Another Option

• Is the piece-wise faster adder as fast as we can go?
 • No!

• Another approach to using additional resources
 • Instead of redundantly computing sums assuming different carries, use redundancy to compute carries more quickly
 • This approach is called **carry lookahead addition (CLA)**
Review: Carry Lookahead Addition (CLA)

• Let’s look at the carry function
 • \(C_{16} = CO_{15} = A_{15}B_{15} + A_{15}C_{15} + B_{15}C_{15} = (A_{15}B_{15}) + (A_{15} + B_{15})C_{15} \)

• Very important insights into CLA:
 • \((A_{15}B_{15}) \) generates a carry regardless of \(C_{15} \) → rename to \(g_{15} \)
 • \((A_{15} + B_{15}) \) propagates \(C_{15} \) → rename to \(p_{15} \)

• \(C_{16} = g_{15} + p_{15}C_{15} \)
• \(C_{16} = g_{15} + p_{15}(g_{14} + p_{14}C_{14}) \)
• \(C_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}(g_{13} + p_{13}C_{13}) \)
• \(C_{16} = g_{15} + p_{15}g_{14} + \ldots + p_{15}p_{14}\ldots p_{2}p_{1}g_{0} + p_{15}p_{14}\ldots p_{2}p_{1}p_{0}p_{0} \)
 • Important note: can compute \(C_{16} \) in 2 levels of logic!
• Similar functions for \(C_{15} (=CO_{14}) \), etc.
 • In general: \(C_{i} = g_{i-1} + p_{i-1}C_{i-1} \)
Infinite Carry Lookahead

- Previous slide’s CLA functions assume “infinite” hardware
 - Performance? Critical path is $d(S_{15}) = ?$
 - $d(p_{14}, g_{14}) + d(c_{15} \text{ given } p_{14}, g_{14}) + d(S_{15} \text{ given } c_{15}) = 1 + 2 + 2 = 5$!
 - Constant delay, i.e., not a function of N
 - But not very practical in terms of hardware
 - Assume $2N$ gates to compute p_i and g_i initially (ICQ: why $2N$?)
 - Computation of a single C_N needs the following hardware:
 - N AND gates + 1 OR gate, and largest gates have $N+1$ inputs
 - Computation of all $C_N \ldots C_1$ needs:
 - $N*(N+1)/2$ AND gates + N OR gates, max $N+1$ inputs
 - Not too bad if $N=16$: 152 gates, max input 17
 - Pretty bad if $N=64$: 2144 gates, max input 65
 - Big circuits are slow and high input gates are slow
Motivation for Multi-Level Carry Lookahead

- Let’s look at what we have so far (the two extremes)
 - **Ripple carry**
 + Few small gates: no additional gates used to speed up addition
 - Laid in series: 2N latency
 - **Infinite CLA**
 - Many big gates: N*(N+3)/2 additional gates, max N+1 inputs
 + Laid in parallel: constant latency of 5 gate delays
 - We’d like something in between
 - Reasonable number of small gates
 - Sublinear (doesn’t have to be constant) latency
 - **Multi-level CLA**
 - Exploits hierarchy to achieve good compromise between the two extremes
Two-Level CLA for 4-bit Adder

- Individual carry equations
 - \(C_1 = g_0 + p_0C_0, \) \(C_2 = g_1 + p_1C_1, \) \(C_3 = g_2 + p_2C_2, \) \(C_4 = g_3 + p_3C_3 \)

- Fully expanded (infinite hardware) CLA equations
 - \(C_1 = g_0 + p_0C_0 \)
 - \(C_2 = g_1 + p_1g_0 + p_1p_0C_0 \)
 - \(C_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0C_0 \)
 - \(C_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0C_0 \)

- Hierarchical CLA equations
 - **First level**: expand \(C_2 \) using \(C_1 \) and \(C_4 \) using \(C_3 \)
 - \(C_2 = g_1 + p_1(g_0 + p_0C_0) = (g_1 + p_1g_0) + (p_1p_0)C_0 = G_{1-0} + P_{1-0}C_0 \)
 - \(C_4 = g_3 + p_3(g_2 + p_2C_2) = (g_3 + p_3g_2) + (p_3p_2)C_2 = G_{3-2} + P_{3-2}C_2 \)
 - **Second level**: expand \(C_4 \) using expanded \(C_2 \)
 - \(C_4 = G_{3-2} + P_{3-2}(G_{1-0} + P_{1-0}C_0) = (G_{3-2} + P_{3-2}G_{1-0}) + (P_{3-2}P_{1-0})C_0 \)
 - \(C_4 = G_{3-0} + P_{3-0}C_0 \)
Two-Level (2L) CLA for 4-bit Adder

• Hardware?
 • First level: block is infinite CLA for N=2
 • 5 gates per block, max # gate inputs (MNGI)=3
 • 2 of these “blocks”
 • Second level: 1 of these “blocks”
 • Total: 15 gates & 3 MNGI
 • Infinite CLA: 14 & 5 (?!)

• Latency?
 • Total: 9 (ICQ: why?)
 • Infinite CLA: 5
 • 2L: bigger and slower??!
 • ICQ: what happened?
Two-Level CLA for 16-bit Adder

- 4 G/P inputs per level

- Hardware?
 - First level: 14&5 * 4 blocks
 - Second level: 14&5 * 1 block
 - Total: **70&5**
 - Infinite: 152&17

- Latency?
 - Total: **9 (1 + 2 + 2 + 2 + 2)**
 - Infinite: 5

- That’s more like it!
 - CLA for a 64-bit adder?
A Closer Look at CLA Delay

- CLA block has “individual” G/P inputs
 - Uses them to perform **two** calculations
 - Group G/P on way up tree
 - Group interior carries on way down tree
 - Given group carry-in from level above
- Group carry-in for outer level \((C_0)\) ready at 0
- Outer level G/P, interior carries in parallel
CLA Tree Signal Timing: d1

- Signals ready after 1 gate delay
 - C_0
 - Individual G/P
CLA Tree Signal Timing: d3

- What is ready after 3 gate delays?
 - First level group G/P
CLA Tree Signal Timing: d5

- And after 5 gate delays?
 - Outer level “interior” carries
 - C_4, C_8, C_{12}, C_{16}
CLA Tree Signal Timing: d7

• And after 7 gate delays?
 • First level “interior” carries
 • C_1, C_2, C_3
 • C_5, C_6, C_7
 • C_9, C_{10}, C_{11}
 • C_{13}, C_{14}, C_{15}
 • Essentially, all remaining carries

• S_i ready 2 gate delays after C_i
 • All sum bits ready after 9 delays!
Subtraction: Addition’s Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
 - Two’s complement subtraction is addition
- How to subtract using an adder?
 - \(\text{sub } A, B = \text{add } A, -B \)
 - Negate \(B \) before adding (fast negation trick: \(-B = B' + 1\))
- Isn’t a subtraction then a negation and two additions?
 + No, an adder can implement \(A+B+1 \) by setting the carry-in to 1
 + Clever, huh?
A 16-bit ALU

- Build an ALU with functions: add/sub, and, or, not, xor
 - All of these already in CLA adder/subtractor
 - add A B, sub A B (done already)
 - not B is needed for subtraction
 - and A, B are first level Gs
 - or A, B are first level Ps
 - xor A, B?
 - \(S_i = A_i \oplus B_i \oplus C_i \)
This Unit: Arithmetic and ALU Design

- Integer Arithmetic and ALU
 - Binary number representations
 - Addition and subtraction
 - The integer ALU
 - Shifting and rotating
 - Multiplication
 - Division

- Floating Point Arithmetic
 - Binary number representations
 - FP arithmetic
 - Accuracy
Shifts

- Shift: move all bits in a direction (left or right)
 - Denoted by `<<` (left shift) and `>>` (right shift) in C/C++/Java
- **ICQ**: Left shift example: 001010 `<<` 2 = ?
- **ICQ**: Right shift example: 001010 `>>` 2 = ?
- Shifts are useful for
 - Bit manipulation: extracting and setting individual bits in words
 - Multiplication and division by powers of 2
 - A * 4 = A `<<` 2
 - A / 8 = A `>>` 3
 - A * 5 = (A `<<` 2) + A
 - Compilers use this optimization, called **strength reduction**
 - Easier to shift than it is to multiply (in general)
Rotations

- Rotations are slightly different than shifts
 - 1101 rotated 2 to the right = ?
- Rotations are generally less useful than shifts
 - But their implementation is natural if a shifter is there
 - MIPS has only shifts
Barrel Shifter

- What about shifting left by any amount from 0 to 15?
 - Cycle input through "left-shift-by-1" up to 15 times?
 - Complicated, variable latency
 - 16 consecutive "left-shift-by-1-or-0" circuits?
 - Fixed latency, but would take too long
- **Barrel shifter**: four "shift-left-by-X-or-0" circuits ($X = 1,2,4,8$)
Right Shifts and Rotations

- Right shifts and rotations also have barrel implementations
 - But are a little different

- Right shifts
 - Can be **logical** (shift in 0s) or **arithmetic** (shift in copies of MSB)
 - $\text{srl} \ 110011,2 \rightarrow \text{result is} \ 001100$
 - $\text{sra} \ 110011,2 \rightarrow \text{result is} \ 111100$
 - Caveat: sra is not equal to division by 2 of negative numbers
 - Why might we want both types of right shifts?

- Rotations
 - Mux in wires of upper/lower bits
Shift Registers

- **Shift register**: shift in place by constant quantity
 - Sometimes that’s a useful thing
Base10 Multiplication

• Remember base 10 multiplication from 3rd grade?

\[
\begin{array}{c}
43 \quad // \text{ multiplicand} \\
* 12 \quad // \text{ multiplier} \\
\hline
86 \\
+ 430 \\
\hline
516 \quad // \text{ product}
\end{array}
\]

• Start with running total 0, repeat steps until no multiplier digits
 • Multiply multiplicand by least significant multiplier digit
 • Add to total
 • Shift multiplicand one digit to the left (multiply by 10)
 • Shift multiplier one digit to the right (divide by 10)

• Product of N-digit and M-digit numbers potentially has N+M digits
Binary Multiplication

\[43 = 00000101011 \quad // \text{multiplicand} \]
\[\times 12 = 00000001100 \quad // \text{multiplier} \]
\[0 = 00000000000 \]
\[0 = 00000000000 \]
\[172 = 00010101100 \]
\[+ 344 = 00101011000 \]
\[516 = 01000000100 \quad // \text{product} \]

• Same thing except ...
 – There are more individual steps (smaller base)
 + But each step is simpler
• Multiply multiplicand by least significant multiplier bit
 • 0 or 1 \(\rightarrow \) no actual multiplication, just add multiplicand or not
• Add to total: we know how to do that
• Shift multiplicand left, multiplier right by one bit: shift registers
Simple 16x16=32bit Multiplier Circuit

- **Control algorithm**: repeat 16 times
 - If LSB(multiplier) == 1, then add multiplicand to product
 - Shift multiplicand left by 1
 - Shift multiplier right by 1

4b example: 0101 x 0110
Inefficiencies with Simple Circuit

- Notice
 - 32-bit addition, but 16 multiplicand bits are always 0
 - And 0-bits are always moving
 - Solution? Instead of shifting multiplicand left, shift product right
Better 16-bit Multiplier

- **Control algorithm**: repeat 16 times
 - LSB(multiplier) == 1 ? Add multiplicand to upper half of product
 - Shift multiplier right by 1
 - Shift product right by 1

4b example: 0101 x 0110
Another Inefficiency

- Notice one more inefficiency
 - What is initially the lower half of product gets thrown out
 - As useless lower half of product is shifted right, so is multiplier
 - Solution: use lower half of product as multiplier
Even Better 16-bit Multiplier

- **Control algorithm**: repeat 16 times
 - LSB(multiplier) == 1 ? Add multiplicand to upper half of product
 - Shift product right by 1

4b example: 0101 x 0110
Multiplying Negative Numbers

- If multiplicand is negative, our algorithm still works
 - As long as right shifts are arithmetic and not logical
 - Try 1111*0101
- If multiplier is negative, the algorithm breaks

- Two solutions
 1) Negate multiplier, then negate product
 2) Booth’s algorithm