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Abstract 

Prior work has shown how to improve the performance of 

cache coherence protocols by using logical time to enable 

concurrency that would not be legal in physical time.  We 

hypothesized that extending this prior work to enable even 

greater concurrency would further improve performance, 

and we developed two novel techniques that leverage logical 

time to increase concurrency.  Both schemes appear to offer 

significant benefits in concurrency, yet the primary result of 

this paper is negative.  The potential benefits are clear, but 

common software idioms tend not to be able to exploit this 

potential.  This negative result contributes insight into the 

limits of concurrency in cache coherence and informs the 

research community about an avenue of research that 

appears promising but is unlikely to yield significant gains. 

1 Introduction 

Many shared memory systems—including both multicore 

processors and multi-chip multiprocessors—provide cache 

coherence.  A cache coherence protocol ensures that the 

contents of the various caches are kept coherent and that 

cores that access these caches obtain up-to-date values of 

cached data.  Typically, cache coherence protocols maintain 

the single-writer, multiple-reader (SWMR) invariant, which 

requires that, for a given datum (generally a cache block) at 

any given time, that datum is either cached in a write-able 

(and read-able) state by one cache or it is cached in a read-

only state by zero or more caches.  Thus the lifetime of a 

datum can be divided into a sequence of epochs, where each 

epoch is either read-write for one cache or read-only for zero 

or more caches.  Coherence constrains concurrency by 

prohibiting, for each block, the concurrent existence of a 

writer and a reader or two writers. 

One strategy for increasing concurrency and potentially 

improving the performance of a cache coherence protocol is 

to relax the SWMR invariant when violations of it cannot be 

observed.  In this paper, we consider only non-speculative 

relaxation of the SWMR invariant, and the key to this non-

speculative relaxation is to enforce SWMR in logical time 

[3] instead of physical time.  Logical time is a basis of time 

that respects causality.  That is, if event A causes event B 

(e.g., the sending of a message causes the reception of that 

message), then event A is before event B in logical time 

(e.g., the sending of the message is before the reception in 

logical time).  Events that are not causally related, either 

directly or transitively, may be ordered in any way in logical 

time.  Enforcing SWMR in logical time is sufficient, as we 

explain in Section 2, and it exposes opportunities for 

concurrency by sometimes allowing SWMR to be violated in 

physical time.  Thus, even if one cache has a read-write copy 

of a block at the same physical time at which another cache 

has a read-only copy of the same block, this situation 

satisfies coherence as long as those two coherence epochs do 

not overlap in logical time.  Such a system enables reads and 

writes to the same block that are concurrent in physical time.   

Some prior systems and research proposals have exploited 

the opportunities provided by logical time cache coherence, 

but only to a fairly modest extent.  In Section 3, we describe 

prior schemes for exploiting logical time cache coherence to 

enhance concurrency.  In this work, we push the use of 

logical time significantly beyond what has been done and 

proposed before, and to what we believe is its farthest 

possible extreme.   In Sections 4-6, we explain how we 

achieve more potential concurrency than in prior schemes.   

Despite the potential benefits of extending coherence 

concurrency, the primary result of this research is negative: 

as we show in Section 7, providing more opportunities for 

concurrent reads and writes to the same block does not lead 

to significantly greater performance.  Because this negative 

result is surprising and counter-intuitive at first—many 

readers may find it intuitive after the fact—we believe there 

is merit in sharing this result and the insights that explain it.  

Furthermore, in an era in which many researchers are trying 

to extend coherence to systems with large numbers of cores, 

it is beneficial to share with this community the experiences 

of traveling down one seemingly appealing, yet ultimately 

unrewarding, avenue.  

2 Why Logical Time Coherence is Correct 

It is not immediately obvious that enforcing cache 

coherence’s SWMR invariant in logical time, instead of in 

physical time, is correct.  By “correct”, we mean that the  
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Initially, block B has value zero in memory and in Core C1’s cache. 

Core C1 performs three loads to B and Core C2 performs one store to B with value 1 

 

Physical time execution  Logical time execution 
Physical 

time 

Core C1 Core C2  Logical 

time 

Core C1 Core C2 

initially B is read-only B is invalid  Initially B is read-only B is invalid 

1 Perform load #1: B=0 Issue request 
for read-write 

 1 Perform load #1: B=0 Issue request for read-write 

2 Receive Invalidation 

from C2, send Ack 

  2 Perform load #2: B=0  

3  Receive Ack 
from C1,  

 3 Perform load #3: B=0  

perform store 

B=1 

4 Perform load #2: B=0   4 Receive Invalidation 

from C2, send Ack 

 

5 Perform load #3: B=0   5  Receive Ack from C1,  

perform store B=1 

6 Cache miss – issue 
coherence request 

  6 Cache miss – issue 
coherence request 

 

Fig. 1.  Example execution with Scheurich’s Optimization. 

system satisfies its architectural specification.  To understand 

why logical time coherence is sufficient, we must first define 

correct behavior.  In this case of the shared memory system, 

architectural correctness is defined by the architecture’s 

memory consistency model [13].   Although a thorough 

discussion of consistency models is beyond the scope of this 

paper, the key idea is that the consistency model specifies the 

legal orderings of loads and stores performed by multiple 

threads that share an address space.  Sequential consistency 

[4], for example, specifies that the system must appear to 

perform all loads and stores in a total order that respects the 

program order at each thread.  

To reason about the correctness of coherence, it is necessary 

to consider the relationship between coherence and 

consistency.  It has been shown that, for many consistency 

models, a system can provide the consistency model by 

providing (physical time) cache coherence (SWMR) and 

some allowable reordering of loads and stores between when 

the core commits them and when they are applied to the 

memory system [8].   Sequential consistency [4] can be 

provided by a system with cache coherence and no 

reordering.  SPARC’s Total Store Order (TSO) [14] and the 

x86 consistency model [9] can be provided by a system with 

cache coherence and a FIFO write buffer between each core 

and the memory system.  Weak consistency models, like 

Alpha [12] and ARM [1], permit even more reordering 

between the cores and the memory system. The majority of 

current systems maintain this relationship between coherence 

and consistency; that is, they maintain consistency by 

providing coherence and some reordering between the cores 

and the memory system.  Thus, in such systems, providing 

coherence in physical time suffices to provide memory 

consistency and is thus correct.   

For similar reasons, providing coherence in logical time also 

suffices, so long as there is a single logical time basis across 

all addresses.  Because memory consistency models apply to 

all addresses, the logical time basis must pertain to all 

addresses.  Thus a scheme that uses different logical time 

bases for enforcing coherence for different addresses could 

lead to violations of some consistency models (including 

sequential consistency [4] and TSO/x86 [11]).  

3 Previous Uses of Logical Time Coherence 

Escaping the constraints of implementing cache coherence in 

physical time reveals opportunities to increase concurrency 

that would not otherwise be available. In this section, we 

present two previous schemes for exploiting logical time 

coherence.   

3.1 Scheurich’s Optimization: Delayed Processing of 

Invalidations 

One well-known application of logical time is an 

optimization developed by Scheurich and Dubios [10].  In a 

directory cache coherence protocol, Scheurich and Dubois 

showed that it is legal for a core to perform loads to an 

invalidated cache block until the core’s next cache miss.  For 

example, consider a core C1 that holds block B in a read-

only state and then receives an invalidation for B.   C1 may 

acknowledge the invalidation and continue to load B until C1 

makes a coherence request in response to a cache miss.  Until 

that time, C1’s loads of B are logically before C1 received 

the invalidation and acknowledged it.  We illustrate an 

example in Fig. 1, highlighting the loads and stores. 

Scheurich’s Optimization (SO), as shown in Fig. 1, allows 

core C1 to continue reading block B after (in physical time) 
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C1 has acknowledged invalidating B and after C2 has been 

granted access to change B’s value from the value that C1 is 

still reading. This optimization has clear potential to improve 

concurrency. One important limitation of SO is that it does 

not apply to locks or flags.  That is, using SO to defer an 

invalidation to a lock or flag does not help performance and, 

in fact, can hurt performance and potentially lead to 

deadlock. 

3.2 Tear-Off Blocks 

A subsequent scheme to SO, called tear-off blocks [5], 

extends physical time incoherence even farther than SO. In a 

directory protocol, a cache can request a tear-off block from 

the directory, which means that the cache informs the 

directory that the cache will self-invalidate the block before 

issuing its next coherence request (the same constraint as 

SO). The tear-off block can be incoherent in physical time 

until it is self-invalidated. In architectures that maintain 

sequential consistency, the tear-off block scheme is limited 

to having at most one tear-off block incoherent per cache.  

With more relaxed consistency models, a cache can have 

more simultaneous tear-off blocks. 

3.3 Preliminary Conclusion 

Given what we have shown thus far, it appears that there are 

opportunities to improve concurrency and thus performance, 

by exploiting logical time.  We thus decided to push the use 

of logical time coherence to its extremes, in order to discover 

how much more benefit we could achieve. 

4 Pushing Logical Time Cache Coherence to the 

Limits 

 Based on Scheurich’s optimization, we made two 

discoveries that spurred our research: 

1. We discovered that SO is overly conservative and the 

same insight could enable even greater concurrency. 

2. We discovered that SO has a “converse.”  SO enables a 

core to continue to read a block after another core 

obtains read-write access to it.  Our anti-SO scheme 

enables a core to obtain read-write access to a block 

before invalidating other cores with read-only access to 

that block. 

We next describe our schemes for exploiting these 

observations.  
Initially, block B has value zero in memory and in Core C1’s cache. 

Core C1 performs four loads to B then one to A. Core C2 performs one store to B with value 1 

 

Physical time execution  Logical time execution 

Physical 

time 

Core C1 Core C2  Logical 

time 

Core C1 Core C2 

Initially B is read-only B is invalid  initially B is read-only B is invalid 

1 Perform load #1: B=0 Issue request for read-

write for B 

 1 Perform load #1: 

B=0 

Issue request for 

read-write for B 

2 Receive Invalidation 

from C2, send Ack 

  2 Perform load #2: 

B=0 

 

3  Receive Ack for B from 

C1,  

 3 Perform load #3: 

B=0 

 

perform store B=1 

4 Perform load #2: B=0   4 Perform load #4: 

B=0 

 

5 Perform load #3: B=0   5  Receive Ack for 

B from C1,  

perform store 

B=1 

6 Cache miss – issue 

coherence request for 

read-only for A 

  6 Receive 

Invalidation from 

C2, send Ack 

 

7  Perform load #4: B=0   7 Cache miss – issue 

coherence request 

for read-only for A 

 

8 Receive data for A,    Receive data for A,  

Load A=0 Load A=0 

Fig. 2.  Example execution with Extended SO. 
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5 Extended SO: Longer Delaying of Processing 

Invalidations 

As originally proposed, SO is overly conservative and does 

not enable as much concurrency as it could.  SO requires a 

core to cease loading from an invalidated block once that 

core issues a coherence request triggered by a cache miss.   

The intuition for this restriction is that the core can “pretend” 

that the loads occurred earlier in physical time (i.e., they do 

occur earlier in logical time) until the core requests 

something from the “outside world.”   That is, until the core 

interacts with the outside world (other cores), the outside 

world cannot distinguish whether the loads happened before 

or after the invalidation was received.   

This restriction, however intuitive it may be, is more 

restrictive than necessary. Simply issuing a coherence 

request does not impact causality, because a request does not 

impact the system until it is ordered by the protocol.  In a 

directory protocol, a request is ordered when it reaches the 

directory; in a snooping protocol, a request is ordered when it 

is serialized on the bus.  Until the request is ordered, the core 

that issued it can continue to “pretend” that it has not 

occurred yet.  In a directory protocol, it is difficult to 

leverage this observation, because few directory protocols 

notify a core when its request is ordered.  However, in a 

snooping protocol, a core can extend SO until it observes its 

own request on the bus. 

Initially, we believed that we could push SO no further.  

However, we then performed a thought experiment about 

when it is truly possible to observe a violation of causality.  

It turns out that it is possible to observe a violation only if a 

load or store instruction is committed with a value that 

violates causality. This observation allows a core to continue 

reading an invalidated block for an even longer time than is 

permitted by SO.  The invalidation needs to be processed 

(i.e., the block may no longer be read) only when a load or 

store commits with data that was obtained at a later logical 

time than the logical time of the invalidation. In Fig. 2, we 

illustrate an example of how the invalidation can be delayed 

in an out-of-order core in a system with a directory cache 

coherence protocol.  This example extends the example of 

SO in Fig. 1.  In the example, Core C1 can continue to load 

block B after it issues its coherence request for block A.   

Note that this extended version of SO is most useful for out-

of-order cores, because it enables a core to issue a coherence 

request for one block before invalidating the block with the 

deferred invalidation. This same extension applies to  

dynamic self-invalidation to allow for more tear-off blocks in 

a system that obeys sequential consistency.  

6 Anti-SO: Delayed Sending of Invalidations 

Scheurich’s optimization showed how it is possible to delay 

the processing of an incoming invalidation.  A core may 

continue to read a block after, in physical time, another core 

has obtained read-write access to that block.  Inspired by a 

hunch that this optimization should be “symmetric”, we have 

discovered a converse of SO that enables a core to delay 

sending invalidations while still enforcing  

cache coherence in logical time.  That is, a core may write to 

a block before invalidating cores that have read-only access 

to that block.  

6.1.1 High-Level Overview 

Consider a core in a typical directory protocol with the four 

stable coherence states MOSI.  It can write to a block if the 

block is in state M, and it can read a block if the block is in 

M, O, or S.  If a core wishes to read or write to a block for 

which it has insufficient coherence permissions, it must issue 

a coherence request to the directory to obtain the appropriate 

permissions. We call these coherence requests GetShared 

(GetS) and GetModified (GetM). The typical directory 

protocol maintains the coherence invariant that, at any given 

physical time, there is either one writer or zero or more 

readers; there is no time when there is simultaneously both a 

writer and a reader. 

We developed Anti-SO as a modification of a typical 

directory protocol.  The key innovation of Anti-SO is that it 

allows a core to write to one or more blocks in its cache 

before sending invalidations to other cores that could have 

the block in a valid state. When a core wishes to write to a 

block for which it does not currently have read-write 

permissions, it begins a transaction.
1
 We consider the core 

(not the block) to have changed its state from Normal to 

InTransaction.  During a transaction, all of the memory 

accesses this core performs, both loads and stores, are 

logically delayed until the transaction completes.  The 

transaction continues until an event occurs that forces the 

transaction to commit, such as a coherence request for 

Modified access to a block accessed during the transaction or 

the cache wishing to replace a block written during a 

transaction.  At this point, the core commits its transaction.  

During a transaction, the system is non-speculatively 

incoherent in physical time, and committing a transaction 

restores the system to physical time coherence. 

Starting with a baseline MOSI directory protocol, Anti-SO 

involves adding a few extra stable coherence states to 

distinguish blocks that have transactional coherence 

permissions. The complete list of stable states is in  . We add 

states TS, TO, and TM, which denote that a block’s state is 

transactionally S, O, or M, respectively. 

These states are similar but not identical to their non-

transactional counterparts, and we will highlight the 

                                                             

1 An Anti-SO transaction differs from a transaction in transactional 

memory; in Anti-SO, transaction boundaries are determined by the 

hardware, rather than specified by the software. 
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differences between them in the rest of this section. The key 

to understand for now is that a block can be simultaneously 

(in physical time) TM in one cache (read-write) and either O 

or S (read-only) in one or more other caches. Multiple cores 

may be in transactions at the same time, but only one core 

can have a given block in state TM at a time. 

6.1.2 Beginning a Transaction 

A core begins a transaction in response to wishing to write to 

a block for which it does not have appropriate coherence 

permissions. The core enters state InTransaction and issues a 

coherence request to the directory for Transactionally 

Modified (TM) permission for the desired block.  We call 

this request a GetTM.  The directory receives this GetTM 

request and responds to the requesting core that it can enter 

state TM for this block. The core that issued the GetTM 

request receives the response from the directory and sets the 

block’s state to TM.  In TM, the core may read and write the 

block.  

Unlike in a typical directory protocol, when the directory 

receives the GetTM, it does not send invalidation messages 

to cores that have this block in state S or O.  Any cores with 

the block in state S or O are allowed to stay in their current 

state and continue reading the block.  If a core has the block 

in state M, the directory sends it a message to change its state 

to O.  

6.1.3 During a Transaction 

A core’s InTransaction behavior is quite different from its 

Normal behavior.  

Table 1.  The owner of a block is the entity responsible for 

responding to a coherence request for that block.  Shaded 

entries are impossible. 

State Normal 
Permission 

InTransaction 
Permission 

Owner Compatible with 
cores in other 

states 

I None None N All 

S Read-only None N S, TS 

O Read-only None Y S, TS, I 

M Read-write Read-write Y I 

TS Read-only Read-only N S, TS, I 

TO Read-only Read-only Ya S, TS, I 

TM  Read-write Yb,c O, S, I 

M/TM Read-write Read-write Yc I 
a Responds to GetS. If GetM, will commit block and 
go to O before responding to GetM. b Will not respond to GetS.  GetS will be satisfied by 
cache in O (if exists) or else memory. 
c Will commit block and go to O before responding to 
request. 

 

 

 

Performing Loads and Stores 

While in a transaction, a core can load and store to blocks in 

state TM, and we summarize how this works in  . A store to a 

block not in state TM requires the core to issue a GetTM to 

get TM permissions to the block. If the block is already in 

state M, this GetTM can be silent (i.e., not require a message 

to be sent to the directory) and the block changes state to a 

state that is both M and TM and that we denote M/TM.  

A load to a block not already in a transactional state requires 

the core to send a request to the directory and get an 

acknowledgment of its transactional state. A load to a block 

in I, S, or O requires the core to send a GetTS, and the block 

ends up in either TS (if in I or S) or TO (if in O). A load to a 

block in M causes a silent transition to M/TM. A core can 

load blocks in state TS, TO, or TM. If the core later wishes 

to store to a block in TS or TO, it must issue a GetTM to the 

directory. 

Responding to Coherence Requests 

During a transaction, a core may receive coherence requests 

forwarded to it from the directory.  The core handles the 

requests as shown in context switches and page remapping 

will force a transaction to begin a Commit.  Requests for 

blocks not in TM, M/TM, or TO are handled normally, with 

one important exception.  Consider a core C1 that has a block 

in state M, and receives a GetTM request from core C2. In a 

typical directory protocol, a request for read/write 

permissions would cause C1 to change its state from M to I. 

In Anti-SO, however, C1 changes its state from M to O. C1 

remains the owner of the block and may continue to read the 

block. The directory will continue to forward coherence 

requests for normal read-only access to the block (GetS) to 

C1, but the directory will forward requests for transactional 

read and read-write access (GetTS and GetTM) to C2. This 

highlights the most important difference between Anti-SO 

and normal coherence protocols: with Anti-SO, a requestor 

can obtain read-write access (in TM) while another core 

retains read-only access.  

Table 2.  Performing loads and stores.  Italicized entries are 

the same as in the baseline directory protocol.  Shaded 

entries are impossible. 

State Normal (not InTransaction) InTransaction 

 Load Store Load Store 

I Issue GetS 
 S 

Issue GetTM 
 TM 

Issue GetS  
TS 

Issue GetTM 
 TM 

S Hit Issue GetTM 

 TM 

Issue GetS  

TS 

Issue GetTM 

 TM 

O Hit Issue GetTM 
 TM 

Issue GetS  
TO 

Issue GetTM 
 TM 

M Hit Hit Hit  M/TM Hit  M/TM 

TS Hit Issue GetTM 
 TM 

Hit Issue GetTM 
 TM 

TO Hit Issue GetTM 

 TM 

Hit Issue GetTM 

 TM 

TM   Hit Hit 

M/TM Hit  M Hit  M Hit Hit 
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Table 3. Responding to coherence requests.  Shaded entries are impossible. 

State GetS GetTS GetTM Invalidation 

I Send nack a   Send ack  I 

S    Send ack  I 

O Send data Send data Send data  

[do not go to I] 

Send ack  I 

M Send data  O Send data  O Send data  O  

[do not go to I] 

 

TS   Commit transaction  S Commit transaction  S 

TO Send data Send data Commit transaction  O Commit transaction  O 

TM Send nack a Commit transaction  M Commit transaction  M  

M/TM Commit transaction  O Commit transaction  O Commit transaction  O  
a
 Both of these situations involve complicated races of messages, and nacks are the simplest approach to 

dealing with them.  Other solutions may exist, but optimizing for these rare race cases is not worthwhile. 

Events that Force an Entire Transaction to be 

Committed 

There are three events that force a core to commit a 

transaction: 

 The core wants to evict a block in state TM, M/TM, 

TO, or TS,  

 The core receives a forwarded GetTM for a block in 

TM, M/TM, TO, or TS, or  

 The core receives a forwarded GetTS for a block in 

state TM or M/TM.  

If any of these events occurs, the core starts a Commit of all 

TM blocks, described in Section 6.1.4.  Blocks in TS, TO, 

and M/TM can remain in those states.  In addition, context 

switches and page remapping will force a transaction to 

begin a Commit. 

6.1.4 Committing a Transaction 

To commit a transaction, the core must atomically change the 

state of all TM blocks to M.  During this process, the core 

enters state InCommit and delays responding to forwarded 

coherence requests for TM blocks. To commit the 

transaction, the core issues Commit coherence requests to the 

directory for every block in state TM.
 
 These Commit 

requests are equivalent to requests for Modified (state M) 

permissions, and they invalidate the copies of the blocks in 

all other caches.  When the committing core receives an 

acknowledgment of a Commit for a block, it changes that 

block’s state to M.  Once the committing core receives 

acknowledgments for all of its Commits, the transaction is 

complete and the core changes its state from InCommit to 

Normal.  

6.2 An Example of Anti-SO in Action 

We now walk through an example of Anti-SO in action. As 

illustrated in Fig. 3, in a system with Anti-SO, C1 obtains 

TM access to A and enters InTransaction.  It stores to A and 

then requests and obtains TM access to B before storing to B.  

Note that C1 has performed stores to two blocks that are still 

readable by C2; this situation violates physical time 

coherence. Assume for now that C1 decides to complete its 

transaction at this point (e.g., because it wishes to evict A 

from its cache).  C1 commits this transaction and logically 

inserts the transaction (i.e., the stores in the transaction) into 

the total order required by SC after the loads by C2.  As part 

of committing the transaction, C1 must change the state of all  

Initially, Mem[A] = Mem[B] = 0 

 
Core C1 performs one Store to A then B, both with value 1.  Core C2 loads 

A then loads B. 

 

Cycle Core C1 Directory Core C2 

0 Begin transaction; change 

core state from Normal to 

InTransaction; issue 
GetTM request for A 

 Load r1, A // r1 = 

0 

10  Receive 

GetTM for A 

Load r2, B // r2 = 

0 

20 Obtain TM permission for 
A; 

Store A, 1 

  

30 Issue GetTM request for B   

40  Receive 
GetTM for B 

 

50 Obtain TM permission for 

B; 
Store B, 2; 

Start to commit 

transaction; change core 
state to InCommit; send 

Commit request for A and 

B to directory 

  

  Receive 

Commits 

 

   Receive 

invalidations for 
A, B 

80 Obtain M permissions for 

A and B;  
change core state to 

Normal 

  

Fig. 3.  Example execution with Anti-

SO 

blocks accessed in the transaction from TM to M by 

invalidating A and B from C2’s cache.  If a core wishes to 
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evict a block in TS, TO, or M/TM—which can happen either 

during InTransaction mode or in Normal mode—the core 

needs to commit just that block if in Normal mode or all 

blocks in a transaction if in InTransaction mode. To commit 

a block, the core issues a Commit coherence request for that 

block to the directory, and the directory responds with an 

acknowledgment. Upon receiving the ack, the block’s state 

changes from TS to S, TO to O, and M/TM to O. 

This single, simple example illustrates at a high level how 

Anti-SO handles one situation and hopefully provides some 

intuition for how it improves performance through temporary 

incoherence.  

7 The Negative Result 

 

Our hypothesis was that, if Scheurich’s optimization and 

other logical time coherence “tricks” have been successfully 

employed, then there should be merit in pushing logical time 

coherence even farther.  We implemented both extended SO 

and Anti-SO in a full-system simulation environment (Simics 

[6] and GEMS [7]), and we compared them to each other and 

to a baseline system without either optimization.  For both 

SO and Anti-SO, we initially made optimistic assumptions 

about their implementations, to get a better idea of their 

ceilings before focusing on more realistic implementations.  

For example, for Anti-SO, we ignored the complexity and 

latency of finding all blocks that need to be committed at the 

end of a transaction.   

The results of the experiments were surprising and 

disappointing: the differences in performance were less than 

the error margins in our results.  (Thus, we present no 

graphs.)  As with many discoveries, the intuition for our 

negative result appears far clearer in retrospect.  In this 

section, we explain why pushing logical time coherence 

farther does not help performance for common software 

idioms, and we show a few scenarios in which it does happen 

to help.  

7.1 Common Software Idioms 

Logical time cache coherence enables concurrent, conflicting 

accesses to shared data, where accesses are said to conflict if 

they are to the same address and at least one is a write.  The 

catch, though, is that most programs do not benefit from 

concurrent, conflicting accesses to shared data.  Concurrent 

conflicting accesses, by definition, are part of a race.  In data-

race-free (DRF) programs, the only accesses that race are 

accesses to synchronization variables such as locks.  By 

using synchronization accesses to enforce critical sections, a 

DRF program avoids races for non-synchronization data. 

Thus permitting concurrent, conflicting accesses to non-

synchronization data offers little advantage.  There will not 

be situations in which an invalidation will arrive for data 

necessary to complete a critical section; thus Scheurich’s 

optimization does not help.  Similarly, there will not be 

situations in which obtaining read-write permission would 

invalidate data from another thread that still needs to load 

that data during a critical section; thus, anti-SO does not 

help. 

For accesses to synchronization variables, the optimal 

situation is to enforce physical time coherence, because 

physical time coherence minimizes the time between a lock 

release and when the lock can be acquired by another thread.  

The goal is to make the changes to synchronization variables 

visible as soon as possible.  By contrast, logical time 

coherence permits later updates of synchronization variables, 

which is not helpful.  

Intuitively, DRF programs enforce causality—the basis of 

logical time—and thus there is little difference between 

physical time and logical time.  

7.2 Benefits in Uncommon Cases 

There are two situations in which logical time coherence 

offers potential benefits: false sharing and prefetching. 

False Sharing.  When a block holds multiple pieces of data, 

it is possible for false sharing to occur.  Because the sharing 

is false, there is not necessarily a causal relationship between 

accesses to the pieces of data in the block.  This is an 

opportunity to use logical time coherence because there is a 

difference between physical time and logical time.  In 

physical time, the data is shared; in logical time, it is not 

shared.  Logical time schemes, like SO and anti-SO, can 

mitigate the impact of false sharing by allowing a thread to 

concurrently read from one part of a block while another 

thread is writing to another part of the block.  These 

concurrent, conflicting accesses do not violate causality.  

However, because logical time coherence does not allow 

concurrent writes, it is not a complete solution to false 

sharing.  Furthermore, previous schemes to handle false 

sharing exist, including sub-block coherence [2]. 

Prefetching.  Consider a thread T1 that is executing within a 

critical section.  In a DRF program, it should not receive an 

invalidation for any block in the critical section.  However, 

with prefetching, it is possible for another thread T2’s 

prefetch for read-write permissions to cause an invalidation 

to arrive at T1 during the critical section.  SO and Anti-SO 

address this problem by allowing T1 to continue to read the 

block if necessary.  If T2’s prefetch was early (i.e., issued 

before T2 reached its critical section) or if the prefetch ends 

up not being used (e.g., due to a mis-prediction or an overly 

aggressive prefetcher), then SO and Anti-SO help.  However, 

SO and Anti-SO do not address the problem of a prefetch 

arriving at a thread that needs to continue writing (rather than 

reading) a block.  Furthermore, there are many other schemes 

for mitigating the impacts of overly aggressive prefetching.  
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8 Conclusions 

The performance of cache coherence protocols is becoming 

increasingly important as commodity processor chips 

continue to incorporate more cores and to provide cache-

coherent shared memory.  One avenue of research has 

previously explored the potential to improve coherence 

performance by using logical time reasoning to increase 

concurrency.  Based on the promise of this research and the 

use of logical time techniques in actual systems, we sought to 

extend this approach to its limits.  In the course of doing so, 

we discovered a negative result, except for the potential to 

use logical time coherence in specific situations (false 

sharing and prefetching).   
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