
A Case for Computer Architecture Performance Metrics
that Reflect Process Variability

Bogdan F. Romanescu, Michael E. Bauer, Daniel J. Sorin, and Sule Ozev
{bfr2, meb26, sorin, sule}@ee.duke.edu

Department of Electrical and Computer Engineering
Duke University

Duke University, Department of Electrical and Computer Engineering, Technical Report #2007-2, May 2007
I. INTRODUCTION

As computer architects, we frequently analyze the per-
formance of systems, and we have developed well-under-
stood metrics for reporting and comparing system
performances. The dominant textbook in our field [7] is sub-
titled “A Quantitative Approach” and it repeatedly empha-
sizes the need for quantitative performance metrics that
accurately reflect actual performance rather than just aspects
of performance. Students are taught to report how long it
takes a processor to run a benchmark rather than just the pro-
cessor’s clock rate or the instructions per cycle (IPC) it
achieves on a benchmark, both of which present incomplete
pictures of performance.

Architects now face an issue, increasing process variabil-
ity [5, 10], that requires us to add a new aspect to perfor-
mance metrics. As transistor and wire dimensions continue
to shrink, the variability in these dimensions—across chips
and within a given chip—has a greater impact. Process vari-
ability complicates system design by introducing uncertainty
about how a fabricated processor will perform. Although we
design a processor to run at a nominal (mean or expected)
clock frequency, the fabricated implementation may stray far
from this expected performance. Some amount of process
variability has always existed, and we have traditionally
coped with it by designing for the mean performance and
then “speed binning” the fabricated chips. Comparisons
between designs have also been made based on mean perfor-
mances. For small amounts of variability, considering only
mean performance is a suitable approach. However, as vari-
ability increases, it might be wiser to design and compare
processors based on more than simply the mean.

Consider the example probability distribution functions
(PDFs) shown in Figure 1. These Normal (Gaussian) PDFs
represent the online transaction processing (OLTP) perfor-
mances of two hypothetical system designs, P1 and P2, as
measured in TPC-C transactions per minute (denoted by
tpmC). Both system designs have the same mean perfor-
mance of 1 million tpmC. Thus, if we only consider mean
performance, which is the only metric used currently, the
system designs are equivalent. However, inspecting their
performance distributions reveals significant differences that

could affect their relative utilities. Utility can be defined in
many ways. One possible definition of design utility, Udesign,
is how much money we can make by selling a large (statisti-
cally significant) number of systems with this design. To
determine Udesign, we need to know the utility of each possi-
ble fabricated chip as a function of performance, Uchip(p),
and then we can integrate over all possible chip perfor-
mances. If we denote the performance PDF as f(p), we have:

A simplistic chip utility function would assume that a
chip’s utility is linearly proportional to its performance, i.e.,
Uchip(p) = p. In this particular scenario, we have:

This equation for Udesign is equivalent to the expected
value (mean) of p, E[p]. Thus, for this exact utility function,

Fig. 1. Two Example Performance Distributions

performance in tpmC

pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

(p
df

)

U design U chip p() f p()× pd

0

∞

∫=

U design p f p()× p E p[]=d

0

∞

∫=
111

looking solely at the mean would have been sufficient. How-
ever, this equivalence is only true for this simplistic and
unlikely chip utility function. This chip utility function is
unlikely because, for example, a chip on the very low end of
the performance distribution (e.g., at 400K tpmC) might
have approximately no value (i.e., nobody would buy it).
Similarly, a chip on the very high end of the distribution
could command a super-linear premium, as is typical for
today’s high-end chips. If one shops for a computer and
compares the prices of functionally equivalent processors
with different clock frequencies, one will observe this same
highly non-linear phenomenon.

Returning to our example in Figure 1, we observe that
our preference for a particular design depends heavily on the
particular chip utility function. For example, if we were to
fabricate large volumes of both P1 and P2, we would expect
to have more P2 chips that are on the low end of the distribu-
tion. If the chip utility function gives relatively little benefit
to chips on the low end of the distribution, then P1 will be
favorable.

The goal of this paper is to convince architects that they
must consider more than mean performance when compar-
ing and designing systems. Using the system utility metric
will enable them to tune performance in a way that maxi-
mizes utility rather than simply mean performance. In the
rest of this paper, we first discuss low-level process variabil-
ity and how it impacts high-level performance variability,
including quantitative experimental data (Section II). We
then describe utility functions in more detail and use hypo-
thetical utility functions to illustrate their impact on perfor-
mance analysis (Section III). We then use commercial
pricing data to approximate real-world utility functions for
high-end and embedded processors (Section IV). Lastly, we
draw conclusions from this analysis (Section V).

II. PROCESS VARIABILITY: CAUSES, EFFECTS,
ANALYSIS, AND A CASE STUDY

Causes. Process variability arises due to several specific
causes, but the over-arching cause is the inability to perform
VLSI fabrication with every feature exactly as planned. The
design might specify that a transistor is 130nm long, but, due
to fabrication imperfections, some transistors may be some-
what shorter or longer. Some sources of variability are
approximately constant within a given die (or wafer) but
vary from die to die (D2D) or wafer to wafer (W2W). The
variability within-die (WID) has a systematic component,
due to physical phenomena, and it causes spatial correlations
between nearby transistors. For example, if the dopant den-
sity is a little greater than nominal for a given transistor, it is
likely that nearby transistors will also have greater than nom-
inal dopant density. Other sources of WID variability are
random and thus cause no spatial correlations.

Effects. For older CMOS technologies, a small amount of
variability could be ignored; a variability of 1nm for a
250nm feature had negligible impact. However, when we
consider newer technologies and, in particular, future tech-
nologies, the same absolute variability of 1nm becomes a
considerable fraction of a device’s length or width. In addi-
tion to affecting a transistor’s length and width, process vari-
ability also has a non-trivial impact on a transistor’s gate
oxide thickness and threshold voltage. These four low-level
parameters—L, W, tox, and Vt0—are generally considered to
be the most sensitive to process variability [12].

Low-level process variability impacts the behavior of
individual transistors and wires, although we focus on tran-
sistors in this paper. Due to a longer length, a given transistor
may switch more slowly than expected. Due to a wider chan-
nel, a transistor might switch more quickly, and it may also
present a larger input capacitance to upstream transistors that
are driving it. There are a vast number of such effects at the
transistor-level, and they manifest themselves as perfor-
mance variability at the gate-level and at the system-level.
Analysis. Analyzing system performance in the presence of
process variability is a difficult challenge. However, within
the past few years, there has been a large amount of research
to develop CAD tools that can perform what is often referred
to as statistical static timing analysis (SSTA). SSTA tools
produce statistical performance results, such as the full PDF
of a circuit’s delay or a circuit’s mean delay and the standard
deviation of this delay. SSTA tools have been developed in
industry (Magma DA’s Quartz SSTA, Extreme DA’s Extreme
XT, and Synopsys’s PrimeTime VX) and in academia [3, 4,
6, 11, 13, 14, 15], and the different tools make different
tradeoffs in terms of accuracy and analysis run-time.

Because none of the SSTA tools listed above are publicly
available yet, our research group has developed its own
SSTA tool that computes the mean and standard deviation of
the delay through a given path in a circuit. The details of this
SPICE-based model are beyond the scope of this paper, but
we provide a short high-level overview of its features. The
model considers uncorrelated process variability in L, W, tox,
and Vt0, for a 130nm process (parameters are in Table I), and
it assumes that the low-level variability adheres to a Normal
distribution. By analyzing all paths that could possibly be
critical in the presence of variability, the tool can analytically
compose these results and compute the mean and standard
deviation of the entire circuit’s delay. We validated the
model’s accuracy by comparing it to full Monte Carlo analy-
sis on the well-known ISCAS benchmark circuits.
Motivational Case Study. As a simple example, we analyze
the integer ALU in the open-source Illinois Verilog Model
(IVM), which was developed and generously distributed by
Prof. Sanjay Patel’s research group at the University of Illi-
nois [8]. The mean delay of this ALU is approximately 2ns.
To understand the impact of variability, we look at 6σ/mean,
222

where σ represents the standard deviation. We include the 6σ
term because it represents +/- 3σ, and 3σ is often used as a
measure of variability. We divide by the mean to normalize
the results. For the integer ALU, the normalized variability is
approximately 9%. Considering that we assumed relatively
optimistic values for low-level variances, this simple exam-
ple motivates the need to consider process variability now
and even more in the future.

III. THE IMPACT OF

DIFFERENT CHIP UTILITY FUNCTIONS

Given that variability is an increasing issue and given
that we need performance metrics that incorporate this phe-
nomenon, we now discuss some hypothetical, yet intuitive,
chip utility functions, and we explain how designers can use
them to focus their efforts towards the most profitable areas
for optimization.

In Section I, we presented a simplistic chip utility func-
tion: Uchip(p) = p. This utility function misses two important
features. First, it assumes a continuous function, which is
unlikely given the current procedure of “speed binning” fab-
ricated chips based on their speeds (clock frequencies).
Companies tend to sell chips at quantized performance levels
(where performance for identical designs can be measured
by clock frequency), such as 3 GHz, 3.3 GHz, etc., rather
than in a continuous spectrum. When shopping for a laptop,
we are given a small number of frequency options for a given
chip. Thus, a chip utility function is unlikely to be continu-
ous. Rather, we might expect it to look something like the
utility functions in Figure 2. In the figure, we have perfor-
mance on the x-axis, rather than clock frequency, so that we
can keep the discussion general and enable comparisons of
non-identical designs.

The second shortcoming of the simplistic utility function
from Section I, as mentioned before, is that it is linear, and a
chip’s value is unlikely to be strictly linear (e.g., how much
would you pay for a 1 MHz Pentium4?). Thus, in Figure 2,
we present three hypothetical chip utility functions that
explore the impact of non-linearity. Note that the relative
heights of the different utility functions do not matter, since

we are not comparing across utility functions. One of the
three curves is linear, in that the utility of each bin is a linear
function of performance. The other two curves are super-lin-
ear and sub-linear. The super-linear chip utility function is
familiar to those of us who shop for high-end laptops and
desktops. The sub-linear chip utility function, however, may
at first glance seem improbable. However, for chips where
performance is not critical, such as embedded processors,
there may be little utility beyond a given level of perfor-
mance (e.g., a coffeemaker does not benefit from a 2 GHz
controller). In fact, one might expect such a chip utility func-
tion to be a single step (i.e., a chip is either useful or not use-
ful depending on if its performance is greater or less than a
specific threshold), although we do not illustrate this more
extreme function in the figure. We certainly do not claim that
any of these three hypothetical chip utility functions are the
exact shapes that would be used by any particular company,
but they are intuitive and they help to illustrate possible dif-
ferences between chip utility functions. In Section IV, we
will present approximations of real-world chip utility func-
tions that are based on commercial data.

The importance of the chip utility function is revealed by
computing the system design utility functions for both sys-
tems P1 and P2 for the three chip utility functions in
Figure 2. For the linear chip utility function, P1 and P2
unsurprisingly have almost identical system design utilities.
For the super-linear chip utility function, P2 has a 20%
advantage over P1. P2’s edge is due to the larger utility for
its chips that fall in the high end of the distribution. For the
sub-linear chip utility function, P1 has a 7% advantage over
P2. The moral of the story is that system design utility
depends highly on the specific chip utility function and on
the performance distribution for a system design.

TABLE I. Process Parameters

parameter mean variance

L 160nm 15%

W (PMOS) 550 nm 4.4%

W (NMOS) 250 nm 9.6%

Tox 3.3 nm 10%

Vt0 (PMOS) -0.3169 V 10%

Vt0 (NMOS) 0.365 V 10%

Performance in tpmC

35

30

25

20

15

10

5

0
0.97 0.98 0.99 1 1.01 1.02 1.03

C
hi

p
ut

ili
ty

 f
un

ct
io

n
(U

ch
ip

)

x106

linear
super-linear
sub-linear

Fig. 2. Three Chip Utility Functions
333

IV. APPROXIMATING REAL-WORLD CHIP
UTILITY FUNCTIONS

In Section III, we described intuitive chip utility func-
tions to highlight potential differences between them. These
idealized chip utility functions also simplified the computa-
tion of design utility. In this section, we describe approxima-
tions of actual chip utility functions for current
microprocessors.

To define chip utility functions, we must determine
which metrics to use. For a performance metric, we use the
chip’s clock frequency. Frequency is not an ideal metric,
because performance is not a linear function of clock fre-
quency, but it is readily available information. For a power
metric, we use the chip’s power rating, which is also avail-
able from the manufacturer. The most challenging metric to
choose is the utility metric. We have chosen to approximate
utility by using the manufacturer’s list price for the chip. The
price of an object is a reasonable approximation of its utility,
although we realize that this approximation can potentially
be skewed by business issues (e.g., cost, trying to undercut
the competition, etc.).

We now present utility functions for various high-end
and embedded processors. We collected our data from the
Intel and AMD websites [2, 1, 9].

4.1 High-End Processors
For high-end processors, performance is generally the

most critical factor, although there has recently been more
emphasis on power-efficiency instead of simply raw perfor-
mance. These high-end processors are used in servers, desk-
tops, and laptops. We separate our analysis by vendor,
focusing on AMD and Intel, in order to enable more even
comparisons.
AMD. In Figure 3, we plot chip utility as a function of per-
formance for three families of AMD processors: Sempron

(256KB L2 cache), Turion (1MB L2 cache), and Athlon
DualCore (1MB L2 cache).

The Sempron utility curve flattens out from the 2GHz to
the 2.2GHz chip. The Sempron has the smallest L2 cache of
the three chip families, and our hypothesis is that the Sem-
pron becomes memory bottlenecked beyond 2GHz. Thus,
the 2.2GHz processor’s marginal benefit is likely outweighed
by its additional power consumption.

The Turion displays an intuitive utility curve that reflects
the premium in value for marginally faster processors. With
its 1MB L2 cache, it can exploit the greater clock frequen-
cies. This curve is what we expected for high-end proces-
sors.

The Athlon utility curve is similar to that of the Turion,
although it does not rise as steeply until the chip exceeds
2.6GHz. We had expected the utility curve for the multicore
to be steeper than those for the single core processors,
because the performance gain is multiplied by the number of
cores on the chip.
Intel. Similar to our analysis of the AMD chips, we analyzed
current Intel chip utilities. The three chip families we studied
are the Pentium4 (1MB L2 cache), Xeon (2MB L2 cache),
and CoreDuo Mobile (2MB L2 cache).

The Xeon’s utility curve increases steadily until starting
to flatten a bit at the high end of performance. Our hypothe-
sis is that the power consumption of server chips, such as this
Xeon, is an important factor. A company with a large num-
ber of servers may not be willing to pay significantly more
money for power and cooling in order to obtain a small ben-
efit in performance. Thus, the highest end chips may not
offer much additional utility.

The Pentium4 has a utility curve that is nearly flat on the
lowest end, but then increases steadily as a function of clock
frequency. This chip is primarily for desktops, and desktop
power consumption is not yet a major issue (unless one con-

1.6 1.7 1.8 1.9 2 2.1 2.2
50

60

70

80

90

100

110

Utility vs. Clock Speed for AMD Sempron

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

1.8 1.9 2 2.1 2.2 2.3 2.4

140

160

180

200

220

240

260

Utility vs. Clock Speed for AMD Turion

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

150

200

250

300

350

400

450

500
Utility vs. Clock Speed for AMD Athlon X2 Dual Core

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

Fig. 3. AMD High-End Processor Chip Utility as Function of Performance. Note that axes have different scales.

Sempron Turion Athlon DualCore
444

siders the power consumed by multiple desktops, which the
average desktop buyer does not).

The CoreDuo shows an intuitive utility curve, similar to
that of the AMD Turion. The lower frequencies of multicore
chips means that even chips on the high end of their clock
frequency ranges will still not consume an exorbitant amount
of power.

4.2 Embedded Processors
For embedded processors, chip utility functions reflect

the greater value placed on power efficiency. We focus our
attention on AMD’s Geode embedded processor. In Figure 5,
we plot the chip utility function for the Geode as a function
of performance.

We observe a strikingly different curve from those that
we observed for high-end processors. Most notably, the util-
ity curve reflects three phenomena. First, there is a steep
increase in utility as a function of performance on the lowest
end of the performance spectrum. The power consumptions
of the these three lowest-end chips are all very low and
approximately equal, and thus performance matters most.

Second, there is a big gap between the 533MHz chip and
the 1.5GHz chip, and the utility of the 1.5GHz chip does not
continue on the super-linear trend of the lowest-end chips.

Third, there is a decrease in utility moving from the
1.5GHz chip to the 1.75GHz chip. This decrease reflects the
poorer power efficiency of the 1.75GHz chip. To further
illustrate this effect, Figure 6 plots chip utility as a function
of power efficiency, measured as performance2/power (in
units of MHz2/Watt). We observe that the highest performing
chip, the 1.75 GHz chip (at $55), has the lowest power effi-
ciency. The rest of the datapoints remain in the same order
on the x-axis. What we observe is that there is a large utility
for high performance (despite poor power efficiency), but
even greater utility for the chip with slightly less perfor-
mance but far better power efficiency.

V. CONCLUSIONS

In this paper, we have demonstrated the need for perfor-
mance metrics that capture the impact of process variability.
Considering only mean performance is not sufficient.
Instead, we must consider a system’s performance distribu-

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
100

200

300

400

500

600

700

800

900
Utility vs. Clock Speed for Intel Xeon

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

1.7 1.8 1.9 2 2.1 2.2 2.3
200

250

300

350

400

450

500

550

600

650
Utility vs. Clock Speed for Intel Core Duo Mobile

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
0

100

200

300

400

500

600

700
Utility vs. Clock Speed for Intel Pentium 4

Clock Speed (GHz)

P
ric

e
(U

S
 D

ol
la

rs
)

Fig. 4. Intel High-End Processor Chip Utility as Function of Performance. Note that axes have different scales.

Pentium4Xeon
CoreDuo

600 800 1000 1200 1400 1600
25

30

35

40

45

50

55

60

65

70
Utility vs. Clock Speed for AMD Geode

Clock Speed (MHz)

P
ric

e
(U

S
 D

ol
la

rs
)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

x 10
5

25

30

35

40

45

50

55

60

65

70
Utility vs. Clock Speed2/Power for AMD Geode

Clock Speed2/Power (MHz2/W)

P
ric

e
(U

S
 D

ol
la

rs
)

Fig. 5. AMD Geode Utility as Function of Performance Fig. 6. AMD Geode Utility as Function of
Performance2/Watt
555

tion and the utility of chips as a function of performance. By
doing so, we can present a complete picture of performance
that enables us to fairly compare system designs. We can
also focus architects’ efforts towards those aspects of a
design that affect the performance distribution. For example,
if most of the variability is due to the design of the register
file and this variability is hurting system design utility, then
architects can focus their efforts towards re-designing the
register file to mitigate its performance variability.

This paper has focused on performance and power, but
virtually all of our discussion also applies to thermal charac-
teristics, reliability, and other system properties that are
affected by process variability. For example, we can also
determine a design’s thermal distribution and we can develop
a chip utility function that depends on thermal distribution.
This utility function would depend on the cost to cool the
chip. Furthermore, we could combine metrics, such as per-
formance and reliability (i.e., performability), and explore
their distributions and utility functions.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under grant CCF-0444516, the
National Aeronautics and Space Administration under Grant
NNG04GQ06G, a Duke Warren Faculty Scholarship (Sorin),
and donations from Intel Corporation. Any opinions, find-
ings and conclusions or recomendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation (NSF)
or the National Aeronautics and Space Agency (NASA).

REFERENCES
[1] Advanced Micro Devices. AMD Introduces Line Of Low-

Power, High-Performance AMD Geode Embedded X86
Processors. http://www.amd.com/us-
en/Corporate/VirtualPressRoom/0,,51_104_543 85510,00.
h% tml, May 2004.

[2] Advanced Micro Devices. AMD Processor Pricing.
http://www.amd.com/us-
en/Corporate/VirtualPressRoom/0,,51_104_609,00.html?re
% dir=CPPR01, Dec. 2006.

[3] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical Timing
Analysis for Intra-Die Process Variations with Spatial
Correlations. In Proceedings of IEEE ICCAD, pages 900–
907, Nov. 2003.

[4] C. Amin et al. Statistical Static Timing Analysis: How
Simple Can We Get? In Proceedings of the 42nd Design
Automation Conference, pages 652–657, June 2005.

[5] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation. IEEE Micro, 25(6):10–16, Nov/Dec 2005.

[6] H. Chang and S. S. Sapatnekar. Statistical Timing Analysis
Considering Spatial Correlations Using a Single Pert-like
Traversal. In Proceedings of International Conference on
Computer Aided Design, pages 621–625, Nov. 2003.

[7] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, third edition,
2003.

[8] Illinois Advanced Computing Systems Group. Illinois
Verilog Model.
http://www.crhc.uiuc.edu/ACS/tools/ivm/about.html.

[9] Intel Corporation. Intel Processor Pricing.
http://www.intel.com/intel/finance/pricelist/processor_pric
e_list.pdf?iid=In% vRel+pricelist_pdf, Dec. 2006.

[10] International Technology Roadmap for Semiconductors,
2003.

[11] J. Le, X. Li, and L. T. Pileggi. STAC: Statistical Timing
Analysis with Correlation. In Proceedings of the 41st
Design Automation Conference, pages 343–348, June 2004.

[12] S. Nassif. Design for Variability in DSM Technologies. In
Proceedings of First International Symposium on Quality of
Electronic Design, pages 451–454, Mar. 2000.

[13] C. Visweswariah et al. First-Order Incremental Block-
Based Statistical Timing Analysis. In Proceedings of the
41st Design Automation Conference, pages 331–336, June
2004.

[14] Y. Zhan, A. J. Strojwas, X. Li, and L. T. Pileggi.
Correlation-Aware Statistical Timing Analysis with Non-
Gaussian Delay Distributions. In Proceedings of the 42nd
Design Automation Conference, pages 77–82, June 2005.

[15] L. Zhang et al. Correlation-Preserved Non-Gaussian
Statistical Timing Analysis with Quadratic Timing Model.
In Proceedings of the 42nd Design Automation Conference,
pages 83–88, June 2005.
666

