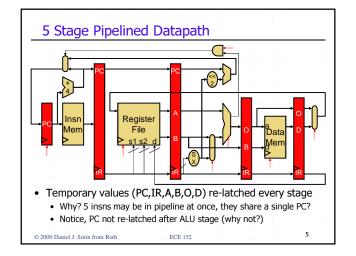
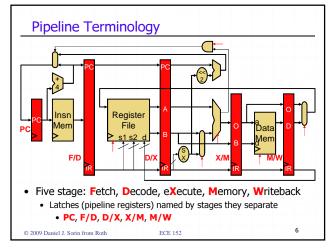


Readings		
• P+H		
Chapter 4: Section 4.5	5-end of Chapter 4	
© 2011 Daniel J. Sorin from Roth	ECE 152	3

Pipelining


- Important performance technique
- Improves insn throughput (rather than insn latency) • Laundry / SubWay analogy
- Basic idea: divide instruction's "work" into stages • When insn advances from stage 1 to 2
 - Allow next insn to enter stage 1
 - Etc.
- Key idea: each instruction does same amount of work as before


ECE 152

4

+ But insns enter and leave at a much faster rate

© 2009 Daniel J. Sorin from Roth

Aside: Not All Pipelin	nes Have 5 Stages	
H&P textbook uses well-k	nown 5-stage pipe != all pipes	
have 5 stages		
 Some examples 		
OpenRISC 1200: 4 stages		
 Sun UltraSPARC T1/T2 (Nia 	igara/Niagara2): 6/8 stages	
 AMD Athlon: 10 stages 		
 Pentium 4: 20 stages 		
 ICQ: why does Pentium 4 	have so many stages?	
 ICQ: how can you possible into that many stages? 	y break "work" to do single ins	n
 Moral of the story: in ECE pipe, but don't forget that 	152, we focus on H&P 5-stage t this is just one example	2
© 2009 Daniel J. Sorin from Roth	ECE 152	7