Pipeline Example: Cycle 1

Pipeline Example: Cycle 2

I E—)

. A O L . A o)
Register Register
File Datal | File o "[Datal 2
> s1s Em lem >T sls ‘n B em
D/X e WJ XIM M D/X e J XIM MW,
R R R R R
add $3,$2,$1 Iw $4,0($5) add $3,$2,$1
¢ 3 instructions
© 2009 Daniel J. Sorin from Roth ECE 152 © 2009 Daniel J. Sorin from Roth ECE 152 9
Pipeline Example: Cycle 3 Pipeline Example: Cycle 4
0 .
Register
Datal D File
. em >T sls;
WJ XIM M
sw $6,4($7) Iw $4,0($5) add $3,$2,$1 sw $6,4($7) Iw $4,0($5) add $3,$2,$1
¢ 3 instructions
© 2009 Daniel J. Sorin from Roth ECE 152 10

© 2009 Daniel J. Sorin from Roth ECE 152 1

Pipeline Example: Cycle 5

PC @DJ

. A o)
Register
File »)
> sis Em |
D/X e WJ XIM M
IR R
sw $6,4($7) add
© 2009 Daniel J. Sorin from Roth ECE 152 12

Pipeline Example: Cycle 6

O Data| &
B em
J XIM M/W|
sw $6,4(7)

© 2009 Daniel J. Sorin from Roth

ECE 152

Pipeline Example: Cycle 7

= @Dj
. A o)
Register

File Datal D

>T S1lsS E I lem|

D/X e WJ XIM M
(133 R

sw
© 2009 Daniel J. Sorin from Roth ECE 152 14

Pipeline Diagram

¢ Pipeline diagram: shorthand for what we just saw
e Across: cycles
« Down: insns
¢ Convention: X means lw $4,0($5)
writes into X/M latch at end of cycle 4

2|13/4|5|6|7|8|9
add $3,$2,$1 FIp[x[m[w
Iw $4,0($5) FIDIX|M|W
sw $6,4(37) FID|X|M|W

© 2009 Daniel J. Sorin from Roth ECE 152

finishes execute stage and

What About Pipelined Control?

e Should it be like single-cycle control?
o But individual insn signals must be staged

¢ How many different control units do we need?
e One for each insn in pipeline?

¢ Solution: use simple single-cycle control, but pipeline it
¢ Single controller

¢ Key idea: pass control signals with instruction through pipeline

© 2009 Daniel J. Sorin from Roth ECE 152 16

Pipelined Control

'
. 1A
Register
File
P s1s2 d[[B |

(4

i

© 2009 Daniel J. Sorin from Roth ECE 152

Pipeline Performance Calculation

¢ Single-cycle
e Clock period = 50ns, CPI = 1
e Performance = 50ns/insn

¢ Pipelined
e Clock period = 12ns (why not 10ns?)

e CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)
e Performance = 12ns/insn

© 2009 Daniel J. Sorin from Roth ECE 152 18

Why Does Every Insn Take 5 Cycles?

—1A
Register
File
P s1s2 d[[B |
b D/X?R J XIM
R
L ' add $3,$2,51 Lid$4,0(35)

¢ Why not let add skip M and go straight to W?
o It wouldn't help: peak fetch still only 1 insn per cycle
e Structural hazards: not enough resources per stage for 2 insns

© 2009 Daniel J. Sorin from Roth ECE 152 19

Pipeline Hazards

* Hazard: condition leads to incorrect execution if not fixed
« “Fixing” typically increases CPI
e Three kinds of hazards

¢ Structural hazards
« Two insns trying to use same circuit at same time
e E.g., structural hazard on RegFile write port
« Fix by proper ISA/pipeline design: 3 rules to follow
 Each insn uses every structure exactly once
¢ For at most one cycle
¢ Always at same stage relative to F
« Data hazards (next)
e Control hazards (a little later)

© 2009 Daniel J. Sorin from Roth ECE 152 20

Data Hazards

I-. A [])
Reg ister ® B

File B Data

P sis, | em

S J B >
F/ID D/X X XIM MIW|
> >
IR IR (R IR
sw $6,0($7) Iw $4,0($5) add $3,$2,$1

¢ Let's forget about branches and control for a while
e The sequence of 3 insns we saw earlier executed fine...
e But it wasn't a real program
¢ Real programs have data dependences
¢ They pass values via registers and memory

©2009 Daniel J. Sorin from Roth ECE 152 21

Data Hazards

L A] 0
Register |
g‘l o D
File B Data
P> sis | em
S J B >
F/ID D/X X XIM M/
> >
IR 1R] [IR] IR
sw $3,0($7) addi$6,1, $3 Iw$4,0($3) add $3,$2,$1

* Would this “program” execute correctly on this pipeline?
* Which insns would execute with correct inputs?
e add is writing its result into $3 in current cycle
— Iw read $3 2 cycles ago - got wrong value
— addi read $3 1 cycle ago - got wrong value
e swis reading $3 this cycle - OK (redfile timing: write first half)

© 2009 Daniel J. Sorin from Roth ECE 152 22

Memory Data Hazards

I-. A [])
Reg|ster ® 5

File B Data

P sis, | em

S J E >
F/ID D/X X XIM MIW|
> >
IR IR IR IR
Iw $4, 0($1) sw$5, 0($1)

e What about data hazards through memory? No
¢ lw following sw to same address in next cycle, gets right value
¢ Why? DMem read/write take place in same stage
e Data hazards through registers? Yes (previous slide)
e Occur because register write is 3 stages after register read
e Can only read a register value 3 cycles after writing it

©2009 Daniel J. Sorin from Roth ECE 152 23

Fixing Register Data Hazards

¢ Can only read register value 3 cycles after writing it

¢ One way to enforce this: make sure programs can't do it

o Compiler puts two independent insns between write/read insn
pair

 If they aren't there already
¢ Independent means: “do not interfere with register in question”

« Do not write it: otherwise meaning of program changes

¢ Do not read it: otherwise create new data hazard
¢ Code scheduling: compiler moves around existing insns to do this
e If none can be found, must use NOPs

e This is called software interlocks
« MIPS: Microprocessor w/out Interlocking Pipeline Stages

© 2009 Daniel J. Sorin from Roth ECE 152 24

Software Interlock Example

add $3,$2,$1
Iw $4,0($3)
sw$7,0($3)
add $6,$2,$8
addi $3,$5,4

e Can any of last 3 insns be scheduled between first two?
e sw$7,0($3)? No, creates hazard with add $3,$2,$1
e add $6,$2,$8 ? OK
e addi $3,$5,4? No, lw would read $3 from it
o Still need one more insn, use nop

add $3,$2,$1
add $6,$2,$8
nop

Iw$4,0($3)
sw $7,0($3)
addi $3,$5,4

© 2009 Daniel J. Sorin from Roth ECE 152 25

Software Interlock Performance

o Software interlocks
« Assume 20% of insns require insertion of 1 nop
* Assume 5% of insns require insertion of 2 nops

e CPIis still 1 technically

e But now there are more insns

e #insns=1+ 0.20*1 + 0.05*2 = 1.3

30% more insns (30% slowdown) due to data hazards

© 2009 Daniel J. Sorin from Roth ECE 152 26

Hardware Interlocks

¢ Problem with software interlocks? Not compatible
* Where does 3 in “read register 3 cycles after writing” come from?
o From structure (depth) of pipeline
« What if next MIPS version uses a 7 stage pipeline?
* Programs compiled assuming 5 stage pipeline will break

o A better (more compatible) way: hardware interlocks
o Processor detects data hazards and fixes them
* Two aspects to this
o Detecting hazards
 Fixing hazards

© 2009 Daniel J. Sorin from Roth ECE 152 27

Detecting Data Hazards

L A] 0
Register ® | B
File B Datal
P> sis [em
S J B >
FID D/X X Xk MWL
R (IR [RIT IR

e Compare F/D insn input register names with output
register names of older insns in pipeline
Hazard =
(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

© 2009 Daniel J. Sorin from Roth ECE 152 28

Fixing Data Hazards

I-. A [])
Reg ister ® B

File B Data

| em|

S J E >
D/X X XIM MIW|
> >
IR I (R I IR
I— |

e Prevent F/D insn from reading (advancing) this cycle
* Write nop into D/X.IR (effectively, insert nop in hardware)
« Also clear the datapath control signals
« Disable F/D latch and PC write enables (why?)

e Re-evaluate situation next cycle

©2009 Daniel J. Sorin from Roth ECE 152 29

Hardware Interlock Example: cycle 1

L A] l—; 0
Reg:ster ® B
File B Data
[em
S J 2 >
D/X X XIM M/
>
IR T [IR] T IR
— |
Iw$4,0($3) add $3,$2,$1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)
=1

© 2009 Daniel J. Sorin from Roth ECE 152 30

Hardware Interlock Example: cycle 2

L A] [9)
Reg ister ® 5

File B Data

| em|

S J B >
D/X X Xl MWL
R [RFT IR
— |
Iw$4,0($3) add $3,$2,$1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)
=1

©2009 Daniel J. Sorin from Roth ECE 152 31

Hardware Interlock Example: cycle 3

L A] 0
Register |
g‘l o D
File B Data
[. em
S >
D/X X J X/NI> M
IR T [IR] T IR
1 |
Iw$4,0($3) add $3,$2,$1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

© 2009 Daniel J. Sorin from Roth ECE 152 32

Pipeline Control Terminology

e Hardware interlock maneuver is called stall or bubble

¢ Mechanism is called stall logic

o Part of more general pipeline control mechanism
« Controls advancement of insns through pipeline
Distinguished from pipelined datapath control

« Controls datapath at each stage
« Pipeline control controls advancement of datapath control

© 2009 Daniel J. Sorin from Roth ECE 152 33

Pipeline Diagram with Data Hazards

Hardware Interlock Performance

¢ Data hazard stall indicated with d*
« Stall propagates to younger insns

1/2|3(4|5/6(7|8/|9
add $3,$2,%1 F|ID|X w
Iw $4,0($3) F|d¥|d*|D| X |M|W
sw $6,4($7) FID| X MW

¢ This is not OK (why?)

112|3|4|5[|6|7(8|9
add $3,$2,$1 F|IDI|X w
Iw $4,0($3) F |d¥|d*|D| X |M|W
sw $6,4($7) X|M|W

F|D
© 2009 Daniel J. Sorin from Roth ECE 152 34

¢ Hardware interlocks: same as software interlocks
e 20% of insns require 1 cycle stall (i.e., insertion of 1 nop)
e 5% of insns require 2 cycle stall (i.e., insertion of 2 nops)

e CPI =1+ 0.20%1 + 0.05*%2 = 1.3

e So, either CPI stays at 1 and #insns increases 30% (software)

e Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)
¢ Same difference

e Anyway, we can do better

© 2009 Daniel J. Sorin from Roth ECE 152 35

Bypassing

Observe
L A] l—; 0
Reglster ® B
File B Data
P> sis [em
S J B >
F/D D/X X XIM M/
> >
IR {IR] [IR| IR
w$4,0($3) add $3,$2,$1

¢ This situation seems broken
e |w$4,0($3) has already read $3 from regdfile
e add $3,$2,$1 hasn't yet written $3 to regfile
¢ But fundamentally, everything is still OK
e Iw$4,0($3) hasn'tactually used $3 yet
e add $3,$2,$1 has already computed $3

© 2009 Daniel J. Sorin from Roth ECE 152 36

L A] [9)
Reg|ster ® A ®
File Bl Data|
> Sl T em
S J E >
F/D D/X X XIM M/W]|
> >
IR 1R] IR IR
W $4,0($3) add $3,$2,$1

e Bypassing
e Reading a value from an intermediate (parchitectural) source
« Not waiting until it is available from primary source (RegFile)
* Here, we are bypassing the register file
o Also called forwarding

37

© 2009 Daniel J. Sorin from Roth ECE 152

WX Bypassing

I_ A] 0
Register ®
File B[Data
> S1ls T lem
S J B >
F/ID D/X X XIM M/
D> >
IR 1IR] IR IR
Iw$4,0($3) add $3,$2,$1

* What about this combination?
¢ Add another bypass path and MUX input
o First one was an MX bypass
e This one is a WX bypass

© 2009 Daniel J. Sorin from Roth ECE 152 38

ALUinB Bypassing

To
L A] [9)

Register
g’l o A D
File B Data
> S1ls em|
B >
F/ID D/X XIM MIW|
> P>
IR 1R] [R] IR
add $4,$2, $3 add $3,$2,$1

e Can also bypass to ALU input B

©2009 Daniel J. Sorin from Roth ECE 152 39

WM Bypassing?

Bypass Logic

A /Y
I_ A] 0
Register ®
File B Data
P> sis em
B
F/ID D/X XIM M/
P> >
IR 1IR] IR IR
Sw $3,0($4) W $3,0($2)

e Does WM bypassing make sense?
¢ Not to the address input (ICQ: why not?)
« But to the store data input, yes

© 2009 Daniel J. Sorin from Roth ECE 152 40

— G

Reg|ster 1 ® A 5
File Bl Data
P> sis T em
Ul =
F/D D/X XIM MW,
> D>
IR (1 LR f IR

e Each MUX has its own, here it is for MUX ALUInA
(D/X.IR.RS1 == X/M.IR.RD) > mux select = 0
(D/X.IR.RS1 == M/W.IR.RD) - mux select = 1
Else > mux select = 2

©2009 Daniel J. Sorin from Roth ECE 152 41

Bypass and Stall Logic

e Two separate things
« Stall logic controls pipeline registers
¢ Bypass logic controls muxes
e But complementary
« For a given data hazard: if can't bypass, must stall

Slide #40 shows full bypassing: all bypasses possible
o Is stall logic still necessary?

© 2009 Daniel J. Sorin from Roth ECE 152 2

Yes, Load Output to ALU Input

Te-
L A] [9)

Reg|ster ® A 5
File B Data
P> sis; em
B
F/D D/X XIM M/W|
IR I3 IR I3
nop —| L=
.{ | addsasz s3 - wos3062)
add $4,$2, $3° w $3,0$2)

Stall = (D/X.IR.OP == LOAD) &&
((F/D.IR.RS1 == D/X.IR.RD) ||
((F/D.IR.RS2 == D/X.IR.RD) &®& (F/D.IR.OP != STORE))

©2009 Daniel J. Sorin from Roth ECE 152 43

Pipeline Diagram With Bypassing

Pipelining and Multi-Cycle Operations

1]2]3]4]5]|6|7]8]9 L A] o
add $3,$2,$1 F X w Reg|ster } 5 5
Iw $4,0($3) FIDIX|M|wW L File B Data
g sls2 em
addi $6,$4,1 Flax|D|[Xx|M|w =5) » S
ki]
. . g . LR] LR
¢ Sometimes you will see it like this J
« Denotes that stall logic implemented at X stage, rather than D
e Equivalent, doesn't matter when you stall as long as you do P/W
e L]2]3]4[5]6[7]8]9 e What if you wanted to add a multi-cycle operation?
& i F XM ¢ E.g., 4-cycle multiply
fw $4.0(83) FIDIX|M|W o P/W: separate output latch connects to W stage
addi $6,$4,1 FIDld*|X MW « Controlled by pipeline control and multiplier FSM
© 2009 Daniel J. Sorin from Roth ECE 152 44 © 2009 Daniel J. Sorin from Roth ECE 152 45

A Pipelined Multiplier

What about Stall Logic?

L A [S
Register > o | D

File B Data
P> s1s2 em
=) /I’/I’ D BV >
> >
LR I® [IR|

D/PO PO/P1 P1/P2 P2/W

o Multiplier itself is often pipelined: what does this mean?
o Product/multiplicand register/ALUs/latches replicated
« Can start different multiply operations in consecutive cycles

© 2009 Daniel J. Sorin from Roth ECE 152 46

0 x 5
Register } o D
File

P> sis2

F/D /r/‘r

D/PO PO/P1 P1/P2 P2/W

Stall = (OldStallLogic) ||
(F/D.IR.RS1 == D/PO.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) ||
(F/D.IR.RS1 == PO/PL.IR.RD) || (F/D.IR.RS2 == PO/P1.IR.RD) ||
(F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD)

©2009 Daniel J. Sorin from Roth ECE 152 47

Actually, It's Somewhat Nastier

Honestly, It's Even Nastier Than That

L A [8]
Register > | D

4 (o)
File B b Data
P> s1s2 em
=) /I//I/ D BV >
> >
LRI® [IR|

D/PO PO/P1 P1/P2 P2/W

e What does this do? Hint: think about structural hazards

Stall = (OldStallLogic) ||
(F/D.IR.RD != null && PO/P1.IR.RD != null)

© 2009 Daniel J. Sorin from Roth ECE 152 48

L x M
Register
File B
P> s1s2

F/D /r/r

B

D/PO PO/P1 P1/P2 P2/W

¢ And what about this? (“WAR"” hazard”)

Stall = (OldStallLogic) ||
(F/D.IR.RD == D/P0.IR.RD) || (F/D.IR.RD ==
PO/P1.IR.RD)
49

© 2009 Daniel J. Sorin from Roth ECE 152

Pipeline Diagram with Multiplier

More Multiplier Nasties

1(2(3|4|5|6|7|8|9
mul $4,$3,$5 F|D|PO|PL|P2|P3|W
addi $6,$4,1 F|d*|d*|d*|D|X|M|W

e This is the situation that slide #48 logic tries to avoid
¢ Two instructions trying to write RegFile in same cycle

1123 |4|5]6[|7|8]|9
mul $4,$3,$5 F|D|PO|PL|P2|P3
addi $6,$1,1 FID|X|M|W
add $5,$6,$10 F|D|X|M|w

© 2009 Daniel J. Sorin from Roth ECE 152

50

e This is the situation that slide #49 logic tries to avoid
« Mis-ordered writes to the same register
« Compiler thinks add gets $4 from addi , actually gets it from mul

112|314 |5|6|7(8]9
mul $4,$3,$5 F|D|PO|PL|P2|P3|W
addi $4,$1,1 F|ID|X|M|W

add $10, $4,$6 F|D|X|M|W

* Multi-cycle operations complicate pipeline logic
« They're not impossible, but they require more complexity

© 2009 Daniel J. Sorin from Roth ECE 152 51

