
 1

Appears in the 10
th

 Annual Workshop on Duplicating, Deconstructing and Debunking (WDDD 2012)

Held in conjunction with the 39
th

 International Symposium on Computer Architecture (ISCA-39)

Portland, OR June 2012

The Limits of Concurrency in Cache Coherence

Blake A. Hechtman, Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University

Durham, NC, USA

bah13@duke.edu, sorin@ee.duke.edu

Abstract

Prior work has shown how to improve the performance of

cache coherence protocols by using logical time to enable

concurrency that would not be legal in physical time. We

hypothesized that extending this prior work to enable even

greater concurrency would further improve performance,

and we developed two novel techniques that leverage logical

time to increase concurrency. Both schemes appear to offer

significant benefits in concurrency, yet the primary result of

this paper is negative. The potential benefits are clear, but

common software idioms tend not to be able to exploit this

potential. This negative result contributes insight into the

limits of concurrency in cache coherence and informs the

research community about an avenue of research that

appears promising but is unlikely to yield significant gains.

1 Introduction

Many shared memory systems—including both multicore

processors and multi-chip multiprocessors—provide cache

coherence. A cache coherence protocol ensures that the

contents of the various caches are kept coherent and that

cores that access these caches obtain up-to-date values of

cached data. Typically, cache coherence protocols maintain

the single-writer, multiple-reader (SWMR) invariant, which

requires that, for a given datum (generally a cache block) at

any given time, that datum is either cached in a write-able

(and read-able) state by one cache or it is cached in a read-

only state by zero or more caches. Thus the lifetime of a

datum can be divided into a sequence of epochs, where each

epoch is either read-write for one cache or read-only for zero

or more caches. Coherence constrains concurrency by

prohibiting, for each block, the concurrent existence of a

writer and a reader or two writers.

One strategy for increasing concurrency and potentially

improving the performance of a cache coherence protocol is

to relax the SWMR invariant when violations of it cannot be

observed. In this paper, we consider only non-speculative

relaxation of the SWMR invariant, and the key to this non-

speculative relaxation is to enforce SWMR in logical time

[3] instead of physical time. Logical time is a basis of time

that respects causality. That is, if event A causes event B

(e.g., the sending of a message causes the reception of that

message), then event A is before event B in logical time

(e.g., the sending of the message is before the reception in

logical time). Events that are not causally related, either

directly or transitively, may be ordered in any way in logical

time. Enforcing SWMR in logical time is sufficient, as we

explain in Section 2, and it exposes opportunities for

concurrency by sometimes allowing SWMR to be violated in

physical time. Thus, even if one cache has a read-write copy

of a block at the same physical time at which another cache

has a read-only copy of the same block, this situation

satisfies coherence as long as those two coherence epochs do

not overlap in logical time. Such a system enables reads and

writes to the same block that are concurrent in physical time.

Some prior systems and research proposals have exploited

the opportunities provided by logical time cache coherence,

but only to a fairly modest extent. In Section 3, we describe

prior schemes for exploiting logical time cache coherence to

enhance concurrency. In this work, we push the use of

logical time significantly beyond what has been done and

proposed before, and to what we believe is its farthest

possible extreme. In Sections 4-6, we explain how we

achieve more potential concurrency than in prior schemes.

Despite the potential benefits of extending coherence

concurrency, the primary result of this research is negative:

as we show in Section 7, providing more opportunities for

concurrent reads and writes to the same block does not lead

to significantly greater performance. Because this negative

result is surprising and counter-intuitive at first—many

readers may find it intuitive after the fact—we believe there

is merit in sharing this result and the insights that explain it.

Furthermore, in an era in which many researchers are trying

to extend coherence to systems with large numbers of cores,

it is beneficial to share with this community the experiences

of traveling down one seemingly appealing, yet ultimately

unrewarding, avenue.

2 Why Logical Time Coherence is Correct

It is not immediately obvious that enforcing cache

coherence’s SWMR invariant in logical time, instead of in

physical time, is correct. By “correct”, we mean that the

mailto:bah13@duke.edu
mailto:sorin@ee.duke.edu

 2

Initially, block B has value zero in memory and in Core C1’s cache.

Core C1 performs three loads to B and Core C2 performs one store to B with value 1

Physical time execution Logical time execution
Physical

time

Core C1 Core C2 Logical

time

Core C1 Core C2

initially B is read-only B is invalid Initially B is read-only B is invalid

1 Perform load #1: B=0 Issue request
for read-write

 1 Perform load #1: B=0 Issue request for read-write

2 Receive Invalidation

from C2, send Ack

 2 Perform load #2: B=0

3 Receive Ack
from C1,

 3 Perform load #3: B=0

perform store

B=1

4 Perform load #2: B=0 4 Receive Invalidation

from C2, send Ack

5 Perform load #3: B=0 5 Receive Ack from C1,

perform store B=1

6 Cache miss – issue
coherence request

 6 Cache miss – issue
coherence request

Fig. 1. Example execution with Scheurich’s Optimization.

system satisfies its architectural specification. To understand

why logical time coherence is sufficient, we must first define

correct behavior. In this case of the shared memory system,

architectural correctness is defined by the architecture’s

memory consistency model [13]. Although a thorough

discussion of consistency models is beyond the scope of this

paper, the key idea is that the consistency model specifies the

legal orderings of loads and stores performed by multiple

threads that share an address space. Sequential consistency

[4], for example, specifies that the system must appear to

perform all loads and stores in a total order that respects the

program order at each thread.

To reason about the correctness of coherence, it is necessary

to consider the relationship between coherence and

consistency. It has been shown that, for many consistency

models, a system can provide the consistency model by

providing (physical time) cache coherence (SWMR) and

some allowable reordering of loads and stores between when

the core commits them and when they are applied to the

memory system [8]. Sequential consistency [4] can be

provided by a system with cache coherence and no

reordering. SPARC’s Total Store Order (TSO) [14] and the

x86 consistency model [9] can be provided by a system with

cache coherence and a FIFO write buffer between each core

and the memory system. Weak consistency models, like

Alpha [12] and ARM [1], permit even more reordering

between the cores and the memory system. The majority of

current systems maintain this relationship between coherence

and consistency; that is, they maintain consistency by

providing coherence and some reordering between the cores

and the memory system. Thus, in such systems, providing

coherence in physical time suffices to provide memory

consistency and is thus correct.

For similar reasons, providing coherence in logical time also

suffices, so long as there is a single logical time basis across

all addresses. Because memory consistency models apply to

all addresses, the logical time basis must pertain to all

addresses. Thus a scheme that uses different logical time

bases for enforcing coherence for different addresses could

lead to violations of some consistency models (including

sequential consistency [4] and TSO/x86 [11]).

3 Previous Uses of Logical Time Coherence

Escaping the constraints of implementing cache coherence in

physical time reveals opportunities to increase concurrency

that would not otherwise be available. In this section, we

present two previous schemes for exploiting logical time

coherence.

3.1 Scheurich’s Optimization: Delayed Processing of

Invalidations

One well-known application of logical time is an

optimization developed by Scheurich and Dubios [10]. In a

directory cache coherence protocol, Scheurich and Dubois

showed that it is legal for a core to perform loads to an

invalidated cache block until the core’s next cache miss. For

example, consider a core C1 that holds block B in a read-

only state and then receives an invalidation for B. C1 may

acknowledge the invalidation and continue to load B until C1

makes a coherence request in response to a cache miss. Until

that time, C1’s loads of B are logically before C1 received

the invalidation and acknowledged it. We illustrate an

example in Fig. 1, highlighting the loads and stores.

Scheurich’s Optimization (SO), as shown in Fig. 1, allows

core C1 to continue reading block B after (in physical time)

 3

C1 has acknowledged invalidating B and after C2 has been

granted access to change B’s value from the value that C1 is

still reading. This optimization has clear potential to improve

concurrency. One important limitation of SO is that it does

not apply to locks or flags. That is, using SO to defer an

invalidation to a lock or flag does not help performance and,

in fact, can hurt performance and potentially lead to

deadlock.

3.2 Tear-Off Blocks

A subsequent scheme to SO, called tear-off blocks [5],

extends physical time incoherence even farther than SO. In a

directory protocol, a cache can request a tear-off block from

the directory, which means that the cache informs the

directory that the cache will self-invalidate the block before

issuing its next coherence request (the same constraint as

SO). The tear-off block can be incoherent in physical time

until it is self-invalidated. In architectures that maintain

sequential consistency, the tear-off block scheme is limited

to having at most one tear-off block incoherent per cache.

With more relaxed consistency models, a cache can have

more simultaneous tear-off blocks.

3.3 Preliminary Conclusion

Given what we have shown thus far, it appears that there are

opportunities to improve concurrency and thus performance,

by exploiting logical time. We thus decided to push the use

of logical time coherence to its extremes, in order to discover

how much more benefit we could achieve.

4 Pushing Logical Time Cache Coherence to the

Limits

 Based on Scheurich’s optimization, we made two

discoveries that spurred our research:

1. We discovered that SO is overly conservative and the

same insight could enable even greater concurrency.

2. We discovered that SO has a “converse.” SO enables a

core to continue to read a block after another core

obtains read-write access to it. Our anti-SO scheme

enables a core to obtain read-write access to a block

before invalidating other cores with read-only access to

that block.

We next describe our schemes for exploiting these

observations.
Initially, block B has value zero in memory and in Core C1’s cache.

Core C1 performs four loads to B then one to A. Core C2 performs one store to B with value 1

Physical time execution Logical time execution

Physical

time

Core C1 Core C2 Logical

time

Core C1 Core C2

Initially B is read-only B is invalid initially B is read-only B is invalid

1 Perform load #1: B=0 Issue request for read-

write for B

 1 Perform load #1:

B=0

Issue request for

read-write for B

2 Receive Invalidation

from C2, send Ack

 2 Perform load #2:

B=0

3 Receive Ack for B from

C1,

 3 Perform load #3:

B=0

perform store B=1

4 Perform load #2: B=0 4 Perform load #4:

B=0

5 Perform load #3: B=0 5 Receive Ack for

B from C1,

perform store

B=1

6 Cache miss – issue

coherence request for

read-only for A

 6 Receive

Invalidation from

C2, send Ack

7 Perform load #4: B=0 7 Cache miss – issue

coherence request

for read-only for A

8 Receive data for A, Receive data for A,

Load A=0 Load A=0

Fig. 2. Example execution with Extended SO.

 4

5 Extended SO: Longer Delaying of Processing

Invalidations

As originally proposed, SO is overly conservative and does

not enable as much concurrency as it could. SO requires a

core to cease loading from an invalidated block once that

core issues a coherence request triggered by a cache miss.

The intuition for this restriction is that the core can “pretend”

that the loads occurred earlier in physical time (i.e., they do

occur earlier in logical time) until the core requests

something from the “outside world.” That is, until the core

interacts with the outside world (other cores), the outside

world cannot distinguish whether the loads happened before

or after the invalidation was received.

This restriction, however intuitive it may be, is more

restrictive than necessary. Simply issuing a coherence

request does not impact causality, because a request does not

impact the system until it is ordered by the protocol. In a

directory protocol, a request is ordered when it reaches the

directory; in a snooping protocol, a request is ordered when it

is serialized on the bus. Until the request is ordered, the core

that issued it can continue to “pretend” that it has not

occurred yet. In a directory protocol, it is difficult to

leverage this observation, because few directory protocols

notify a core when its request is ordered. However, in a

snooping protocol, a core can extend SO until it observes its

own request on the bus.

Initially, we believed that we could push SO no further.

However, we then performed a thought experiment about

when it is truly possible to observe a violation of causality.

It turns out that it is possible to observe a violation only if a

load or store instruction is committed with a value that

violates causality. This observation allows a core to continue

reading an invalidated block for an even longer time than is

permitted by SO. The invalidation needs to be processed

(i.e., the block may no longer be read) only when a load or

store commits with data that was obtained at a later logical

time than the logical time of the invalidation. In Fig. 2, we

illustrate an example of how the invalidation can be delayed

in an out-of-order core in a system with a directory cache

coherence protocol. This example extends the example of

SO in Fig. 1. In the example, Core C1 can continue to load

block B after it issues its coherence request for block A.

Note that this extended version of SO is most useful for out-

of-order cores, because it enables a core to issue a coherence

request for one block before invalidating the block with the

deferred invalidation. This same extension applies to

dynamic self-invalidation to allow for more tear-off blocks in

a system that obeys sequential consistency.

6 Anti-SO: Delayed Sending of Invalidations

Scheurich’s optimization showed how it is possible to delay

the processing of an incoming invalidation. A core may

continue to read a block after, in physical time, another core

has obtained read-write access to that block. Inspired by a

hunch that this optimization should be “symmetric”, we have

discovered a converse of SO that enables a core to delay

sending invalidations while still enforcing

cache coherence in logical time. That is, a core may write to

a block before invalidating cores that have read-only access

to that block.

6.1.1 High-Level Overview

Consider a core in a typical directory protocol with the four

stable coherence states MOSI. It can write to a block if the

block is in state M, and it can read a block if the block is in

M, O, or S. If a core wishes to read or write to a block for

which it has insufficient coherence permissions, it must issue

a coherence request to the directory to obtain the appropriate

permissions. We call these coherence requests GetShared

(GetS) and GetModified (GetM). The typical directory

protocol maintains the coherence invariant that, at any given

physical time, there is either one writer or zero or more

readers; there is no time when there is simultaneously both a

writer and a reader.

We developed Anti-SO as a modification of a typical

directory protocol. The key innovation of Anti-SO is that it

allows a core to write to one or more blocks in its cache

before sending invalidations to other cores that could have

the block in a valid state. When a core wishes to write to a

block for which it does not currently have read-write

permissions, it begins a transaction.
1
 We consider the core

(not the block) to have changed its state from Normal to

InTransaction. During a transaction, all of the memory

accesses this core performs, both loads and stores, are

logically delayed until the transaction completes. The

transaction continues until an event occurs that forces the

transaction to commit, such as a coherence request for

Modified access to a block accessed during the transaction or

the cache wishing to replace a block written during a

transaction. At this point, the core commits its transaction.

During a transaction, the system is non-speculatively

incoherent in physical time, and committing a transaction

restores the system to physical time coherence.

Starting with a baseline MOSI directory protocol, Anti-SO

involves adding a few extra stable coherence states to

distinguish blocks that have transactional coherence

permissions. The complete list of stable states is in . We add

states TS, TO, and TM, which denote that a block’s state is

transactionally S, O, or M, respectively.

These states are similar but not identical to their non-

transactional counterparts, and we will highlight the

1 An Anti-SO transaction differs from a transaction in transactional

memory; in Anti-SO, transaction boundaries are determined by the

hardware, rather than specified by the software.

 5

differences between them in the rest of this section. The key

to understand for now is that a block can be simultaneously

(in physical time) TM in one cache (read-write) and either O

or S (read-only) in one or more other caches. Multiple cores

may be in transactions at the same time, but only one core

can have a given block in state TM at a time.

6.1.2 Beginning a Transaction

A core begins a transaction in response to wishing to write to

a block for which it does not have appropriate coherence

permissions. The core enters state InTransaction and issues a

coherence request to the directory for Transactionally

Modified (TM) permission for the desired block. We call

this request a GetTM. The directory receives this GetTM

request and responds to the requesting core that it can enter

state TM for this block. The core that issued the GetTM

request receives the response from the directory and sets the

block’s state to TM. In TM, the core may read and write the

block.

Unlike in a typical directory protocol, when the directory

receives the GetTM, it does not send invalidation messages

to cores that have this block in state S or O. Any cores with

the block in state S or O are allowed to stay in their current

state and continue reading the block. If a core has the block

in state M, the directory sends it a message to change its state

to O.

6.1.3 During a Transaction

A core’s InTransaction behavior is quite different from its

Normal behavior.

Table 1. The owner of a block is the entity responsible for

responding to a coherence request for that block. Shaded

entries are impossible.

State Normal
Permission

InTransaction
Permission

Owner Compatible with
cores in other

states

I None None N All

S Read-only None N S, TS

O Read-only None Y S, TS, I

M Read-write Read-write Y I

TS Read-only Read-only N S, TS, I

TO Read-only Read-only Ya S, TS, I

TM Read-write Yb,c O, S, I

M/TM Read-write Read-write Yc I
a Responds to GetS. If GetM, will commit block and
go to O before responding to GetM. b Will not respond to GetS. GetS will be satisfied by
cache in O (if exists) or else memory.
c Will commit block and go to O before responding to
request.

Performing Loads and Stores

While in a transaction, a core can load and store to blocks in

state TM, and we summarize how this works in . A store to a

block not in state TM requires the core to issue a GetTM to

get TM permissions to the block. If the block is already in

state M, this GetTM can be silent (i.e., not require a message

to be sent to the directory) and the block changes state to a

state that is both M and TM and that we denote M/TM.

A load to a block not already in a transactional state requires

the core to send a request to the directory and get an

acknowledgment of its transactional state. A load to a block

in I, S, or O requires the core to send a GetTS, and the block

ends up in either TS (if in I or S) or TO (if in O). A load to a

block in M causes a silent transition to M/TM. A core can

load blocks in state TS, TO, or TM. If the core later wishes

to store to a block in TS or TO, it must issue a GetTM to the

directory.

Responding to Coherence Requests

During a transaction, a core may receive coherence requests

forwarded to it from the directory. The core handles the

requests as shown in context switches and page remapping

will force a transaction to begin a Commit. Requests for

blocks not in TM, M/TM, or TO are handled normally, with

one important exception. Consider a core C1 that has a block

in state M, and receives a GetTM request from core C2. In a

typical directory protocol, a request for read/write

permissions would cause C1 to change its state from M to I.

In Anti-SO, however, C1 changes its state from M to O. C1

remains the owner of the block and may continue to read the

block. The directory will continue to forward coherence

requests for normal read-only access to the block (GetS) to

C1, but the directory will forward requests for transactional

read and read-write access (GetTS and GetTM) to C2. This

highlights the most important difference between Anti-SO

and normal coherence protocols: with Anti-SO, a requestor

can obtain read-write access (in TM) while another core

retains read-only access.

Table 2. Performing loads and stores. Italicized entries are

the same as in the baseline directory protocol. Shaded

entries are impossible.

State Normal (not InTransaction) InTransaction

 Load Store Load Store

I Issue GetS
 S

Issue GetTM
 TM

Issue GetS 
TS

Issue GetTM
 TM

S Hit Issue GetTM

 TM

Issue GetS 

TS

Issue GetTM

 TM

O Hit Issue GetTM
 TM

Issue GetS 
TO

Issue GetTM
 TM

M Hit Hit Hit  M/TM Hit  M/TM

TS Hit Issue GetTM
 TM

Hit Issue GetTM
 TM

TO Hit Issue GetTM

 TM

Hit Issue GetTM

 TM

TM Hit Hit

M/TM Hit  M Hit  M Hit Hit

 6

Table 3. Responding to coherence requests. Shaded entries are impossible.

State GetS GetTS GetTM Invalidation

I Send nack a Send ack  I

S Send ack  I

O Send data Send data Send data

[do not go to I]

Send ack  I

M Send data  O Send data  O Send data  O

[do not go to I]

TS Commit transaction  S Commit transaction  S

TO Send data Send data Commit transaction  O Commit transaction  O

TM Send nack a Commit transaction  M Commit transaction  M

M/TM Commit transaction  O Commit transaction  O Commit transaction  O
a
 Both of these situations involve complicated races of messages, and nacks are the simplest approach to

dealing with them. Other solutions may exist, but optimizing for these rare race cases is not worthwhile.

Events that Force an Entire Transaction to be

Committed

There are three events that force a core to commit a

transaction:

 The core wants to evict a block in state TM, M/TM,

TO, or TS,

 The core receives a forwarded GetTM for a block in

TM, M/TM, TO, or TS, or

 The core receives a forwarded GetTS for a block in

state TM or M/TM.

If any of these events occurs, the core starts a Commit of all

TM blocks, described in Section 6.1.4. Blocks in TS, TO,

and M/TM can remain in those states. In addition, context

switches and page remapping will force a transaction to

begin a Commit.

6.1.4 Committing a Transaction

To commit a transaction, the core must atomically change the

state of all TM blocks to M. During this process, the core

enters state InCommit and delays responding to forwarded

coherence requests for TM blocks. To commit the

transaction, the core issues Commit coherence requests to the

directory for every block in state TM.

 These Commit

requests are equivalent to requests for Modified (state M)

permissions, and they invalidate the copies of the blocks in

all other caches. When the committing core receives an

acknowledgment of a Commit for a block, it changes that

block’s state to M. Once the committing core receives

acknowledgments for all of its Commits, the transaction is

complete and the core changes its state from InCommit to

Normal.

6.2 An Example of Anti-SO in Action

We now walk through an example of Anti-SO in action. As

illustrated in Fig. 3, in a system with Anti-SO, C1 obtains

TM access to A and enters InTransaction. It stores to A and

then requests and obtains TM access to B before storing to B.

Note that C1 has performed stores to two blocks that are still

readable by C2; this situation violates physical time

coherence. Assume for now that C1 decides to complete its

transaction at this point (e.g., because it wishes to evict A

from its cache). C1 commits this transaction and logically

inserts the transaction (i.e., the stores in the transaction) into

the total order required by SC after the loads by C2. As part

of committing the transaction, C1 must change the state of all

Initially, Mem[A] = Mem[B] = 0

Core C1 performs one Store to A then B, both with value 1. Core C2 loads

A then loads B.

Cycle Core C1 Directory Core C2

0 Begin transaction; change

core state from Normal to

InTransaction; issue
GetTM request for A

 Load r1, A // r1 =

0

10 Receive

GetTM for A

Load r2, B // r2 =

0

20 Obtain TM permission for
A;

Store A, 1

30 Issue GetTM request for B

40 Receive
GetTM for B

50 Obtain TM permission for

B;
Store B, 2;

Start to commit

transaction; change core
state to InCommit; send

Commit request for A and

B to directory

 Receive

Commits

 Receive

invalidations for
A, B

80 Obtain M permissions for

A and B;
change core state to

Normal

Fig. 3. Example execution with Anti-

SO

blocks accessed in the transaction from TM to M by

invalidating A and B from C2’s cache. If a core wishes to

 7

evict a block in TS, TO, or M/TM—which can happen either

during InTransaction mode or in Normal mode—the core

needs to commit just that block if in Normal mode or all

blocks in a transaction if in InTransaction mode. To commit

a block, the core issues a Commit coherence request for that

block to the directory, and the directory responds with an

acknowledgment. Upon receiving the ack, the block’s state

changes from TS to S, TO to O, and M/TM to O.

This single, simple example illustrates at a high level how

Anti-SO handles one situation and hopefully provides some

intuition for how it improves performance through temporary

incoherence.

7 The Negative Result

Our hypothesis was that, if Scheurich’s optimization and

other logical time coherence “tricks” have been successfully

employed, then there should be merit in pushing logical time

coherence even farther. We implemented both extended SO

and Anti-SO in a full-system simulation environment (Simics

[6] and GEMS [7]), and we compared them to each other and

to a baseline system without either optimization. For both

SO and Anti-SO, we initially made optimistic assumptions

about their implementations, to get a better idea of their

ceilings before focusing on more realistic implementations.

For example, for Anti-SO, we ignored the complexity and

latency of finding all blocks that need to be committed at the

end of a transaction.

The results of the experiments were surprising and

disappointing: the differences in performance were less than

the error margins in our results. (Thus, we present no

graphs.) As with many discoveries, the intuition for our

negative result appears far clearer in retrospect. In this

section, we explain why pushing logical time coherence

farther does not help performance for common software

idioms, and we show a few scenarios in which it does happen

to help.

7.1 Common Software Idioms

Logical time cache coherence enables concurrent, conflicting

accesses to shared data, where accesses are said to conflict if

they are to the same address and at least one is a write. The

catch, though, is that most programs do not benefit from

concurrent, conflicting accesses to shared data. Concurrent

conflicting accesses, by definition, are part of a race. In data-

race-free (DRF) programs, the only accesses that race are

accesses to synchronization variables such as locks. By

using synchronization accesses to enforce critical sections, a

DRF program avoids races for non-synchronization data.

Thus permitting concurrent, conflicting accesses to non-

synchronization data offers little advantage. There will not

be situations in which an invalidation will arrive for data

necessary to complete a critical section; thus Scheurich’s

optimization does not help. Similarly, there will not be

situations in which obtaining read-write permission would

invalidate data from another thread that still needs to load

that data during a critical section; thus, anti-SO does not

help.

For accesses to synchronization variables, the optimal

situation is to enforce physical time coherence, because

physical time coherence minimizes the time between a lock

release and when the lock can be acquired by another thread.

The goal is to make the changes to synchronization variables

visible as soon as possible. By contrast, logical time

coherence permits later updates of synchronization variables,

which is not helpful.

Intuitively, DRF programs enforce causality—the basis of

logical time—and thus there is little difference between

physical time and logical time.

7.2 Benefits in Uncommon Cases

There are two situations in which logical time coherence

offers potential benefits: false sharing and prefetching.

False Sharing. When a block holds multiple pieces of data,

it is possible for false sharing to occur. Because the sharing

is false, there is not necessarily a causal relationship between

accesses to the pieces of data in the block. This is an

opportunity to use logical time coherence because there is a

difference between physical time and logical time. In

physical time, the data is shared; in logical time, it is not

shared. Logical time schemes, like SO and anti-SO, can

mitigate the impact of false sharing by allowing a thread to

concurrently read from one part of a block while another

thread is writing to another part of the block. These

concurrent, conflicting accesses do not violate causality.

However, because logical time coherence does not allow

concurrent writes, it is not a complete solution to false

sharing. Furthermore, previous schemes to handle false

sharing exist, including sub-block coherence [2].

Prefetching. Consider a thread T1 that is executing within a

critical section. In a DRF program, it should not receive an

invalidation for any block in the critical section. However,

with prefetching, it is possible for another thread T2’s

prefetch for read-write permissions to cause an invalidation

to arrive at T1 during the critical section. SO and Anti-SO

address this problem by allowing T1 to continue to read the

block if necessary. If T2’s prefetch was early (i.e., issued

before T2 reached its critical section) or if the prefetch ends

up not being used (e.g., due to a mis-prediction or an overly

aggressive prefetcher), then SO and Anti-SO help. However,

SO and Anti-SO do not address the problem of a prefetch

arriving at a thread that needs to continue writing (rather than

reading) a block. Furthermore, there are many other schemes

for mitigating the impacts of overly aggressive prefetching.

 8

8 Conclusions

The performance of cache coherence protocols is becoming

increasingly important as commodity processor chips

continue to incorporate more cores and to provide cache-

coherent shared memory. One avenue of research has

previously explored the potential to improve coherence

performance by using logical time reasoning to increase

concurrency. Based on the promise of this research and the

use of logical time techniques in actual systems, we sought to

extend this approach to its limits. In the course of doing so,

we discovered a negative result, except for the potential to

use logical time coherence in specific situations (false

sharing and prefetching).

Acknowledgments

This work has been supported in part by the Semiconductor

Research Corporation under contract 2009-HJ-1881. We

thank Jacob Harer and Ralph Nathan for early contributions

to what became the Anti-SO protocol. We thank Alvy

Lebeck for his helpful feedback on Anti-SO and on this

paper.

References

1. ARM. ARM v7A+R Architectural Reference Manual.

2008.

2. Kadiyala, M. and Bhuyan, L.N. A Dynamic Cache Sub-

block Design to Reduce False Sharing. Proceedings of the

1995 International Conference on Computer Design,

(1995).

3. Lamport, L. Time, Clocks and the Ordering of Events in a

Distributed System. Communications of the ACM 21, 7

(1978), 558–565.

4. Lamport, L. How to Make a Multiprocessor Computer

that Correctly Executes Multiprocess Programs. IEEE

Transactions on Computers C-28, 9 (1979), 690–691.

5. Lebeck, A.R. and Wood, D.A. Dynamic Self-

Invalidation: Reducing Coherence Overhead in Shared-

Memory Multiprocessors. Proceedings of the 22nd

Annual International Symposium on Computer

Architecture, (1995), 48–59.

6. Magnusson, P.S., Christensson, M., Eskilson, J., et al.

Simics: A Full System Simulation Platform. IEEE

Computer 35, 2 (2002), 50–58.

7. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., et al.

Multifacet’s General Execution-driven Multiprocessor

Simulator (GEMS) Toolset. Computer Architecture News

33, 4 (2005), 92–99.

8. Meixner, A. and Sorin, D.J. Dynamic Verification of

Memory Consistency in Cache-Coherent Multithreaded

Computer Architectures. IEEE Transactions on

Dependable and Secure Computing, (2009).

9. Owens, S., Sarkar, S., and Sewell, P. A Better x86

Memory Model: x86-TSO. Proceedings of the

Conference on Theorem Proving in Higher Order Logics,

(2009).

10. Scheurich, C. and Dubois, M. Correct Memory Operation

of Cache-Based Multiprocessors. Proceedings of the 14th

Annual International Symposium on Computer

Architecture, (1987), 234–243.

11. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., and

Myreen, M.O. x86-TSO: A Rigorous and Usable

Programmer’s Model for x86 Multiprocessors.

Communications of the ACM, (2010).

12. Sites, R.L., ed. Alpha Architecture Reference Manual.

Digital Press, 1992.

13. Sorin, D.J., Hill, M.D., and Wood, D.A. A Primer on

Memory Consistency and Cache Coherence. Morgan &

Claypool Publishers, 2011.

14. Weaver, D.L. and Germond, T., eds. SPARC Architecture

Manual (Version 9). PTR Prentice Hall, 1994.

