Region-Based Value Iteration for Partially Observable Markov Decision Processes

Hui Li, Xuejun Liao, and Lawrence Carin
{hli1,xjliao,lcarin}@ee.duke.edu

Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708-0291, USA
Outline

- Review of POMDPs
- Region-based Value Iteration (RBVI)
 - RBVI: Overview
 - RBVI: Formal Formulation
 - RBVI: Parameter Estimation
- Experimental Results and Time Complexity Analysis
- Conclusions
Review of POMDPs

The POMDP is a tuple \((S, A, O, T, \Omega, R)\)

- \(S, A, O\) — states, actions, observations
- \(T\) — action-dependent state transition matrix
- \(\Omega\) — action-dependent observation function
- \(R\) — reward function

- Stochastic state transitions — the consequence of an action is uncertain
- Partially observable states — the states are not observed directly but are inferred from perception that partially characterizes the states
- Delayed reward — the present action has influences into the future
Review of POMDPs (cont’d)

- Belief state — the belief state is a sufficient statistic that summarize the history
- Belief state MDP — the POMDP is a discrete time and continuous state MDP
- Belief update (transition)

\[
b'(s') = \frac{\sum_s b(s) T_{ss'} \Omega_{s'o}^a}{p(o|b, a)}
\]

(1)

\[
p(o|b, a) = \sum_{s'} \sum_s b(s) T_{ss'} \Omega_{s'o}^a
\]

(2)

- Piecewise linear convexity — the optimal value of an POMDP is a piecewise linear and convex function of belief state for a finite horizon
Bellman Equation

- Optimal value function $V^n(b)$ for horizon n

$$V^n(b) = \max_{a \in A} \left[\sum_{s \in S} b(s) R(s, a) + \gamma \sum_{o \in O} \sum_{s', s'' \in S} b(s) T_{ss'}^a \Omega_{s', o}^{n-1} V^{n-1}(b') \right]$$ \hspace{1cm} (3)

- Piecewise linear convexity

$$V^n(b) = \max_k \left[\sum_{s \in S} \alpha_k^n(s) b(s) \right] = \max_k (b^T \cdot \alpha_k^n)$$ \hspace{1cm} (4)

- Substituting (4) and (1) into (3),

$$V^n(b) = \max_{a \in A} \sum_{s \in S} b(s) \left[R(s, a) + \gamma \sum_{o \in O} \sum_{s' \in S} T_{ss'}^a \Omega_{s', o}^{n-1} l(b, a, o)(s') \right]$$ \hspace{1cm} (5)

$$l(b, a, o) = \arg \max_k \left\{ \sum_{s \in S} b(s) \sum_{s' \in S} T_{ss'}^a \Omega_{s', o}^{n-1} \right\}$$ \hspace{1cm} (6)
RBVI probabilistically partitions the belief simplex into a number of ellipsoidal regions, in each of which the optimal value function $V(b)$ is linear in b.

Figure 1: Approximating the polyhedral piecewise linear value function by an ellipsoidal piecewise linear function
RBVI versus PBVI

Horizon n

Horizon $n-1$

PBVI

α-vectors

Bellman Equation

α-vectors

RBVI

values of belief points

Bellman Equation

α-vectors

Piecewise linear regressor

Figure 2: An illustration of Region-Based Value Iteration (RBVI)
Finite set of Belief Points \mathcal{B}

At each expansion, consider all actions $a \in A$, and draw observations by
\[o \sim p(o | b, a), \quad \forall a \in A \]

Figure 3: An illustration of how to generate a finite set of belief points \mathcal{B}
Characteristics of RBVI

- RBVI maintains an α-vector for each convex region over which the optimal value function is linear.
- RBVI jointly estimates the α-vectors for all convex regions based on all available belief points.
- Each polyhedral convex region is approximated as one or more ellipsoidal regions.
- RBVI estimates the α-vectors along with the position and shape of each ellipsoidal region via efficient expectation maximization (EM) and variational Bayesian EM (VBEM).
Mathematical Formulation

- $V(b)$ is modeled as

$$V(b) = \begin{cases}
\alpha_1^T b + e_1 & \text{if } b \in B_1 \\
\alpha_2^T b + e_2 & \text{if } b \in B_2 \\
\cdots & \cdots \\
\alpha_K^T b + e_K & \text{if } b \in B_K
\end{cases}, \quad e_k \sim \mathcal{N}(0, \mu^2_k) \quad (7)$$

- Letting $z(b) = k$ indicate that $b \in B_k$, (7) is written as

$$p(V(b) | b, z(b) = k; \alpha) = \frac{1}{\sqrt{2\pi \mu^2_k}} \exp \left\{ -\frac{(V(b) - \alpha_k^T b)^2}{2\mu_k^2} \right\} \quad (8)$$
The k-th ellipsoidal region is represented probabilistically as

$$p(b | z(b) = k; c, D) = \frac{1}{\sqrt{(2\pi)^d \det D_k}} e^{-\frac{1}{2} (b-c_k)^T D_k^{-1} (b-c_k)}$$ \hspace{1cm} (9)$$

where c_k and D_k represents the position and shape of the k-th region, respectively.

For any given b, the prior distribution of $z(b)$ over the K ellipsoidal regions is assumed

$$p(z(b) = k) = \omega_k$$ \hspace{1cm} (10)$$

The joint probability of $V(b)$ and b is given by

$$p(V(b), b ; \omega, c, D, \alpha) = \sum_{k=1}^{K} \omega_k p(b | z(b) = k; c, D) p(V(b) | b, z(b) = k; \alpha)$$ \hspace{1cm} (11)$$
Expectation Maximization (EM)

Given a set of belief points $\mathcal{B} = \{b_1, \cdots, b_{|\mathcal{B}|}\}$ and the associated optimal values $\mathcal{V} = \{V_1, \cdots, V_{|\mathcal{B}|}\}$, obtained by plugging α vectors into the Bellman equation,

- the likelihood function is given by

$$p(\mathcal{V}, \mathcal{B}; \omega, c, D, \alpha)$$

$$= \prod_{i=1}^{|\mathcal{B}|} \sum_{k=1}^{K} \omega_k p(b_i | z_i = k; c, D) p(V_i | b_i, z_i = k; \alpha)$$

(12)

- the parameters $\{\omega, c, D, \alpha\}$ that maximize the likelihood function are found by performing the EM iterations.
The EM algorithm is an iterative computation of

- **E-Step**: calculate the posterior of z

$$
\delta_k^i = p(z_i = k | V_i, b_i) = \frac{\omega_k p(b_i | z_i = k; c, D) p(V_i | b_i, z_i = k; \alpha)}{\sum_{k=1}^K p(b_i | z_i = k; \omega, c, D) p(V_i | b_i, z_i = k; \alpha)}
$$ \hspace{1cm} (13)

- **M-Step**: re-estimate the parameters $\{c, D, \alpha, \omega\}$

$$
\hat{\omega}_k = \frac{\sum_{i=1}^{|B|} \delta_k^i}{|B|}, \hspace{1cm} \hat{c}_k = \frac{\sum_{i=1}^{|B|} \delta_k^i b_i}{\sum_{i=1}^{|B|} \delta_k^i}
$$ \hspace{1cm} (14)

$$
\hat{D}_k = \frac{\sum_{i=1}^{|B|} \delta_k^i (b_i - \hat{c}_k)(b_i - \hat{c}_k)^T}{\sum_{i=1}^{|B|} \delta_k^i}
$$ \hspace{1cm} (15)

$$
\hat{\alpha}_k = \left[\sum_{i=1}^{|B|} \delta_k^i b_i b_i^T \right]^{-1} \sum_{i=1}^{|B|} \delta_k^i V_i b_i
$$ \hspace{1cm} (16)
Variational Bayesian EM

Compared with EM, variational Bayesian EM

- is less sensitive to local maxima or singularities of the likelihood function
- can automatically select K the number of regions
- treats ω as model hyper-parameters and find the ω that maximizes the marginal likelihood

\[
p(\mathcal{V}, \mathcal{B}|\omega) = \int p(\mathcal{V}, \mathcal{B}|\Theta, \omega)p(\Theta)d\Theta \tag{17}
\]

where $\Theta = \{c, D, \alpha\}$ and $p(\Theta)$ is the prior distribution of Θ.
The VB-EM algorithm is an iterative computation of

- **VBE-Step:** calculate the variational posterior $q(z)$

$$
q(z_i = k) \propto \exp \left\{ \frac{1}{2} \left[\sum_{j=1}^d \psi \left(\frac{n_k^{+1} - j}{2} \right) + \ln |S_k| \right] - \frac{1}{2} \ln 2\pi \mu_k^2 + \beta_k - \frac{1}{2\mu_k^2} \left[(V_i - \eta_k^T b_i)^2 + b_i^T \Sigma_k b_i \right] - \frac{d}{2} \left[(b_i - m_k)^T n_k S_k (b_i - m_k) \right] \right\}
$$

- **VBM-Step:** calculate the variational posterior $q(\Theta)$

$$
\beta_k^{-1,\text{new}} = \beta_k^{-1,0} + \sum_{i=1}^{\text{|B|}} \delta_k^i, \quad m_k^{\text{new}} = \frac{\beta_k^{-1,0} m_k^0 + \sum_{i=1}^{\text{|B|}} \delta_k^i b_i}{\beta_k^{-1,0} + \sum_{i=1}^{\text{|B|}} \delta_k^i b_i} \\
n_k^{\text{new}} = n_k^0 + \sum_{i=1}^{\text{|B|}} \delta_k^i, \quad \Sigma_k^{-1,\text{new}} = \Sigma_k^{-1,0} + \sum_{i=1}^{\text{|B|}} \delta_k^i b_i b_i^T \mu_k^2 \\
\eta_k = \left(\Sigma_k^{-1,\text{new}} \right)^{-1} \left(\Sigma_k^{-1,0} \eta_k^0 + \frac{\sum_{i=1}^{\text{|B|}} b_i V_i \delta_k^i}{\mu_k^2} \right) \\
S_k^{-1,\text{new}} = S_k^{-1,0} + \sum_{i=1}^{\text{|B|}} \delta_k^i b_i b_i^T + \beta_k^{-1,0} m_k^0 m_k^0, T - m_k^{\text{new}} m_k^{\text{new}, T} \beta_k^{-1,\text{new}}
$$

- **Model selection:** re-estimate the model hyper-parameters

$$\omega_k = \frac{1}{|B|} \sum_{i=1}^{\text{|B|}} q(z_i = k)$$

Hui Li, Xuejun Liao, and Lawrence Carin

RBVI for POMDPs

ICML 2006 – p. 15/22
Table 1: The complete RBVI algorithm with an EM estimator

<table>
<thead>
<tr>
<th>Input: POMDP model ((S, A, T, O, \Omega, R)), (K), initial (\alpha)-vectors (\alpha^0), convergence criterion for the (\ell) function, convergence criterion for the value function or maximum length of horizon (T);</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: the (\alpha)-vectors (\alpha^n)</td>
</tr>
</tbody>
</table>

1. Determine the set of belief points \(\mathcal{B} = \mathcal{B}_{ske} \cup \mathcal{B}_{exp} = \{b_1, b_2, \cdots, b_{|\mathcal{B}|}\}\); let \(n = 1\).
2. Repeat until \(n = T\) or \(\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} V^n(b_i)\) converges in \(n\):
 2.1. Compute \(V^n(b), \forall b \in \mathcal{B}\), using (3); record the values \(\mathcal{V} = \{V_1, V_2, \cdots, V_{|\mathcal{B}|}\}\), where \(V_i = V^n(b_i), i = 1, 2, \cdots, |\mathcal{B}|\).
 2.2. Initialize \(\{\omega, c, D, \alpha\}\); let \(\mu_k = std(\mathcal{V}), k = 1, 2, \ldots, K\).
2.3. Repeat until the \(\ell\) function in (12) converges:
 2.3.1. E-Step: compute \(\delta^i_k\) using (13) along with (8) and (9).
 2.3.2. M-Step: compute the updated parameters \(\{\omega, \hat{c}, \hat{D}, \hat{\alpha}\}\) using (14), (15), and (16); let \(c = \hat{c}, D = \hat{D}, \text{ and } \alpha = \hat{\alpha}\).
2.4. Record \(\alpha^n = \alpha\); let \(n = n + 1\).
Experimental Results

Four benchmark problems considered:

- Tiger-grid, Hallway, and Hallway2 (Littman et al., 1995)
- Tag (Pineau et al., 2003)

The algorithms being compared:

- Grid (Brafman, 1997)
- PBUA (Poon, 2001)
- PBVI (Pineau et al., 2003)
- BPI (Poupart & Boutilier, 2003)
- Perseus (Spaan & Vlassis, 2004)
- HSVI (Smith & Simmons, 2004; Smith & Simmons, 2005)

- The proposed algorithm
Experimental Results (cont’d)

Table 2: Results on the benchmark problems, where T denotes time in seconds, $|\Gamma|$=number of α-vectors, n.a.=not applicable, and n.v.=not available. The results marked with * are those we obtained by coding the respective algorithms in Matlab; other results are cited from the literature and may have been coded in languages other than Matlab and executed on computer platforms different from ours.

Method	Reward	$T(s)$	$	\Gamma	$	Method	Reward	$T(s)$	$	\Gamma	$				
Tiger-Grid	$	S	= 33,	A	= 5,	O	= 17	Honey-Grid	$	S	= 57,	A	= 5,	O	= 21
Grid	0.94	n.v.	174	Grid	n.v.	n.v.	n.v.								
PBUA	2.30	12116	660	PBUA	0.53	450	300								
PBVI	2.25	3448	470	PBVI	0.53	288	86								
PBVI (*)	2.23	2239	970	PBVI (*)	0.54	1166	408								
BPI	2.22	1000	120	BPI	0.51	185	43								
Perseus	2.34	104	134	Perseus	0.51	35	55								
HSVI1	2.35	10341	4860	HSVI1	0.52	10836	1341								
HSVI2	2.30	52	1003	HSVI2	0.52	2.4	147								
RBVI-EM (*)	1.95	135	10	RBVI-EM (*)	0.54	88	10								
RBVI-VBEM (*)	2.05	64	10	RBVI-VBEM (*)	0.54	84	10								
Table 3: Results on the benchmark problems, where T denotes time in seconds, $|\Gamma|$=number of α-vectors, n.a.=not applicable, and n.v.=not available. The results marked with * are those we obtained by coding the respective algorithms in Matlab; other results are cited from the literature and may have been coded in languages other than Matlab and executed on computer platforms different from ours.

Method	Reward $T(s)$	$	\Gamma	$				
Hallway2	$	S	= 89$, $	A	= 5$, $	O	= 17$	
PBUA	0.35	27898	1840					
PBVI	0.34	360	95					
PBVI (*)	0.35	2345	572					
BPI	0.32	790	60					
Perseus	0.35	10	56					
HSVI1	0.35	10010	1571					
HSVI2	0.35	1.5	114					
RBVI-EM (*)	0.30	90	15					
RBVI-VBEM (*)	0.31	103	15					
Tag	$	S	= 870$, $	A	= 5$, $	O	= 30$	
PBUA	n.v.	n.v.	n.v.					
PBVI	-9.180	180880	1334					
PBVI (*)	n.v.	n.v.	n.v.					
BPI	-6.65	250	17					
Perseus	-6.17	1670	280					
HSVI1	-6.37	10113	1657					
HSVI2	-6.36	24	415					
RBVI-EM (*)	-6.56	2481	15					
RBVI-VBEM (*)	-6.34	2430	15					
Figure 4: The $\omega_k = p(z = k)$ estimated by VBEM.
Time Analysis in Big O Notation

Table 4: Time Comparison in Big O Notation, where \(\dim(\tilde{b}) \) denotes the dimensionality of \(\tilde{b} = U^T b \) and \(U \) is a matrix whose orthonormal columns span the space of \(\tilde{b} \); \(N_\Upsilon \) denotes the number of EM or VBEM iterations.

<table>
<thead>
<tr>
<th>Computation with Bellman equation</th>
<th>EM or VBEM computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBVI (O(</td>
<td>B</td>
</tr>
<tr>
<td>RBVI (O(</td>
<td>B</td>
</tr>
</tbody>
</table>

The second stage of RBVI can be computed more efficiently than PBVI when: either (i) \(\frac{|S|}{|A||O|} \) is not too large, as in Tiger-Grid, Hallway, and Hallway2; or (ii) \(\dim(\tilde{b}) = \dim(U^T b) \ll \dim(b) = |S| \) as in Tag where \(\dim(\tilde{b}) = 176 \).
Conclusions

- An approximate value iteration algorithm, region-based value iteration (RBVI), is proposed to find the optimal policy for the POMDP.

- The RBVI maintains a single α-vector for each ellipsoidal belief region over which the optimal value $V^n(b)$ is linear in b for finite horizon n.

- The compact representation of the value function brings significant computational savings.

- The results on benchmark problems show the RBVI produces performance that is competitive to state-of-the-art POMDP algorithms by using a significantly smaller number of α-vectors.