Two-Level CLA for 4-bit Adder

- Individual carry equations
 - $C_i = g_i + p_i C_{i-1}$
- Fully expanded (infinite hardware) CLA equations
 - $C_1 = g_0 + p_0 C_0$
 - $C_2 = g_1 + p_1 g_0 + p_1 p_0 C_0$
 - $C_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0$
 - $C_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0$
- Hierarchical CLA equations
 - **First level**: expand C_2 using C_1 and C_4 using C_3
 - $C_2 = g_1 + p_1 (g_0 + p_0 C_0) = (g_1 + p_1 g_0) + (p_1 p_0) C_0 = G_1-0 + P_1-0 C_0$
 - $C_4 = g_3 + p_3 (g_2 + p_2 C_2) = (g_3 + p_3 g_2) + (p_3 p_2) C_2 = G_3-2 + P_3-2 C_2$
 - **Second level**: expand C_4 using expanded C_2
 - $C_4 = G_3-2 + P_3-2 (G_1-0 + P_1-0 C_0) = (G_3-2 + P_3-2 G_1-0) + (P_3-2 P_1-0) C_0 = G_3-0 + P_3-0 C_0$

Hardware?
- First level: block is infinite CLA for $N=2$
 - 5 gates per block, max # gate inputs (MNGI)=3
 - 2 of these “blocks”
- Second level: 1 of these “blocks”
 - Total: 15 gates & 3 MNGI
 - Infinite: 14 & 5 (?!)

Latency?
- 2 for “outer” CLA, 4 for “interior” B
 - G/P go “up”, C go “down”
 - Total: 9 (1 for GP, 2 for S)
 - Infinite: 5

- 2L: bigger and slower?!?

Two-Level CLA for 16-bit Adder

- 4 G/P inputs per level
- Hardware?
 - First level: 1485 * 4 blocks
 - Second level: 1485 * 1 block
 - Total: 7085
 - Infinite: 152817
- Latency?
 - Total: 9 ($1 + 2 + 2 + 2 + 2$)
 - Infinite: 5

That’s more like it!
- CLA for a 64-bit adder?

A Closer Look at CLA Delay

- CLA block has “individual” G/P inputs
 - Uses them to perform two calculations
 - Group G/P on way up tree
 - Group interior carries on way down tree
 - Given group carry-in from level above
 - Group carry-in for outer level (C_0) ready at 0
 - Outer level G/P, interior carries in parallel
CLA Tree Signal Timing: d_1

- Signals ready after 1 gate delay
 - C_0
 - Individual G/P

CLA Tree Signal Timing: d_3

- What is ready after 3 gate delays?
 - First level group G/P

CLA Tree Signal Timing: d_5

- And after 5 gate delays?
 - Outer level "interior" carries
 - C_0, C_4, C_{12}, C_{16}

CLA Tree Signal Timing: d_7

- And after 7 gate delays?
 - First level "interior" carries
 - C_0, C_4, C_1
 - C_5, C_{10}, C_7
 - C_{15}, C_{16}, C_{17}
 - Essentially, all remaining carries
 - S_i ready 2 gate delays after C_i
 - All sum bits ready after 9 delays!
Subtraction: Addition’s Tricky Pal

- [material only available in class]

A 16-bit ALU

- Build an ALU with functions: `add/sub`, `and`, `or`, `not`, `xor`
 - All of these already in CLA adder/subtractor
 - `add A, B; sub A, B` (done already)
 - `not B` is needed for subtraction
 - `and A, B` are first level Gs
 - `or A, B` are first level Ps
 - `xor A, B`
 - `S_i = A_i ^ B_i ^ C_i`

Shifts

- Shift: move all bits in a direction (left or right)
 - Denoted by `<<` (left shift) and `>>` (right shift) in C/C++/Java
 - Left shift example: `001010 << 2 = ?`
 - Right shift example: `001010 >> 2 = ?`
 - Shifts are useful for
 - Bit manipulation: extracting and setting individual bits in words
 - Multiplication and division by powers of 2
 - `A * 4 = A << 2`
 - `A / 8 = A >> 3`
 - `A * 5 = (A << 2) + A`
 - This compiler optimization is called **strength reduction**
 - Easier to shift than to multiply (in general)
Rotations

- Rotations are slightly different than shifts
 - 1101 rotated 2 to the right = ?
- Rotations are generally less useful than shifts
 - But their implementation is natural if a shifter is there
 - MIPS has only shifts

A Simple (Left) Shifter

- The simplest 16-bit shifter: can only shift left by 1
 - Implement using wires
- Slightly more complicated: can shift left by 1 or 0
 - Implement using wires and a multiplexer (mux16_2to1)

Barrel Shifter

- [material only available in class]

Right Shifts and Rotations

- Right shifts and rotations also have barrel implementations
 - But are a little different
- Right shifts
 - Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)
 - srl 110011, 2 = 001100
 - sra 110011, 2 = 111100
 - Caveat: sra is not equal to division by 2 of negative numbers
 - Why might we want both types of right shifts?
- Rotations
 - Mux in wires of upper/lower bits
Shift Registers

- **Shift register**: shift in place by constant quantity
 - Sometimes that’s a useful thing

![Shift Register Diagram](image)

Decimal Multiplication

- Remember decimal multiplication from 3rd grade?

  ```
  43 // multiplicand
  * 12 // multiplier
  + 430
  516 // product
  ```

 - Start with running total 0, repeat steps until no multiplier digits
 - Multiply multiplicand by least significant multiplier digit
 - Add to total
 - Shift multiplicand one digit to the left (multiply by 10)
 - Shift multiplier one digit to the right (divide by 10)

 - Product of N-digit and M-digit numbers potentially has N+M digits

Binary Multiplication

- `43 = 00000101011` // multiplicand
- `* 12 = 00000001100` // multiplier
- `0 = 00000000000`
- `0 = 00000000000`
- `172 = 00010101100`
- `+ 344 = 00101011000`
- `516 = 01000000100` // product

- Same thing except
 - There are more individual steps (smaller base)
 - But each step is simpler
 - Multiply multiplicand by least significant multiplier digit
 - 0 or 1 → no actual multiplication, just add multiplicand or not
 - Add to total: we know how to do that
 - Shift multiplicand left, multiplier right by one digit: **shift registers**

Simple 16-bit Multiplier Circuit

- **Control algorithm**: repeat 16 times
 - If LSB(multiplier) == 1, then add multiplicand to product
 - Shift multiplicand left by 1
 - Shift multiplier right by 1
Inefficiencies with Simple Circuit

- **Notice**
 - 32-bit addition, but 16 multiplicand bits are always 0
 - And 0 bits are always moving
 - Solution: Instead of shifting multiplicand left, shift product right

Better 16-bit Multiplier

- **Control algorithm**: repeat 16 times
 - LSB(multiplier) == 1 ? Add multiplicand to upper half of product
 - Shift multiplier right by 1
 - Shift product right by 1

Another Inefficiency
- [material only available in class]

Even Better 16-bit Multiplier
- [material only available in class]
Multiplying Negative Numbers

- Just works...
 - As long as right shifts are arithmetic and not logical
 - Try it out for yourself now
- 0101 * 0111 = ?