
© 2009 Daniel J. Sorin 27

Multiprocessor Microarchitecture

• Many design issues unique to multiprocessors
• Interconnection network
• Communication between cores
• Memory system design
• Others?

© 2009 Daniel J. Sorin ECE 152

Communication Between Cores (Threads)

• How should threads communicate with each other?
• Two popular options
• Shared memory

• Perform loads and stores to shared addresses
• Requires synchronization (can’t read before write)

• Message passing
• Send messages between threads (cores)
• No shared address space

© 2009 Daniel J. Sorin 29

What is (Hardware) Shared Memory?

• Take multiple microprocessors

• Implement a memory system with a single global physical
address space (usually)
• Communication assist HW does the “magic” of cache coherence

• Goal 1: Minimize memory latency
• Use co-location & caches

• Goal 2: Maximize memory bandwidth
• Use parallelism & caches

© 2009 Daniel J. Sorin 30

Some Memory System Options

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

© 2009 Daniel J. Sorin 31

Cache Coherence

• According to Webster’s dictionary …
• Cache: a secure place of storage
• Coherent: logically consistent

• Cache Coherence: keep storage logically consistent
• Coherence requires enforcement of 2 properties

1) Write propagation
• All writes eventually become visible to other processors

2) Write serialization
• All processors see writes to same block in same order

© 2009 Daniel J. Sorin 32

Why Cache Coherent Shared Memory?

• Pluses
• For applications - looks like multitasking uniprocessor
• For OS - only evolutionary extensions required
• Easy to do communication without OS
• Software can worry about correctness first and then performance

• Minuses
• Proper synchronization is complex
• Communication is implicit so may be harder to optimize
• More work for hardware designers (i.e., us!)

• Result
• Symmetric Multiprocessors (SMPs) are the most successful parallel

machines ever
• And the first with multi-billion-dollar markets!

© 2009 Daniel J. Sorin 33

In More Detail

• Efficient naming
• Virtual to physical mapping with TLBs

• Easy and efficient caching
• Caching is natural and well-understood
• Can be done in HW automatically

© 2009 Daniel J. Sorin 34

Symmetric Multiprocessors (SMPs)

• Multiple cores

• Each has a cache (or multiple caches in a hierarchy)

• Connect with logical bus (totally-ordered broadcast)
• Physical bus = set of shared wires
• Logical bus = functional equivalent of physical bus

• Implement Snooping Cache Coherence Protocol
• Broadcast all cache misses on bus
• All caches “snoop” bus and may act (e.g., respond with data)
• Memory responds otherwise

© 2009 Daniel J. Sorin 35

Cache Coherence Problem (Step 1)

P1 P2

x

Interconnection Network

Main Memory

Ti
m

e

ld r2, x

© 2009 Daniel J. Sorin 36

Cache Coherence Problem (Step 2)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

Ti
m

e

ld r2, x

© 2009 Daniel J. Sorin 37

Cache Coherence Problem (Step 3)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1Ti

m
e

ld r2, x

© 2009 Daniel J. Sorin 38

Snooping Cache-Coherence Protocols

• Each cache controller “snoops” all bus transactions
• Transaction is relevant if it is for a block this cache contains
• Take action to ensure coherence

• Invalidate
• Update
• Supply value to requestor if Owner

• Actions depend on the state of the block and the protocol

• Main memory controller also snoops on bus
• If no cache is owner, then memory is owner

• Simultaneous operation of independent controllers

© 2009 Daniel J. Sorin 39

Simple 2-State Invalidate Snooping Protocol

• Write-through,
no-write-allocate
cache

• Proc actions:
Load, Store

• Bus actions:
GETS, GETX

Store / OwnGETX

Valid OtherGETX/ --

Invalid

OtherGETS / --

Load / OwnGETS

Load / --

Notation: observed event / action taken

Store / OwnGETX

OtherGETS / --

OtherGETX / --

© 2009 Daniel J. Sorin 40

A 3-State Write-Back Invalidation Protocol

• 2-State Protocol
+ Simple hardware and protocol
• Uses lots of bandwidth (every write goes on bus!)

• 3-State Protocol (MSI)
• Modified

• One cache exclusively has valid (modified) copy � Owner
• Memory is stale

• Shared
• >= 1 cache and memory have valid copy (memory = owner)

• Invalid (only memory has valid copy and memory is owner)

• Must invalidate all other copies before entering modified
state

• Requires bus transaction (order and invalidate)

© 2009 Daniel J. Sorin 41

MSI Processor and Bus Actions

• Processor:
• Load
• Store
• Writeback on replacement of modified block

• Bus
• GetShared (GETS): Get without intent to modify, data could come

from memory or another cache
• GetExclusive (GETX): Get with intent to modify, must invalidate all

other caches’ copies
• PutExclusive (PUTX): cache controller puts contents on bus and

memory is updated
• Definition: cache-to-cache transfer occurs when another cache

satisfies GETS or GETX request

• Let’s draw it!

© 2009 Daniel J. Sorin 42

MSI State Diagram

Load /--

M

-/OtherGETX

Store / OwnGETX
S

I

Store / --

-/OtherGETSStore / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

Note: we never take any action on an OtherPUTX

© 2009 Daniel J. Sorin 43

An MSI Protocol Example

Proc Action P1 State P2 state P3 state Bus Act Data from
initially I I I

1. P1 load u I�S I I GETS Memory
2. P3 load u S I I�S GETS Memory
3. P3 store u S�I I S�M GETX Memory or P1 (?)
4. P1 load u I�S I M�S GETS P3’s cache
5. P2 load u S I�S S GETS Memory

• Single writer, multiple reader protocol
• Why Modified to Shared in line 4?
• What if not in any cache? Memory responds
• Read then Write produces 2 bus transactions

• Slow and wasteful of bandwidth for a common sequenc e of
actions

© 2009 Daniel J. Sorin 44

Multicore and Multithreaded Processors

• Why multicore?
• Thread-level parallelism
• Multithreaded cores
• Multiprocessors
• Design issues
• Examples

© 2009 Daniel J. Sorin ECE 152

Some Real-World Multicores

• Intel/AMD 2/4/8-core chips
• Pretty standard

• Sun’s Niagara (UltraSPARC T1-T3)
• 4-16 simple, in-order, multithreaded cores

• [D.O.A] Sun’s Rock processor: 16 cores
• Cell Broadband Engine: in PlayStation 3
• Intel’s Larrabee: 80 simple x86 cores in a ring
• Cisco CRS-1 Processor: 188 in-order cores
• Graphics processing units (GPUs): hundreds of “cores”

