 6 is a close up of the late-time transmitted solutioris better modeled by the numerical methods significantly
for the various methods along with the reference solution. Tiraproves the accuracy of the method near the plasma fre-
general envelope of all of the solutions is fairly accurate, bguency. Examination of the early time transmitted pulse shows
there is significant phase (dispersion) error present in all of ttieat cutoff modification even slightly improves the numerical
numerical solutions. This dispersion error is hardly noticeabdelution for frequencies above the plasma frequency, as was
in the early part of the transmitted pulse but worsens wittemonstrated in Fig. 4. The reflected pulse yields similar
time. This is a consequence of the peak in the dispersion erresults: cutoff modification improves the solution near the
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10 11 12 13 14 15 16 17 18 1.9 2x16°

time (sec) Fig. 9. A plot of the numerical solutions computed by the various methods

of the early-time transmitted fields. The reference solution is shown for

Fig. 8. Plots of the reference solution reflected and transmitted pulses §@mparison. The new DI and PLRC solutions nearly coincide with the
the At = 1 problem. reference solution, and the PLRC solution is the most accurate.

plasma frequency, and does not affect it much for frequenci€ke stability analysis showed that the method of Nickisch
lower thanwp. and Franke [2] is unstable for plasmas with nonzero collision
This confirms the analysis in Section VII-C which showeftrequency, which limits the usefulness of this method. The
that cutoff modification significantly reduces the maximumother methods considered had maximum Courant numbers
error (atw ~ wp). This cutoff-modified simulation did not close to or equal to unity.
show the effect of the expected increase in error at lowIn the accuracy analysis, we evaluated the accuracy of the
frequency, but it was not designed to do so. The applicationadrious methods as a function of computational effort. This
cutoff modification to the new DI method yields similar resultdype of analysis is more practically useful than one using
Further analysis indicates that cutoff modification providesa fixed At and Az, as it answers the question of which

significant benefit as long as/wp < 0.1. method provides the greatest accuracy in a fixed amount of
time. Using a dispersion error analysis, we found that for low-
C.vAt =1 loss (#At < 1) plasmas, the PLRC method [4] is the most

Fig. 8 shows the reflected and transmitted pulses 8 curate..Howe\./er, Young's DI method nearly as acpprate, s
the high#At reference solution. The characteristics of th%]gorlthmlt_:ally simpler, and can be_more memory efficient, so
medium have changed drastically from the lowst case. the select|0_n of the more appropriate method would depend
High frequencies suffer little dispersion (the main transmitted" the application. For lossyQt % 1) plasmas, the PLRC
pulse width is nearly the same as the incident pulse width) amfthOd was the most accgrate, followed clqsely by the new
significant loss, while low frequencies are strongly dispersela! methoq presentgd herein. These conclusions were verified
as can be seen by the long tail of the transmitted pulé@{ numerlc_al experiments. T . .
These characteristics are clearly approaching those of a sim I(\-,N(_a also introduced cutoff mod|f|cz_1t|on, a technique f(_)r_ im-
conductor. roving the accuracy of.a low-loss simulation at no add|t|0.nal

As for the At <« 1 case, this simulation highlights thecomputanonal cost. It is an _attempt to model the ph_yS|caI
errors at the frequencies of maximum error, which from Fig. toff of the cold plasma medium better by perturblng sllghtly
can be seen to be the higher frequencigs-(10°). Fig. 9 is a the value of the plasma freqqency used n the S|mqlat|on.
close up of the early-time transmitted solutions for the variotﬂ1r0ugh both accuracy analy_s_ls gnd nume_ncal ex_per_lments,
methods along with the reference solution. Young’s DI methdgVas shown that cutoff modification can yield a significant

and the EF method solutions show primarily dissipation err curacy_lmprovement f(_)r. p'asm‘."‘s .eXh'bltmg sharp cutoff
(the pulses are minimally shifted or spread but show aracteristics and containing excitation frequencies near the

amplitude error), and the new DI and PLRC methods haPe?SMa frequency.
almost no error at all. This verifies the dissipation error results
calculated in Section V and shown in Fig. 3—foiAt = 1,

PLRC is the most accurate method, followed closely by thé¢l] J. L. Young, “A full finite difference time domain implementation for
new DI method. rlé;dglfl wave propagation in a plasm&éadio Sci.yol. 29, pp. 1513-1522,
We do not examine the reflected pulse because it containg L. J. Nickisch and P. M. Franke, “Finite-difference time-domain solution
only low-frequency components for which the accuracy is very —of Maxwell's equations for the dispersive ionosphet&EE Antennas
high Propagat. Mag.,vol. 34, pp. 33-39, Oct. 1992.
gn. [3] R.J.Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent
finite-difference time-domain formulation for transient propagation in a
plasma,”IEEE Trans. Antennas Propaga¥gl. 39, pp. 29-34, Jan. 1991.
IX. SUMMARY AND CONCLUSION [4] D.F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution
We have analyzed the stability and accuracy of three ex- for dispersive media using FDTDJEEE Trans. Antennas Propagat.,

- . vol. 44, pp. 792-797, June 1996.
isting and two new (presented herein) FDTD methods fo[5] D. M. Sullivan, “Z-transform theory and the FDTD methodEEE

electromagnetic wave propagation in an isotropic cold plasma. Trans. Antennas Propagatpl. 44, pp. 28-34, Jan. 1996.
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