
A Case for Computer Architecture Performance Metrics
that Reflect Process Variability

Bogdan F. Romanescu, Michael E. Bauer, Daniel J. Sorin, and Sule Ozev
{bfr2, meb26, sorin, sule}@ee.duke.edu

Department of Electrical and Computer Engineering
Duke University

Duke University, Department of Electrical and Computer Engineering, Technical Report #2007-2, May 2007
I.   INTRODUCTION

As computer architects, we frequently analyze the per-
formance of systems, and we have developed well-under-
stood metrics for reporting and comparing system 
performances. The dominant textbook in our field [7] is sub-
titled “A Quantitative Approach” and it repeatedly empha-
sizes the need for quantitative performance metrics that 
accurately reflect actual performance rather than just aspects 
of performance. Students are taught to report how long it 
takes a processor to run a benchmark rather than just the pro-
cessor’s clock rate or the instructions per cycle (IPC) it 
achieves on a benchmark, both of which present incomplete 
pictures of performance. 

Architects now face an issue, increasing process variabil-
ity [5, 10], that requires us to add a new aspect to perfor-
mance metrics. As transistor and wire dimensions continue 
to shrink, the variability in these dimensions—across chips 
and within a given chip—has a greater impact. Process vari-
ability complicates system design by introducing uncertainty 
about how a fabricated processor will perform. Although we 
design a processor to run at a nominal (mean or expected) 
clock frequency, the fabricated implementation may stray far 
from this expected performance. Some amount of process 
variability has always existed, and we have traditionally 
coped with it by designing for the mean performance and 
then “speed binning” the fabricated chips. Comparisons 
between designs have also been made based on mean perfor-
mances. For small amounts of variability, considering only 
mean performance is a suitable approach. However, as vari-
ability increases, it might be wiser to design and compare 
processors based on more than simply the mean. 

Consider the example probability distribution functions 
(PDFs) shown in Figure 1. These Normal (Gaussian) PDFs 
represent the online transaction processing (OLTP) perfor-
mances of two hypothetical system designs, P1 and P2, as 
measured in TPC-C transactions per minute (denoted by 
tpmC). Both system designs have the same mean perfor-
mance of 1 million tpmC. Thus, if we only consider mean 
performance, which is the only metric used currently, the 
system designs are equivalent. However, inspecting their 
performance distributions reveals significant differences that 

could affect their relative utilities. Utility can be defined in 
many ways. One possible definition of design utility, Udesign, 
is how much money we can make by selling a large (statisti-
cally significant) number of systems with this design. To 
determine Udesign, we need to know the utility of each possi-
ble fabricated chip as a function of performance, Uchip(p), 
and then we can integrate over all possible chip perfor-
mances. If we denote the performance PDF as f(p), we have:

A simplistic chip utility function would assume that a 
chip’s utility is linearly proportional to its performance, i.e., 
Uchip(p) = p. In this particular scenario, we have: 

This equation for Udesign is equivalent to the expected 
value (mean) of p, E[p]. Thus, for this exact utility function, 

Fig. 1. Two Example Performance Distributions
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looking solely at the mean would have been sufficient. How-
ever, this equivalence is only true for this simplistic and 
unlikely chip utility function. This chip utility function is 
unlikely because, for example, a chip on the very low end of 
the performance distribution (e.g., at 400K tpmC) might 
have approximately no value (i.e., nobody would buy it). 
Similarly, a chip on the very high end of the distribution 
could command a super-linear premium, as is typical for 
today’s high-end chips. If one shops for a computer and 
compares the prices of functionally equivalent processors 
with different clock frequencies, one will observe this same 
highly non-linear phenomenon.

Returning to our example in Figure 1, we observe that 
our preference for a particular design depends heavily on the 
particular chip utility function. For example, if we were to 
fabricate large volumes of both P1 and P2, we would expect 
to have more P2 chips that are on the low end of the distribu-
tion. If the chip utility function gives relatively little benefit 
to chips on the low end of the distribution, then P1 will be 
favorable. 

The goal of this paper is to convince architects that they 
must consider more than mean performance when compar-
ing and designing systems. Using the system utility metric 
will enable them to tune performance in a way that maxi-
mizes utility rather than simply mean performance. In the 
rest of this paper, we first discuss low-level process variabil-
ity and how it impacts high-level performance variability, 
including quantitative experimental data (Section II). We 
then describe utility functions in more detail and use hypo-
thetical utility functions to illustrate their impact on perfor-
mance analysis (Section III). We then use commercial 
pricing data to approximate real-world utility functions for 
high-end and embedded processors (Section IV). Lastly, we 
draw conclusions from this analysis (Section V).

II.   PROCESS VARIABILITY: CAUSES, EFFECTS, 
ANALYSIS, AND A CASE STUDY

Causes. Process variability arises due to several specific 
causes, but the over-arching cause is the inability to perform 
VLSI fabrication with every feature exactly as planned. The 
design might specify that a transistor is 130nm long, but, due 
to fabrication imperfections, some transistors may be some-
what shorter or longer. Some sources of variability are 
approximately constant within a given die (or wafer) but 
vary from die to die (D2D) or wafer to wafer (W2W). The 
variability within-die (WID) has a systematic component, 
due to physical phenomena, and it causes spatial correlations 
between nearby transistors. For example, if the dopant den-
sity is a little greater than nominal for a given transistor, it is 
likely that nearby transistors will also have greater than nom-
inal dopant density. Other sources of WID variability are 
random and thus cause no spatial correlations. 

Effects. For older CMOS technologies, a small amount of 
variability could be ignored; a variability of 1nm for a 
250nm feature had negligible impact. However, when we 
consider newer technologies and, in particular, future tech-
nologies, the same absolute variability of 1nm becomes a 
considerable fraction of a device’s length or width. In addi-
tion to affecting a transistor’s length and width, process vari-
ability also has a non-trivial impact on a transistor’s gate 
oxide thickness and threshold voltage. These four low-level 
parameters—L, W, tox, and Vt0—are generally considered to 
be the most sensitive to process variability [12].

Low-level process variability impacts the behavior of 
individual transistors and wires, although we focus on tran-
sistors in this paper. Due to a longer length, a given transistor 
may switch more slowly than expected. Due to a wider chan-
nel, a transistor might switch more quickly, and it may also 
present a larger input capacitance to upstream transistors that 
are driving it. There are a vast number of such effects at the 
transistor-level, and they manifest themselves as perfor-
mance variability at the gate-level and at the system-level. 
Analysis. Analyzing system performance in the presence of 
process variability is a difficult challenge. However, within 
the past few years, there has been a large amount of research 
to develop CAD tools that can perform what is often referred 
to as statistical static timing analysis (SSTA). SSTA tools 
produce statistical performance results, such as the full PDF 
of a circuit’s delay or a circuit’s mean delay and the standard 
deviation of this delay. SSTA tools have been developed in 
industry (Magma DA’s Quartz SSTA, Extreme DA’s Extreme 
XT, and Synopsys’s PrimeTime VX) and in academia [3, 4, 
6, 11, 13, 14, 15], and the different tools make different 
tradeoffs in terms of accuracy and analysis run-time. 

Because none of the SSTA tools listed above are publicly 
available yet, our research group has developed its own 
SSTA tool that computes the mean and standard deviation of 
the delay through a given path in a circuit. The details of this 
SPICE-based model are beyond the scope of this paper, but 
we provide a short high-level overview of its features. The 
model considers uncorrelated process variability in L, W, tox, 
and Vt0, for a 130nm process (parameters are in Table I), and 
it assumes that the low-level variability adheres to a Normal 
distribution. By analyzing all paths that could possibly be 
critical in the presence of variability, the tool can analytically 
compose these results and compute the mean and standard 
deviation of the entire circuit’s delay. We validated the 
model’s accuracy by comparing it to full Monte Carlo analy-
sis on the well-known ISCAS benchmark circuits. 
Motivational Case Study. As a simple example, we analyze 
the integer ALU in the open-source Illinois Verilog Model 
(IVM), which was developed and generously distributed by 
Prof. Sanjay Patel’s research group at the University of Illi-
nois [8]. The mean delay of this ALU is approximately 2ns. 
To understand the impact of variability, we look at 6σ/mean, 
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where σ represents the standard deviation. We include the 6σ 
term because it represents +/- 3σ, and 3σ is often used as a 
measure of variability. We divide by the mean to normalize 
the results. For the integer ALU, the normalized variability is 
approximately 9%. Considering that we assumed relatively 
optimistic values for low-level variances, this simple exam-
ple motivates the need to consider process variability now 
and even more in the future. 

III.   THE IMPACT OF 

DIFFERENT CHIP UTILITY FUNCTIONS

Given that variability is an increasing issue and given 
that we need performance metrics that incorporate this phe-
nomenon, we now discuss some hypothetical, yet intuitive, 
chip utility functions, and we explain how designers can use 
them to focus their efforts towards the most profitable areas 
for optimization. 

In Section I, we presented a simplistic chip utility func-
tion: Uchip(p) = p. This utility function misses two important 
features. First, it assumes a continuous function, which is 
unlikely given the current procedure of “speed binning” fab-
ricated chips based on their speeds (clock frequencies). 
Companies tend to sell chips at quantized performance levels 
(where performance for identical designs can be measured 
by clock frequency), such as 3 GHz, 3.3 GHz, etc., rather 
than in a continuous spectrum. When shopping for a laptop, 
we are given a small number of frequency options for a given 
chip. Thus, a chip utility function is unlikely to be continu-
ous. Rather, we might expect it to look something like the 
utility functions in Figure 2. In the figure, we have perfor-
mance on the x-axis, rather than clock frequency, so that we 
can keep the discussion general and enable comparisons of 
non-identical designs.

The second shortcoming of the simplistic utility function 
from Section I, as mentioned before, is that it is linear, and a 
chip’s value is unlikely to be strictly linear (e.g., how much 
would you pay for a 1 MHz Pentium4?). Thus, in Figure 2, 
we present three hypothetical chip utility functions that 
explore the impact of non-linearity. Note that the relative 
heights of the different utility functions do not matter, since 

we are not comparing across utility functions. One of the 
three curves is linear, in that the utility of each bin is a linear 
function of performance. The other two curves are super-lin-
ear and sub-linear. The super-linear chip utility function is 
familiar to those of us who shop for high-end laptops and 
desktops. The sub-linear chip utility function, however, may 
at first glance seem improbable. However, for chips where 
performance is not critical, such as embedded processors, 
there may be little utility beyond a given level of perfor-
mance (e.g., a coffeemaker does not benefit from a 2 GHz 
controller). In fact, one might expect such a chip utility func-
tion to be a single step (i.e., a chip is either useful or not use-
ful depending on if its performance is greater or less than a 
specific threshold), although we do not illustrate this more 
extreme function in the figure. We certainly do not claim that 
any of these three hypothetical chip utility functions are the 
exact shapes that would be used by any particular company, 
but they are intuitive and they help to illustrate possible dif-
ferences between chip utility functions. In Section IV, we 
will present approximations of real-world chip utility func-
tions that are based on commercial data.

The importance of the chip utility function is revealed by 
computing the system design utility functions for both sys-
tems P1 and P2 for the three chip utility functions in 
Figure 2. For the linear chip utility function, P1 and P2 
unsurprisingly have almost identical system design utilities. 
For the super-linear chip utility function, P2 has a 20% 
advantage over P1. P2’s edge is due to the larger utility for 
its chips that fall in the high end of the distribution. For the 
sub-linear chip utility function, P1 has a 7% advantage over 
P2. The moral of the story is that system design utility 
depends highly on the specific chip utility function and on 
the performance distribution for a system design.

TABLE I. Process Parameters

parameter mean variance

L 160nm 15%

W (PMOS) 550 nm 4.4%

W (NMOS) 250 nm 9.6%

Tox 3.3 nm 10%

Vt0 (PMOS) -0.3169 V 10%

Vt0 (NMOS) 0.365 V 10%
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IV.   APPROXIMATING REAL-WORLD CHIP 
UTILITY FUNCTIONS

In Section III, we described intuitive chip utility func-
tions to highlight potential differences between them. These 
idealized chip utility functions also simplified the computa-
tion of design utility. In this section, we describe approxima-
tions of actual chip utility functions for current 
microprocessors.

To define chip utility functions, we must determine 
which metrics to use. For a performance metric, we use the 
chip’s clock frequency. Frequency is not an ideal metric, 
because performance is not a linear function of clock fre-
quency, but it is readily available information. For a power 
metric, we use the chip’s power rating, which is also avail-
able from the manufacturer. The most challenging metric to 
choose is the utility metric. We have chosen to approximate 
utility by using the manufacturer’s list price for the chip. The 
price of an object is a reasonable approximation of its utility, 
although we realize that this approximation can potentially 
be skewed by business issues (e.g., cost, trying to undercut 
the competition, etc.).

We now present utility functions for various high-end 
and embedded processors. We collected our data from the 
Intel and AMD websites [2, 1, 9]. 

4.1  High-End Processors
For high-end processors, performance is generally the 

most critical factor, although there has recently been more 
emphasis on power-efficiency instead of simply raw perfor-
mance. These high-end processors are used in servers, desk-
tops, and laptops. We separate our analysis by vendor, 
focusing on AMD and Intel, in order to enable more even 
comparisons.
AMD. In Figure 3, we plot chip utility as a function of per-
formance for three families of AMD processors: Sempron 

(256KB L2 cache), Turion (1MB L2 cache), and Athlon 
DualCore (1MB L2 cache). 

The Sempron utility curve flattens out from the 2GHz to 
the 2.2GHz chip. The Sempron has the smallest L2 cache of 
the three chip families, and our hypothesis is that the Sem-
pron becomes memory bottlenecked beyond 2GHz. Thus, 
the 2.2GHz processor’s marginal benefit is likely outweighed 
by its additional power consumption. 

The Turion displays an intuitive utility curve that reflects 
the premium in value for marginally faster processors. With 
its 1MB L2 cache, it can exploit the greater clock frequen-
cies. This curve is what we expected for high-end proces-
sors. 

The Athlon utility curve is similar to that of the Turion, 
although it does not rise as steeply until the chip exceeds 
2.6GHz. We had expected the utility curve for the multicore 
to be steeper than those for the single core processors, 
because the performance gain is multiplied by the number of 
cores on the chip.
Intel. Similar to our analysis of the AMD chips, we analyzed 
current Intel chip utilities. The three chip families we studied 
are the Pentium4 (1MB L2 cache), Xeon (2MB L2 cache), 
and CoreDuo Mobile (2MB L2 cache). 

The Xeon’s utility curve increases steadily until starting 
to flatten a bit at the high end of performance. Our hypothe-
sis is that the power consumption of server chips, such as this 
Xeon, is an important factor. A company with a large num-
ber of servers may not be willing to pay significantly more 
money for power and cooling in order to obtain a small ben-
efit in performance. Thus, the highest end chips may not 
offer much additional utility.

The Pentium4 has a utility curve that is nearly flat on the 
lowest end, but then increases steadily as a function of clock 
frequency. This chip is primarily for desktops, and desktop 
power consumption is not yet a major issue (unless one con-
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siders the power consumed by multiple desktops, which the 
average desktop buyer does not).

The CoreDuo shows an intuitive utility curve, similar to 
that of the AMD Turion. The lower frequencies of multicore 
chips means that even chips on the high end of their clock 
frequency ranges will still not consume an exorbitant amount 
of power. 

4.2  Embedded Processors
For embedded processors, chip utility functions reflect 

the greater value placed on power efficiency. We focus our 
attention on AMD’s Geode embedded processor. In Figure 5, 
we plot the chip utility function for the Geode as a function 
of performance. 

We observe a strikingly different curve from those that 
we observed for high-end processors. Most notably, the util-
ity curve reflects three phenomena. First, there is a steep 
increase in utility as a function of performance on the lowest 
end of the performance spectrum. The power consumptions 
of the these three lowest-end chips are all very low and 
approximately equal, and thus performance matters most. 

Second, there is a big gap between the 533MHz chip and 
the 1.5GHz chip, and the utility of the 1.5GHz chip does not 
continue on the super-linear trend of the lowest-end chips. 

Third, there is a decrease in utility moving from the 
1.5GHz chip to the 1.75GHz chip. This decrease reflects the 
poorer power efficiency of the 1.75GHz chip. To further 
illustrate this effect, Figure 6 plots chip utility as a function 
of power efficiency, measured as performance2/power (in 
units of MHz2/Watt). We observe that the highest performing 
chip, the 1.75 GHz chip (at $55), has the lowest power effi-
ciency. The rest of the datapoints remain in the same order 
on the x-axis. What we observe is that there is a large utility 
for high performance (despite poor power efficiency), but 
even greater utility for the chip with slightly less perfor-
mance but far better power efficiency.

V.   CONCLUSIONS

In this paper, we have demonstrated the need for perfor-
mance metrics that capture the impact of process variability. 
Considering only mean performance is not sufficient. 
Instead, we must consider a system’s performance distribu-
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tion and the utility of chips as a function of performance. By 
doing so, we can present a complete picture of performance 
that enables us to fairly compare system designs. We can 
also focus architects’ efforts towards those aspects of a 
design that affect the performance distribution. For example, 
if most of the variability is due to the design of the register 
file and this variability is hurting system design utility, then 
architects can focus their efforts towards re-designing the 
register file to mitigate its performance variability. 

This paper has focused on performance and power, but 
virtually all of our discussion also applies to thermal charac-
teristics, reliability, and other system properties that are 
affected by process variability. For example, we can also 
determine a design’s thermal distribution and we can develop 
a chip utility function that depends on thermal distribution. 
This utility function would depend on the cost to cool the 
chip. Furthermore, we could combine metrics, such as per-
formance and reliability (i.e., performability), and explore 
their distributions and utility functions. 
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