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Where We Are in This Course Right Now

e Sofar:

« We know how to design a processor that can fetch, decode, and
execute the instructions in an ISA

¢ We understand how to design caches and memory
e Now:
« We learn about the lowest level of storage (disks)
* We learn about input/output in general
e Next:
e Multicore processors
¢ Evaluating and improving performance
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This Unit: I/0

Application

Firmware

Compiler

Memory

Digital Circuits

Gates & Transistors
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1/0O system structure
o Devices, controllers, and buses
Device characteristics
o Disks
Bus characteristics
I/0 control
¢ Polling and interrupts
¢ DMA
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Readings

o Patterson and Hennessy
e Chapter 6
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Computers Interact with Outside World

¢ Input/output (I/0)
o Otherwise, how will we ever tell a computer what to do...

o ...or exploit the results of its work?
e Computers without I/O are not useful
¢ ICQ: What kinds of I/O do computers have?
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One Instance of I/0O

¢ Have briefly seen one instance of 1/0
« Disk: bottom of memory hierarchy
.ll * Holds whatever can't fit in memory
[ 1$ | D$ | « ICQ: What else do disks hold?

Main
Memory

Disk(swap)
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A More General/Realistic I/O System

e A computer system
e CPU, including cache(s)
e Memory (DRAM)

o With built-in or separate I/O (or DMA) controllers
¢ All connected by a system bus
|

[ c:ru @1 |
| |
|

“System” (memory-1/O) bus
DMA | [ DMA | [1VOctrl]

.
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Main
Memor

« I/0 peripherals: disks, input devices, displays, network cards, ...

I/O: Control + Data Transfer

¢ I/0 devices have two ports
e Control: commands and status reports
* How we tell I/O what to do
« How I/O tells us about itself
« Control is the tricky part (especially status reports)
e Data
e Labor-intensive part
« “Interesting” I/O devices do data transfers (to/from memory)
 Display: video memory - monitor
o Disk: memory « disk
o Network interface: memory ~ network
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Operating System (OS) Plays a Big Role

¢ I/0O interface is typically under OS control

o User applications access I/O devices indirectly (e.g., SYSCALL)

e Why?

« Device drivers are “programs” that OS uses to manage devices
¢ Virtualization: same argument as for memory

¢ Physical devices shared among multiple programs

o Direct access could lead to conflicts — example?
¢ Synchronization

* Most have asynchronous interfaces, require unbounded waiting

« OS handles asynchrony internally, presents synchronous interface
o Standardization

o Devices of a certain type (disks) can/will have different interfaces

« OS handles differences (via drivers), presents uniform interface
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I/O Device Characteristics

¢ Primary characteristic
o Data rate (aka bandwidth)

¢ Contributing factors
e Partner: humans have slower output data rates than machines
o Inputor output or both (input/output)

Device Partner 1?7 0? Data Rate (KB/s)
Keyboard Human Input 0.01
Mouse Human Input 0.02
Speaker Human Output 0.60
Printer Human Output 200
Display Human Qutput 240,000
Modem Machine 1/0 7
Ethernet card Machine 1/0 ~100,000
Disk Machine 1/0 ~10,000
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I/0 Device Bandwidth: Some Examples

¢ Keyboard

o 1 B/key * 10 keys/s = 10 B/s
e Mouse

e 2 B/transfer * 10 transfers/s = 20 B/s
e Display

* 4 B/pixel * 1M pixel/display * 60 displays/s = 240 MB/s
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I/O Device: Disk

head e Disk: like stack of record players

- Collection of platters
S T
TS

e Each with read/write head
¢ Platters divided into concentric tracks
« Head seeks (forward/backward) to track
sector * All heads move in unison
1 Each track divided into sectors
e ZBR (zone bit recording)
» More sectors on outer tracks
¢ Sectors rotate under head
o Controller
« Seeks heads, waits for sectors
e Turns heads on/off
¢ May have its own cache (made w/DRAM)
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Disk Parameters

Seagate ST3200 |Seagate Savvio | Toshiba MK1003
Diameter 3.5" 2.5" 1.8
Capacity 200 GB 73 GB 10 GB
RPM 7200 RPM 10000 RPM 4200 RPM
Cache 8 MB ? 512 KB
Disks/Heads 2/4 2/4 1/2
Average Seek 8ms 4.5 ms 7 ms
Peak Data Rate 150 MB/s 200 MB/s 200 MB/s
Sustained Data Rate 58 MB/s 94 MB/s 16 MB/s
Interface ATA SCSI ATA
Use Desktop Laptop iPod

o Slightly newer disk from Toshiba

Disk Read/Write Latency

¢ Disk read/write latency has four components
o Seek delay (t....): head seeks to right track
¢ Rotational delay (t,,.:i0n): right sector rotates under head
« On average: time to go halfway around disk
o Transfer time (t.,...): data actually being transferred
e Controllerdelay (t.,,uoner): cONtroller overhead (on either side)
e Example: time to read a 4KB page assuming...
o 128 sectors/track, 512 B/sector, 6000 RPM, 10 ms te, 1 MS teoniroer

e 6000 RPM - 100 R/s - 10 mS/R - tyion = 10mMs /2 =5ms
e 4KBpage - 8 sectors - tyaer = 10 ms * 8/128 = 0.6 ms

® taisk = tseek * trotation + Liranster * teontrotier

« 0.857, 4 GB drives, used in iPod-mini SH0 ST = 1656
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Disk Bandwidth Error Correction: RAID

¢ Disk is bandwidth-inefficient for page-sized transfers
o Actual data transfer (tyanser) @ Small part of disk access (and cycle)

¢ Increase bandwidth: stripe data across multiple disks
o Striping strategy depends on disk usage model
* “File System” or “web server”: many small files
« Map entire files to disks
e “Supercomputer” or “database”: several large files
o Stripe single file across multiple disks

¢ Both bandwidth and individual transaction latency
important
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¢ Error correction: more important for disk than for memory
« Mechanical disk failures (entire disk lost) is common failure mode
« Entire file system can be lost if files striped across multiple disks
* RAID (redundant array of inexpensive disks)
« Similar to DRAM error correction, but...
« Major difference: which disk failed is known
« Even parity can be used to recover from single failures
 Parity disk can be used to reconstruct data faulty disk
* RAID design balances bandwidth and fault-tolerance
¢ Many flavors of RAID exist
« Tradeoff: extra disks (cost) vs. performance vs. reliability
o Deeper discussion of RAID in ECE 252 and ECE 254
* RAID doesn't solve all problems = can you think of any examples?
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The System Bus

e System bus: connects system components together
o Important: insufficient bandwidth can bottleneck entire system
¢ Performance factors
¢ Physical length
« Number and type of connected devices (taps)

“System” (memory-I/O) bus

| bvMA ] [DMA | [WOctr]
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Three Buses

* Processor-memory bus
e Connects CPU and memory, no direct I/O interface
+ Short, few taps - fast, high-bandwidth
— System specific
e I/O bus
e Connects I/O devices, no direct P-M interface
— Longer, more taps - slower, lower-bandwidth
+ Industry standard
¢ Connect P-M bus to I/O bus using adapter
e Backplane bus
e CPU, memory, I/O connected to same bus
+ Industry standard, cheap (no adapters needed)
— Processor-memory performance compromised

18
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Bus Design (1) Bus Width and Multiplexing
data lines .
address lines * Wider
control lines + More bandwidth
e Goals — More expensive and more susceptible to skew

« High Performance: low latency and high bandwidth
¢ Standardization: flexibility in dealing with many devices
e Low Cost
e Processor-memory bus emphasizes performance, then cost
* /O & backplane emphasize standardization, then performance
o Design issues
1. Width/multiplexing: are wires shared or separate?
2. Clocking: is bus clocked or not?
3. Switching: how/when is bus control acquired and released?
4. Arbitration: how do we decide who gets the bus next?
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e Multiplexed: address and data share same lines
+ Cheaper
— Less bandwidth

o Burst transfers (bus parking)
« Multiple sequential data transactions for single address
+ Increase bandwidth at relatively little cost
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(2) Bus Clocking

¢ Synchronous: clocked

+ Fast

— Bus must be short to minimize clock skew
¢ Asynchronous: un-clocked

+ Can be longer: no clock skew, deals with devices of different speeds

— Slower: requires “hand-shaking” protocol

« For example, asynchronous read
e Multiplexed data/address lines, 3 control lines

. Processor drives address onto bus, asserts Request line
. Memory asserts Ack line, processor stops driving
. Memory drives data on bus, asserts Dat aReady line
. Processor asserts Ack line, memory stops driving

A WN =

e P-M buses are synchronous
e I/0O and backplane buses asynchronous or slow-clock synchronous
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(3) Bus Switching

e Atomic: bus “busy” between request and reply
+ Simple
— Low utilization
¢ Split-transaction: requests/replies can be interleaved
+ Higher utilization - higher throughput
— Complex, requires sending IDs to match replies to request
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(4) Bus Arbitration

¢ Bus master: component that can initiate a bus request
* Bus typically has several masters, including processor
¢ /0 devices can also be masters (Why? See in a bit)

¢ Arbitration: choosing a master among multiple requests
o Try to implement priority and fairness (no device “starves”)
« Daisy-chain: devices connect to bus in priority order
« High-priority devices intercept/deny requests by low-priority ones
+ Simple, but slow and can't ensure fairness
* Centralized: special arbiter chip collects requests, decides
+ Ensures fairness, but arbiter chip may itself become bottleneck
« Distributed: everyone sees all requests simultaneously
« Back off and retry if not the highest priority request
+ No bottlenecks and fair, but needs a lot of control lines
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Standard Bus Examples

PCI SCSI USB
Type Backplane I/0 I/0
Width 32-64 bits 8-32 bits 1
Multiplexed? Yes Yes Yes
Clocking 33 (66) MHz 5 (10) MHz Asynchronous
Data rate 133 (266) MB/s 10 (20) MB/s 0.2, 1.5, 60 MB/s
Arbitration Distributed Distributed Daisy-chain
Maximum masters | 1024 7-31 127
Maximum length  [0.5m 25m -

o USB (universal serial bus)
« Popular for low/moderate bandwidth external peripherals
+ Packetized interface (like TCP), extremely flexible
+ Also supplies power to the peripheral
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This Unit: I/O

Application e I/0O system structure

« Devices, controllers, and buses

Compiler Firmware - Lo
¢ Device characteristics
CPU 110 e Disks
Memory ¢ Bus characteristics
Digital Circuits ¢ 1/0 control
Gates & Transistors ¢ Polling and interrupts
e DMA
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I/O Control and Interfaces

¢ Now that we know how I/O devices and buses work...
e How does I/0 actually happen?

* How does CPU give commands to I/O devices?

« How do I/O devices execute data transfers?

* How does CPU know when I/0O devices are done?
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Sending Commands to I/O Devices

e Remember: only OS can do this! Two options ...
e I/Oinstructions
¢ OS only? Instructions must be privileged (only OS can execute)
e E.g., IA-32
¢ Memory-mapped I/0
« Portion of physical address space reserved for I/O
« OS maps physical addresses to 1/0O device control registers
e Stores/loads to these addresses are commands to I/O devices
* Main memory ignores them, I/O devices recognize and respond
« Address specifies both I/O device and command
e These address are not cached — why?
e OS only? I/O physical addresses only mapped in OS address space
¢ E.g., almost every architecture other than IA-32 (see pattern??)
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Querying I/O Device Status

* Now that we've sent command to I/O device ...

e How do we query I/O device status?
¢ So that we know if data we asked for is ready?
« So that we know if device is ready to receive next command?

¢ Polling: Ready now? How about now? How about now???
e Processor queries I/0 device status register (e.g., with MM load)
« Loops until it gets status it wants (ready for next command)
* Or tries again a little later
+ Simple
— Waste of processor’s time
e Processor much faster than I/O device
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Polling Overhead: Example #1

e Parameters
¢ 500 MHz CPU
¢ Polling event takes 400 cycles

e Qverhead for polling a mouse 30 times per second?
e Cycles per second for polling = (30 poll/s)*(400 cycles/poll)
e - 12000 cycles/second for polling
e (12000 cycles/second)/(500 M cycles/second) = 0.002% overhead
+ Not bad
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Polling Overhead: Example #2

e Same parameters
e 500 MHz CPU, polling event takes 400 cycles

¢ Overhead for polling a 4 MB/s disk with 16 B interface?
* Must poll often enough not to miss data from disk
Polling rate = (4MB/s)/(16 B/poll) >> mouse polling rate
e Cycles per second for polling=[(4MB/s)/(16 B/poll)]*(400 cyc/poll)
e - 100 M cycles/second for polling
e (100 M cycles/second)/(500 M cycles/second) = 20% overhead
— Bad
« This is the overhead of polling, not actual data transfer
« Really bad if disk is not being used (pure overhead!)
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Interrupt-Driven I/O

¢ Interrupts: alternative to polling
« /O device generates interrupt when status changes, data ready
¢ OS handles interrupts just like exceptions (e.g., page faults)
 Identity of interrupting I/O device recorded in ECR
« ECR: exception cause register

¢ I/O interrupts are asynchronous
« Not associated with any one instruction
« Don't need to be handled immediately

¢ I/O interrupts are prioritized
« Synchronous interrupts (e.g., page faults) have highest priority

« High-bandwidth I/O devices have higher priority than low-
bandwidth ones
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Interrupt Overhead

Note: when disk is
transferring data, the interrupt
rate is same as polling rate

e Parameters
* 500 MHz CPU
« Polling event takes 400 cycles

o Interrupt handler takes 400 cycles
« Data transfer takes 100 cycles
e 4 MB/s, 16 B interface disk, transfers data only 5% of time

e Percent of time processor spends transferring data
e 0.05 * (4 MB/s)/(16 B/xfer)*[(100 c/xfer)/(500M c¢/s)] = 0.25%
e Overhead for polling?
« (4 MB/s)/(16 B/poll) * [(400 c/poll)/(500M c/s)] = 20%
Overhead for interrupts?
+ 0.05 * (4 MB/s)/(16 B/int) * [(400 c/int)/(500M ¢/s)] = 1%
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Direct Memory Access (DMA)

¢ Interrupts remove overhead of polling...

e But still requires OS to transfer data one word at a time
e OK for low bandwidth I/O devices: mice, microphones, etc.
« Bad for high bandwidth I/O devices: disks, monitors, etc.

* Direct Memory Access (DMA)
« Transfer data between I/0O and memory without processor control
« Transfers entire blocks (e.g., pages, video frames) at a time
e Can use bus “burst” transfer mode if available
e Only interrupts processor when done (or if error occurs)
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DMA Controllers

e To do DMA, 1I/0 device attached to DMA controller
« Multiple devices can be connected to one DMA controller
« Controller itself seen as a memory mapped I/O device
e Processor initializes start memory address, transfer size, etc.
o DMA controller takes care of bus arbitration and transfer details
« So that's why buses support arbitration and multiple masters!

[—— == |
L

DMA | [DMA | [WOctrl]

i <
Memo ]
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I/O Processors

¢ A DMA controller is a very simple component
* May be as simple as a FSM with some local memory
¢ Some I/0 requires complicated sequences of transfers
e I/0 processor: heavier DMA controller that executes instructions
* Can be programmed to do complex transfers
¢ E.g., programmable network card

| Bus il

Lo

DMA DMA | [[1oP |

|
[ ] |
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DMA Overhead

e Parameters
* 500 MHz CPU
o Interrupt handler takes 400 cycles
o Data transfer takes 100 cycles
* 4 MB/s, 16 B interface, disk transfers data 50% of time
« DMA setup takes 1600 cycles, transfer 1 16KB page at a time

¢ Processor overhead for interrupt-driven 1/0?
e 0.5* (4M B/s)/(16 B/xfer)*[(500 c/xfer)/(500M c/s)] = 12.5%
¢ Processor overhead with DMA?
* Processor only gets involved once per page, not once per 16 B
+ 0.5 * (4M B/s)/(16K B/page) * [(2000 c/page)/(500M c/s)] = 0.05%
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DMA and Memory Hierarchy

e DMA is good, but is not without challenges

« Without DMA: processor initiates all data transfers
¢ All transfers go through address translation
+ Transfers can be of any size and cross virtual page boundaries
o All values seen by cache hierarchy
+ Caches never contain stale data

« With DMA: DMA controllers initiate data transfers
« Do they use virtual or physical addresses?
e What if they write data to a cached memory location?
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DMA and Address Translation

¢ Which addresses does processor specify to DMA controller?

e Virtual DMA
+ Can specify large cross-page transfers
— DMA controller has to do address translation internally
« DMA contains small translation buffer (TB)
« OS initializes buffer contents when it requests an 1/0 transfer

e Physical DMA
+ DMA controller is simple
— Can only do short page-size transfers
« OS breaks large transfers into page-size chunks
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DMA and Caching

e Caches are good
* Reduce CPU’s observed instruction and data access latency
+ But also, reduce CPU’s use of memory...
+ ...leaving majority of memory/bus bandwidth for DMA I/O

¢ But they also introduce a coherence problem for DMA
e Input problem
¢ DMA write into memory version of cached location
» Cached version now stale
e Output problem: write-back caches only
¢ DMA read from memory version of “dirty” cached location
o Output stale value
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Solutions to Coherence Problem

¢ Route all DMA I/O accesses to cache
+ Solves problem
— Expensive: CPU must contend for access to caches with DMA
¢ Disallow caching of I/O data
+ Also works
— Expensive in a different way: CPU access to those regions slow
* Selective flushing/invalidations of cached data
o Flush all dirty blocks in “I/O region”
« Invalidate blocks in “I/O region” as DMA writes those addresses
+ The high performance solution
* Hardware cache coherence mechanisms for doing this
— Expensive in yet a third way: must implement this mechanism
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H/W Cache Coherence (more later on this)

e D$ and L2 “snoop” bus traffic
¢ Observe transactions
o Check if written addresses are resident
¢ Self-invalidate those blocks

+ Doesn't require access to data part
L. | — Does require access to tag part

2
* May need 2nd copy of tags for this
Iﬂ_l_l
Bus—

e That's OK, tags smaller than data
V

e Bus addresses are physical
e L2 is easy (physical index/tag)

Mam S o D$ is harder (virtual index/physical tag)
Memor; W

41
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Designing an I/O System for Bandwidth

e Approach
« Find bandwidths of individual components
« Configure components you can change...
« To match bandwidth of bottleneck component you can’t

o Example (from P&H textbook, 34 edition)

o Parameters
« 300 MIPS CPU, 100 MB/s backplane bus
e 50K OS insns + 100K user insns per I/O operation
e SCSI-2 controllers (20 MB/s): each accommodates up to 7 disks
o 5 MB/s disks With te + tomion = 10 ms, 64 KB reads

e Determine
* What is the maximum sustainable I/0 rate?
¢ How many SCSI-2 controllers and disks does it require?
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Designing an I/O System for Bandwidth

e First: determine I/0 rates of components we can't change
e CPU: (300M insn/s) / (150K Insns/I0) = 2000 I0/s
* Backplane: (100M B/s) / (64K B/I0) = 1562 10/s
o Peak I/O rate determined by bus: 1562 10/s

¢ Second: configure remaining components to match rate
o Disk: 1/[10 ms/IO + (64K B/I0) / (5M B/s)] = 43.9 10/s
* How many disks?
o (1562 10/s) / (43.9 10/s) = 36 disks
« How many controllers?
o (43.910/s) * (64K B/IO) = 2.74M B/s per disk
e (20M B/s) / (2.74M B/s) = 7.2 disks per SCSI controller
o (36 disks) / (7 disks/SCSI-2) = 6 SCSI-2 controllers

e Caveat: real I/O systems modeled with simulation
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Designing an I/O System for Latency

¢ Previous system designed for bandwidth

e Some systems have latency requirements as well
* E.g., database system may require maximum or average latency

e Latencies are actually harder to deal with than bandwidths
¢ Unloaded system: few concurrent IO transactions
e Latency is easy to calculate
¢ Loaded system: many concurrent IO transactions
« Contention can lead to queuing
« Latencies can rise dramatically
* Queuing theory can help if transactions obey fixed distribution
o Otherwise simulation is needed
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Summary

¢ Role of the OS

o Device characteristics
¢ Data bandwidth
o Disks
e Structure and latency: seek, rotation, transfer, controller delays
¢ Bus characteristics
¢ Processor-memory, I/0, and backplane buses
« Width, multiplexing, clocking, switching, arbitration
¢ I/0O control
e I/0O instructions vs. memory mapped 1/O
¢ Polling vs. interrupts
o Processor controlled data transfer vs. DMA
« Interaction of DMA with memory system
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