Why We Study Faults

• Know thy enemy!
• If we don’t understand faults, it is much more difficult to design systems that can tolerate them
 – We at least have to know how to model them

Faults

• Fault: incorrect state of hardware or software resulting from physical defect, design flaw, or operator error
• Faults introduced during system design
 – Pentium’s incorrect floating point division design
 – Bug in software could cause infinite loop
• Faults introduced during manufacturing
 – Bad solder connection between chip pin and motherboard
 – Broken wire within chip
• Faults that occur during operation
 – Cosmic ray knocks charge off DRAM cell
 – System administrator incorrectly installs new software
Errors

- Error: manifestation of a fault
 - Bit in main memory is a 0 instead of a 1 (due to cosmic ray)
 - Software pointer that mistakenly points to NULL (due to bug)

- But not all faults lead to errors!
 - Trees falling in empty forests don’t make sounds

- Examples of masked faults
 - Cosmic ray knocks charge off logic signal, but after it had been correctly latched in and saved
 - Buggy software that isn’t reached

Failures

- Failure: system level effect of an error (user-visible)
 - System produces incorrect result of computation (e.g., $2+2=5$)
 - System “hangs” (e.g., Blue Screen of Death)

- Not all errors lead to failures!

- Examples of masked errors
 - Bit flip in memory location that’s not accessed again
 - NULL pointer that’s not referenced again

Fault → Error → Failure Examples

- Cosmic ray knocks charge off of DRAM cell
 → Error: bit flip in memory
 → Failure: computation produces incorrect result

- Software bug could allow for NULL pointer
 → Bug gets exercised and we get NULL pointer
 → Program seg faults when it tries to access pointer

Duration of Faults/Errors

- Transient (soft): occurs once and disappears
 - E.g., Cosmic ray knocks charge off transistor → bit flip
 - Tend to be due to transient physical phenomena
 - Also known as Single Event Upset (SEU)

- Intermittent: occurs occasionally
 - E.g., Loose connection → occasionally open circuit
 - E.g., Bug in little-used software for rounding → incorrect data

- Permanent (hard): occurs and doesn’t go away
 - E.g., Broken connection → always open circuit
Masking

• Logical
 – E.g., if a fault flips a bit from 0 to 1 and it is then ANDed with a bit that is 0, then the fault cannot manifest itself as an error

• Functional
 – E.g., incorrect data is produced by an instruction that gets squashed due to a branch misprediction
 – E.g., the destination register of a NOP is corrupted by a fault

Outline

• Intro and Terminology
• Causes of Faults and Trends
• Fault Models
• Research Papers

Physical Defects: Transient Phenomena

• Cosmic radiation (refer to Ziegler’s paper)
 – High energy particles that constantly bombard Earth
 – May have enough energy to disrupt charge on transistor (Q_{crit})
 – Used to be only a problem for DRAM, but becoming a problem for SRAM and even for logic (as Q_{crit} decreases)
 – Trends:
 » Q_{crit} decreasing
 » Probability increasing that a cosmic ray that hits a transistor will disrupt its charge
 » Transistor size decreasing \Rightarrow smaller probability that a cosmic ray will hit a particular transistor
 » More transistors per system \Rightarrow greater probability of fault

• Alpha particle radiation
 – Similar to cosmic rays, but radiation comes from metal decay
 – Often, the metal housing of the computer is the source
 – Lead solder joints also a problem \Rightarrow want to use “old lead”
 – Trends (same as for cosmic radiation):
 » Q_{crit} decreasing
 » Probability increasing that an alpha particle that hits a transistor will disrupt its charge
 » Transistor size decreasing \Rightarrow smaller probability that an alpha particle will hit a particular transistor
 » More transistors per system \Rightarrow greater probability of fault
Physical Defects: Transient Phenomena

- Electromagnetic Interference (EMI)
 - Electromagnetic waves from other sources (e.g., microwave oven, power lines, etc.) can cause transient disruptions
 - EMI can be created by the circuit itself! Called “crosstalk”
 - EMI can induce electrical current on wires and thus change the signals on wires

- There are other sources of transient faults, but they tend to be less significant

Physical Defects: Manufacturing Defects

- Manufacturing is not a perfect process, especially for microprocessors
 - It’s not easy to manufacture something with dimensions on the order of 45nm
 - Many stages of chip processing which have to be done perfectly and avoid contamination

- And testing doesn’t filter out all defective systems
 - Often impossible to test for every possible defect in a reasonable amount of time
 - Also, testing won’t detect defects that don’t manifest immediately

- Nanotechnology makes this problem even worse

Physical Defects: Manufacturing Defects

- Manufacturing flaws
 - Bad solder connection between chip and board
 - VLSI defects (e.g., broken wire, bad via, etc. – see ECE 261)
 - Trends:
 - Flaws may decrease as manufacturing process matures
 - But flaws increase at start of each new process
 - Tougher to avoid VLSI defects as dimensions shrink

- VLSI fabrication process variability
 - During fab, there’s some amount of variability in dimensions
 - Thickness of gate oxide dielectric
 - Length of channel
 - Area of via
 - Etc.
Physical Defects: Manufacturing Defects

- Variability can lead to undesirable behavior
 - Gate thickness falls below usable threshold → extra leakage current
 - Wire resistance is too high → signal too slow for clock

- Trend: variability rising as VLSI dimensions shrink
 - When dimensions are on the order of a handful of atoms, it doesn’t take much variability to cause significant problems

Physical Defects: Operational Defects

- Permanent (hard) defects can occur during operation

- Electromigration
 - If current density is too large for wire, wire metal will “migrate” away and potentially lead to a broken link
 - Exacerbated by thermal cycling due to hotter chips
 - Trend: getting worse as wires become smaller and chips become hotter

- Gate oxide breakdown
 - MOSFET transistor has a gate oxide that insulates the gate from the channel
 - If this oxide breaks down, will get a short between gate and channel
 - Trend: getting worse as gate oxides become thinner (only a handful of atoms thick!)

Hardware Design Flaws: Logical Bugs

- Famous example: Intel Pentium floating point divide didn’t work in every single case due to bug in design → very costly recall
- Sun UltraSPARC III had design flaw in a special cache that meant that it couldn’t be used → loss in performance
- AMD’s quad-core Barcelona chip had design bug in TLB hardware → long, expensive delay in shipping chips
Hardware Design Flaws: Timing Bugs

- Logic is fine, but the timing analysis is flawed
- Example: clocking a processor at 4 GHz when there’s a slow path in the pipeline that can only run at 3.8 GHz
- Timing analysis must consider critical path delay and environmental effects (operating temperature, EMI, cross-talk, etc.) to determine the maximum operating speed
- This problem is exacerbated by process variability

Design Flaws: Software

- We all know that software has bugs
- Types of bugs
 - Incorrect algorithm
 - Memory leak (C, C++, but not Java)
 - Allocating memory, but not deallocating it
 - Reference to NULL pointer (C, C++, but not Java)
 - This usually leads to a seg fault and core dump
 - Incorrect synchronization in multithreaded code
 - Allowing more than 1 thread in critical section at a time
 - If you’ve taken CPS 110 (or any OS class), you’ve seen this!

Operator Error

- It has been argued that operator error is the leading cause of computer system failures
 - We’ll read a paper that discusses this
- Examples
 - `rm -R *` (in the wrong directory)
 - Incorrect installation of software
 - Frying a board when installing new memory chips
 - Dropping the laptop (and/or kicking it)
 - Etc.