Logistic Regression with an Auxiliary Data Source

Xuejun Liao

Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708-0291, USA
Outline

- What is a classification problem
 - When training data and test data are mismatched ...
 - Migratory-Logit
 - Fast learning of Migratory-Logit
 - Active selection of labelled data
 - A toy example
 - An example on UC Irvine Data
What is a classification problem?

- A data generator $\Pr(x)$
- The true class labeler $\Pr(y|x)$
- What is known: training examples of $(x, y) \sim \Pr(x)\Pr(y|x)$
- The goal: predict y for $x \sim \Pr(x)$
- Point classifier: build a classifier from training instances.
- Ensemble classifiers

$$\Pr(y_{t+1}|x_{t+1}, w), \quad w \sim \Pr(w|x_{1:t}, y_{1:t})$$

predictive distribution

$$\Pr(y_{t+1}|x_{t+1}, x_{1:t}, y_{1:t}) = \int_w \Pr(y_{t+1}|x_{t+1}, w)\Pr(w|x_{1:t}, y_{1:t})$$
Outline

- What is a classification problem
- When training data and test data are mismatched ...
 - Migratory-Logit
 - Fast learning of Migratory-Logit
 - Active selection of labelled data
- A toy example
- An example on UC Irvine Data
When $Pr(x)Pr(y|x)$ varies ...

- Collect data at one UXO site, and make predictions about data at another UXO site
- Will the data be the same?
- Many factors affect data: weather, soil conditions, types of UXO, etc
Selection bias

- True distribution $\Pr(x, y)$
- Biased distribution $\Pr(x, y|s = 1)$, where (x, y) are drawn if and only if $s = 1$
- Let test examples $(x, y) \sim \Pr(x, y)$
- Let training examples $(x, y) \sim \Pr(x, y|s = 1)$
- A simple equation:

$$\Pr(x, y) = \frac{\Pr(s = 1)}{\Pr(s = 1|x, y)} \Pr(x, y|s = 1) \tag{1}$$

Is s independent of (x, y)?

- Estimate weighting coefficient $\frac{\Pr(s = 1)}{\Pr(s = 1|x, y)}$?
Reformulating the goal

- Denote by D^p a collect of examples
 $(x, y \text{ missing}) \sim \Pr(x, y)$

- Denote by D^a a collect of examples
 $(x, y) \sim \Pr(x, y|s = 1)$

- Goal: predict the labels of D^p given D^a are observed
Outline

- What is a classification problem
- When training data and test data are mismatched ...
- Migratory-Logit
 - Fast learning of Migratory-Logit
 - Active selection of labelled data
 - A toy example
 - An example on UC Irvine Data
Migratory Classification

- Let us relax a little, and assume access to labels of \mathcal{D}_l^p, a small subset of \mathcal{D}^p
- Goal: predict the labels of $\mathcal{D}_u^p = \mathcal{D}^p \setminus \mathcal{D}_l^p$ given $\mathcal{D}^a \cup \mathcal{D}_l^p$ are observed
- Key idea: we introduce an auxiliary variable μ_i for each $(x^a_i, y^a_i) \in \mathcal{D}^a$
- The μ plays a similar role as the weighting factors $\frac{\Pr(s=1)}{\Pr(s=1|x,y)}$ in (1).
- The auxiliary variables can be estimated along with the classifier
Some notations

- $\mathcal{D}^p = \mathcal{D}^p_l \cup \mathcal{D}^p_u$, with \mathcal{D}^p_l nonempty and fixed

- \mathcal{D}^p_l always indexed prior to \mathcal{D}^p_u: $\mathcal{D}^p_l = \{(x^p_i, y^p_i)\}_{i=1}^{N^p_l}$ and $\mathcal{D}^p_u = \{(x^p_i, y^p_i) : y^p_i \text{ missing}\}_{i=N^p_l+1}^{N^p}$.

- Let N^a, N^p, and N^p_l denote the size of \mathcal{D}^a, \mathcal{D}^p, and \mathcal{D}^p_l, respectively.

- $y^a, y^p \in \{-1, 1\}$

- x always includes a 1 as its first element to accommodate a bias (intercept) term, thus $x^p, x^a \in \mathbb{R}^{d+1}$ where d is the number of features.
Migratory-Logit

For \((x^p_i, y^p_i) \in \mathcal{D}_l^p,\)

\[
\Pr(y^p_i | x^p_i; w) = \sigma(y^p_i w^T x^p_i)
\]

(2)

where \(w \in \mathbb{R}^{d+1}\) is a column vector of classifier parameters and \(\sigma(\mu) = \frac{1}{1 + \exp(-\mu)}\) is the sigmoid function.

For \((x^a_i, y^a_i) \in \mathcal{D}^a,\) we define

\[
\Pr(y^a_i | x^a_i; w, \mu_i) = \sigma(y^a_i w^T x^a_i + y^a_i \mu_i)
\]

(3)

where \(\mu_i\) is an auxiliary variable.
Assuming \mathcal{D}_l^p and \mathcal{D}^a both contain i.i.d. instances, we have the log-likelihood function

$$
\ell(w, \mu; \mathcal{D}_l^p \cup \mathcal{D}^a) = \sum_{i=1}^{N_l^p} \ln \sigma(y_i^p w^T x_i^p) + \sum_{i=1}^{N^a} \ln \sigma(y_i^a w^T x_i^a + y_i^a \mu_i) \tag{4}
$$

where $\mu = [\mu_1, \cdots, \mu_{N^a}]^T$ is a column vector of all auxiliary variables.
The role of μ_i

- reflect the mismatch of (x_i^a, y_i^a) with D^p
- control (x_i^a, y_i^a)’s participation in the learning w
- If (x_i^a, y_i^a) and D^p are mismatched, w cannot make
 $$\sum_{i=1}^{N_i^p} \ln \sigma(y_i^p w^T x_i^p)$$ and
 $$\ln \sigma(y_i^a w^T x_i^a)$$ large at the same time.
- μ_i causes x_i^a to migrate towards class y_i^a
- w is less sensitive to (x_i^a, y_i^a) and can focus more on fitting D_i^p.

Let μ’s be free?

Overriding w and D^a will not participate in learning w

Constrained maximization

\[
\max_{\omega, \mu} \quad \ell(\omega, \mu; D^p \cup D^a) \\
\text{subject to} \\
\frac{1}{N^a} \sum_{i=1}^{N^a} y_i^a \mu_i \leq C, \quad C \geq 0 \\
y_i^a \mu_i \geq 0, \quad i = 1, 2, \cdots, N^a
\]

The μ_i always exerts a positive influence in fitting the data.

The classifier resulting from solving the problem in (5)-(7) is referred to as “Migratory-Logit” or “M-Logit”.

What is C?

$C = \text{average mismatch}$

An intuition

Mismatch ratio N^m / N^a: the fraction of D^a mismatched with D^p

The sigmoid function $\sigma(\mu)$ saturates at $\mu = \pm 12$

By letting $C = 12N^m / N^a$, we distribute $N^a C$ only to that part of D^a that is mismatched with D^p

As $0 \leq N^m \leq N^a$, letting $0 \leq C \leq 12$ is usually a reasonable choice.

Insensitivity
Outline

- What is a classification problem
- training data and test data are mismatched ...
- Migratory-Logit

Fast learning of Migratory-Logit

- Active selection of labelled data
- A toy example
- An example on UC Irvine Data
Fast Learning of Migratory-Logit

- Traditional learning
 - Is concave
 - Number of μ proportional to the size D^a
 - When D^a is large, estimation of μ’s will consume most of the computational time

Fast Learning of Migratory-Logit

- New idea
 - Alternately solve for \(w \) and \(\mu \), keeping one fixed when solving the other
 - Analytic solution of \(\mu \) for given \(w \)
- A theorem
Theorem 1 Let $f(z)$ be a twice continuously differentiable function and its second derivative $f''(z) < 0$ for any $z \in \mathbb{R}$. Let $b_1 \leq b_2 \leq \cdots \leq b_N$, $R \geq 0$, and

$$n = \max\{m : mb_m - \sum_{i=1}^{m} b_i \leq R, 1 \leq m \leq N\}$$ \hspace{1cm} (8)

Then the problem

$$\max \{z_i\} \quad \sum_{i=1}^{N} f(b_i + z_i)$$ \hspace{1cm} (9)

subject to

$$\sum_{i=1}^{N} z_i \leq R, \quad R \geq 0$$ \hspace{1cm} (10)

$$z_i \geq 0, \quad i = 1, 2, \cdots, N$$ \hspace{1cm} (11)

has a unique global solution

$$z_i = \begin{cases} \frac{1}{n} \sum_{j=1}^{n} b_j + \frac{1}{n} R - b_i, & 1 \leq i \leq n \\ 0, & n < i \leq N \end{cases}$$ \hspace{1cm} (12)
For a fixed w, the problem in (5)-(7) is simplified to maximizing

$$\max \sum_{i=1}^{N^a} \ln \sigma(y_i^aw^T \mathbf{x}_i^a + y_i^a \mu_i)$$ \hspace{1cm} (13)$$

subjectto

$$\frac{1}{N^a} \sum_{i=1}^{N^a} y_i^a \mu_i \leq C, \quad C \geq 0$$ \hspace{1cm} (14)$$

$$y_i^a \mu_i \geq 0, \quad i = 1, 2, \cdots, N^a$$ \hspace{1cm} (15)$$
Fast Learning of Migratory-Logit

- Applying Theorem

Assume \(y_{k_1}^a w^T x_{k_1}^a \leq y_{k_2}^a w^T x_{k_2}^a \leq \cdots \leq y_{k_N^a}^a w^T x_{k_N^a}^a \), where \(k_1, k_2, \cdots, k_{N^a} \) is a permutation of \(1, 2, \cdots, N^a \). Then

\[
\mu_{k_i} = \begin{cases}
\frac{1}{n} y_{k_i}^a \sum_{j=1}^{n} y_{k_j}^a w^T x_{k_j}^a + \frac{N^a}{n} y_{k_i}^a C - w^T x_{k_i}^a, & 1 \leq i \leq n \\
0, & n < i \leq N^a
\end{cases}
\]

(16)

where

\[
n = \max \left\{ m : m y_{k_m}^a w^T x_{k_m}^a - \sum_{i=1}^{m} y_{k_i}^a w^T x_{k_i}^a \leq N^a C, 1 \leq m \leq N^a \right\}
\]

(17)

- For a fixed \(\mu \), we solve \(w \) by gradient ascent

- The complete algorithm
Table 1: Fast Learning Algorithm of M-Logit

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Initialize (\mathbf{w}) and (\mu_i = 0) for (i = 1, 2, \ldots, N^a).</td>
</tr>
<tr>
<td>2.</td>
<td>Compute the gradient (\nabla_{\mathbf{w}} \ell) and Hessian matrix (\nabla^2_{\mathbf{w}} \ell).</td>
</tr>
<tr>
<td>3.</td>
<td>Compute the ascent direction (\mathbf{d} = - (\nabla^2_{\mathbf{w}} \ell)^{-1} \nabla_{\mathbf{w}} \ell).</td>
</tr>
<tr>
<td>4.</td>
<td>Do a linear search for the step-size (\alpha^* = \arg \max_{\alpha} \ell(\mathbf{w} + \alpha \mathbf{d})).</td>
</tr>
<tr>
<td>5.</td>
<td>Update (\mathbf{w}): (\mathbf{w} \leftarrow \mathbf{w} + \alpha^* \mathbf{d}).</td>
</tr>
<tr>
<td>6.</td>
<td>Sort ({ y_i^a \mathbf{w}^T \mathbf{x}i^a }{i=1}^{N^a}) in ascending order. Assume the result is (y_{k_1}^a \mathbf{w}^T \mathbf{x}{k_1}^a \leq y{k_2}^a \mathbf{w}^T \mathbf{x}{k_2}^a \leq \cdots \leq y{k_{N^a}}^a \mathbf{w}^T \mathbf{x}{k{N^a}}^a), where (k_1, k_2, \ldots, k_{N^a}) is a permutation of (1, 2, \ldots, N^a).</td>
</tr>
<tr>
<td>7.</td>
<td>Find the (n) using (17).</td>
</tr>
<tr>
<td>8.</td>
<td>Update the auxiliary variables ({ \mu_i }_{i=1}^{N^a}) using (16).</td>
</tr>
<tr>
<td>9.</td>
<td>Check the convergence of (\ell): exit and output (\mathbf{w}) and ({ \mu_i }_{i=1}^{N^a}) if converged; go back to 2 otherwise.</td>
</tr>
</tbody>
</table>
Outline

- What is a classification problem
- training data and test data are mismatched ...
- Migratory-Logit
- Fast learning of Migratory-Logit

Active selection of labelled data

- A toy example
- An example on UC Irvine Data
Active Selection of \mathcal{D}_l^p

- Let Q denote the Fisher information matrix of $\mathcal{D}_l^p \cup \mathcal{D}^a$ about w.

- By definition, $Q = \mathbb{E}\{y_i^p, y_i^a\} \frac{\partial \ell}{\partial w} \frac{\partial \ell}{\partial w}^T$, and substituting (4) into this equation gives

$$Q = \sum_{i=1}^{N_l^p} \sigma_i^p (1 - \sigma_i^p) x_i^p x_i^p^T + \sum_{i=1}^{N_a} \sigma_i^a (1 - \sigma_i^a) x_i^a x_i^a^T$$

where $\sigma_i^p = \sigma(w^T x_i^p)$ for $i = 1, 2, \ldots, N_l^p$, and $\sigma_i^a = \sigma(w^T x_i^a + \mu_i)$ for $i = 1, 2, \ldots, N_a$.

- The w and $\{\mu_i\}$ represent the true classifier and auxiliary variables.

- Replacing truth with estimates
Active Selection of \mathcal{D}^p_l

- The inverse Fisher information Q^{-1} lower bounds the covariance matrix of the estimated w.

- In particular, $[\det(Q)]^{-1}$ lower bounds the product of variances of the elements in w.

- The goal in selecting \mathcal{D}^p_l is to reduce the variances, or uncertainty, of w.

- Thus we seek the \mathcal{D}^p_l that maximize $\det(Q)$.
Active Selection of \mathcal{D}_l^p

Sequential selection

- Initially $\mathcal{D}_u^p = \mathcal{D}^p$, \mathcal{D}_l^p is empty, and $Q = \sum_{i=1}^{N^a} \sigma_i^a (1 - \sigma_i^a) x_i^a x_i^a^T$

- Then one at a time, a data point $x_i^p \in \mathcal{D}_u^p$ is selected and moved from \mathcal{D}_u^p to \mathcal{D}_l^p.

- This causes Q to be updated as: $Q \leftarrow Q + \sigma_i^p (1 - \sigma_i^p) x_i^p (x_i^p)^T$.

- The w and $\{\mu_i\}$ are re-estimated

- At each iteration, the selection is based on

\[
\max_{x_i^p \in \mathcal{D}_u^p} \det \left\{ Q + \sigma_i^p (1 - \sigma_i^p) x_i^p (x_i^p)^T \right\} \\
= \max_{x_i^p \in \mathcal{D}_u^p} \left\{ 1 + \sigma_i^p (1 - \sigma_i^p) (x_i^p)^T Q^{-1} x_i^p \right\}
\]

(19)
Outline

- What is a classification problem
- training data and test data are mismatched ...
- Migratory-Logit
- Fast learning of Migratory-Logit
- Active selection of labelled data
- A toy example
- An example on UC Irvine Data
Experimental Setup

Four classifiers are compared:

- Migratory-Logit trained on $D^a \cup D^p_l$
- Standard Logit trained on $D^a \cup D^p_l$
- Standard Logit trained on D^p_l
- Standard Logit trained on D^a

The D^p_l are either randomly selected from D^p, or actively selected from D^p

For random D^p_l, the test error rates are an average from 50 independent trials
Experimental Setup

- The four classifiers are tested on $\mathcal{D}_u^p = \mathcal{D}^p \setminus \mathcal{D}_l^p$, using the rule: declare $y^p = -1$ if $\sigma(w^T x^p) \leq 0.5$ and $y^p = 1$ otherwise, for any $x^p \in \mathcal{D}_u^p$.

- $C = 6$ for Migratory-Logit
A toy Example

\(\mathcal{D}^p \) are two bivariate Gaussian distributions:
\[
\Pr(x^p | y^p = -1) = \mathcal{N}(x^p; \mu_0, \Sigma) \quad \text{and} \quad \Pr(x^p | y^p = +1) = \mathcal{N}(x^p; \mu_1, \Sigma),
\]
with \(\mu_0 = [0, 0]^T \), \(\mu_1 = [2.3, 2.3]^T \), and \(\Sigma = \begin{bmatrix} 1.75 & -0.433 \\ -0.433 & 1.25 \end{bmatrix} \).

\(\mathcal{D}^a \) are a selective draw from the two Gaussian distributions, with the selection probability
\[
\Pr(s | x^p, y^p = -1) = \sigma(w_0 + w_1 K(x^p, \mu_s^0; \Sigma)) \quad \text{and} \quad \Pr(s | x^p, y^p = +1) = \sigma(w_0 + w_1 K(x^p, \mu_s^1; \Sigma)),
\]
where \(\sigma \) is the sigmoid function, \(w_0 = -1 \), \(w_1 = \exp(1) \),
\[
K(x^p, \mu_s^0; \Sigma) = \exp\{-0.5(x^p - \mu_s^0)^T \Sigma^{-1}(x^p - \mu_s^0)\} \quad \text{with} \quad \mu_s^0 = [2, 1]^T,
\]
and
\[
K(x^p, \mu_s^1; \Sigma) = \exp\{-0.5(x^p - \mu_s^1)^T \Sigma^{-1}(x^p - \mu_s^1)\} \quad \text{with} \quad \mu_s^1 = [0, 3]^T.
\]

We obtain 150 samples of \(\mathcal{D}^p \) and 150 samples of \(\mathcal{D}^a \), which are shown in Figure 2.
A toy Example

The size of $x^a_i \in D^a$ is displayed in proportion to $\exp(-y^a_i \mu_i / 12)$

Figure 1: Illustration of active data selection by Migratory-Logit.
A toy Example

The size of $x_i^a \in D^a$ is displayed in proportion to $\exp(-y_i^a \mu_i/12)$

Figure 2: Illustration of active data selection by Migratory-Logit.
A toy Example

movie of data selection
A toy Example

Figure 3: Error rates of Migratory-Logit and logistic regression on the toy data, as a function of size of D^p_l. The primary labeled data D^p_l are actively selected from D^p.

A toy Example

Figure 4: Test error rates of Migratory-Logit and logistic regression on the toy data, as a function of size of D_P^p. The primary labeled data D_P^p are randomly selected from D_P. The error rates are an average over 50 independent trials of random selection of D_P^p.

Outline

- What is a classification problem
- training data and test data are mismatched ...
- Migratory-Logit
- Fast learning of Migratory-Logit
- Active selection of labelled data
- A toy example
- An example on UC Irvine Data
569 instances with feature dimensionality 30

We randomly partition the data set into 228 training data \(\mathcal{D}^a \) and 341 test data \(\mathcal{D}^p \).

We artificially make \(\mathcal{D}^a \) mismatched with \(\mathcal{D}^p \) by making changing to 50\% randomly chosen \((x^a_i, y^a_i) \in \mathcal{D}^a:\) change the signs of \(y^a_i \) and add 0 dB white Gaussian noise to \(x^a_i \).

The test errors are summarized in Figure 5 for actively selected \(\mathcal{D}^p_i \) and Figure 6 for randomly selected \(\mathcal{D}^p_i \).
Results on Wisconsin Breast Cancer Data

Figure 5: The D^p_i are randomly selected from D^p. The error rates are an average over 50 independent trials of random selection of D^p_i.

Results on Wisconsin Breast Cancer Data

Figure 6: The \mathcal{D}_l^p are actively selected from \mathcal{D}^p.

Using wdbc data from UCI

- M–Logit (C=6) trained on $\mathcal{D}^a +$ active \mathcal{D}_l^p
- Logistic regression trained on $\mathcal{D}^a +$ active \mathcal{D}_l^p
- Logistic regression trained on active \mathcal{D}_l^p
- Logistic regression trained on \mathcal{D}^a
Migratory-Logit with different C’s, using the Wisconsin Breast Cancer Databases of UCI. The primary labeled data D^p_i are actively selected from D^p.

Figure 7: Comparison of Migratory-Logit with different C’s, using the Wisconsin Breast Cancer Databases of UCI. The primary labeled data D^p_i are actively selected from D^p.
Summary

- We have proposed Migratory-Logit to learn in the presence of mismatch between the training data D^a and the testing data D^p.

- The basic idea is to introduce an auxiliary variable μ_i for each example $(x^a_i, y^a_i) \in D^a$.

- We have developed a fast learning algorithm to enhance the ability of M-Logit to handle large auxiliary data sets.

- The primary labeled data D^p_l is actively selected to enhance adaptivity.

- The experimental results demonstrate that if the classifier trained on D^a is to generalize well to D^p, the mismatch between D^a and D^p must be compensated.