
Dynamic Verification of Memory Consistency
in Cache-Coherent Multithreaded

Computer Architectures
Albert Meixner, Student Member, IEEE, and Daniel J. Sorin, Senior Member, IEEE

Abstract—Multithreaded servers with cache-coherent shared memory are the dominant type of machines used to run critical network
services and database management systems. To achieve the high availability required for these tasks, it is necessary to incorporate
mechanisms for error detection and recovery. A correct operation of the memory system is defined by the memory consistency model.
Errors can therefore be detected by checking if the observed memory system behavior deviates from the specified consistency model.
Based on recent work, we design a framework for the dynamic verification of memory consistency (DVMC). The framework consists of
mechanisms to dynamically verify three invariants that are proven to guarantee that a specified memory consistency model is obeyed.
We describe an implementation of the framework for the SPARCv9 architecture, and we experimentally evaluate its performance by
using full-system simulation of commercial workloads.

Index Terms—Reliability, fault tolerance, multiprocessors, multithreaded processors.

˙

1 INTRODUCTION

COMPUTER system availability is crucial for the multi-
threaded (including multiprocessor) systems that run

critical infrastructure. Unless architectural steps are taken,
availability will decrease over time, as implementations use
larger numbers of increasingly unreliable components in
search of higher performance. Both the industry and the
academics predict that transient and permanent faults will
lead to increasing hardware error rates [13], [30], [33].
Backward error recovery is a cost-effective mechanism [32],
[25] to tolerate runtime hardware errors, but it can only
recover from errors that are detected in a timely fashion.
Traditionally, most systems employ localized error detection
mechanisms such as parity bits on cache lines and memory
buses to detecterrors. Althoughsuch specialized mechanisms
detect the errors that they target, they do not comprehensively
detect whether the end-to-end [29] behavior of the system
is correct.

Our goal is end-to-end error detection for multithreaded
memory systems, which would subsume localized
mechanisms and provide comprehensive error detection.
Memory systems are complicated concurrent systems that
include caches, memories, coherence controllers, intercon-
nection network, and all of the other glue that enables
multiple processor cores or hardware thread contexts to
communicate. As more of the memory system becomes
integrated on chip, including cache and memory controllers
and logic for glueless multichip multiprocessing, this logic
becomes just as susceptible to hardware errors as the

processor core logic. In this paper, we focus on the runtime
detection of transient and permanent hardware errors in the
memory system. We do not consider the orthogonal problem
of detecting errors unrelated to the memory system in
processor cores, because good solutions to this problem
already exist (for example, redundant multithreading [28],
[27], [20] and DIVA [3]).

Our previous work [19] achieved end-to-end error
detection for a very restricted class of multithreaded memory
systems. In that work, we designed an all-hardware scheme
for the dynamic verification1 (also referred to as online error
detection or online testing) of sequential consistency (DVSC),
which is the most restrictive consistency model. Since the
end-to-end correctness of a multithreaded memory system
is defined by its memory consistency model, DVSC
comprehensively detects errors in systems that implement
sequential consistency (SC). However, DVSC�s applications
are limited, because SC is not frequently implemented.

In this paper, we contribute a general framework for
designing dynamic verification hardware for a wide range of
memory consistency models, including all those commer-
cially implemented. Relaxed consistency models, discussed
in Section 2, enable hardware and software optimizations to
reorder memory operations to improve performance. Our
framework for the dynamic verification of memory consis-
tency (DVMC), described in Section 3, combines the dynamic
verification of three invariants (also known as assertion
checking) to check for memory consistency. In Section 4, we
describe a checker design for each invariant and give a
SPARCv9-based implementation of DVMC. Section 5 intro-
duces the experimental methodology used to evaluate

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2009

. A. Meixner is with the Department of Computer Science, Duke University,
Durham, NC 27708. E-mail: albert@cs.duke.edu.

. D.J. Sorin is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708. E-mail: sorin@ee.duke.edu.

Manuscript received 11 June 2006; revised 18 Apr. 2007; accepted 6 Nov.
2007; published online 14 Nov. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0074-0606.
Digital Object Identifier no. 10.1109/TDSC.2007.70243.

1. Dynamic verification checks invariants at runtime and can thus detect
runtime physical errors. It differs from static verification, which checks that
an implementation satisfies its design specification. Static verification can
detect design bugs but, by definition, cannot detect runtime physical errors.
The two approaches are complementary.

1545-5971/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 18, 2009 at 10:48 from IEEE Xplore.  Restrictions apply.



DVMC. We present and analyze our results in Section 6.
Section 7 compares our work with prior work on dynamic
verification. In Appendix A, we formally prove that the
mechanisms in Section 4 verify the three invariants intro-
duced in Section 3 and that these invariants guarantee
memory consistency.

2 BACKGROUND

This work addresses the dynamic verification of shared
memory multithreaded machines, including simultaneously
multithreaded microprocessors [34], chip multiprocessors,
and traditional multiprocessor systems. For brevity, we will
use the term processor to refer to a physical processor or a
thread context on a multithreaded processor. We now
describe the program execution model and consistency
models.

2.1 Program Execution Model
A simple model of program execution is that a single thread
of instructions is sequentially executed in program order.
Modern microprocessors maintain the illusion of sequential
execution, although they actually process instructions in
parallel and out of program order. To capture this behavior
and the added complexity of multithreaded execution, we
must be precise when referring to the different steps
necessary to process a memory operation (an instruction
that reads or writes the memory). A memory operation
executes when its results (for example, the load value in a
destination register) become visible to instructions executed
on the same processor. A memory operation commits when
the state changes are finalized and can no longer be undone.
In the instant at which the state changes become visible to
other processors, a memory operation performs. A more
formal definition of performing a memory operation can be
found in [10].

2.2 Memory Consistency Models
An architecture�s memory consistency model [1] specifies
the interface between the shared memory system and
the software. It specifies the allowable software-visible
interleavings of the memory operations (loads, stores,
and synchronization operations) that are performed by
the multiple threads. For example, SC specifies that there
exists a total order of memory operations that maintains
program orders of all threads [15]. Other consistency
models are less restrictive than SC, and they differ in how
they permit memory operations to be reordered between
program order and the order in which the operations
perform. These reorderings are only observed by other
processors but not by the processor executing them due to
the in-order program execution model.

We specify a consistency model as an ordering table, similar
to [12]. Columns and rows are labeled with the memory
operation types supported by the system, such as load, store,
and synchronization operations (for example, memory
barriers). When a table entry contains the value true, the
operation type OPx in the entry�s row label has a perfor-
mance ordering constraint with respect to the operation type
in the entry�s column label OPy. If an ordering constraint
exists between two operation types OPx and OPy, then all
operations of type OPx that appear before any operation Y of
type OPy in program order must also perform before Y.

Table 1 shows an ordering table for processor consistency
(PC). In PC, an ordering requirement exists between a load
and all stores that follow it in program order. That is, any
load X that appears before any store Y in program order also
has to perform before Y. However, no ordering requirement
exists between a store and subsequent loads. Thus, even if
store Y appears before load X in program order, X can still
perform before Y.

A truth table is not sufficient to express all conceivable
memory consistency models, but a truth table can be
constructed for all commercially implemented consistency
models.

3 DYNAMIC VERIFICATION FRAMEWORK

Based on the definitions in Section 2, we devise a framework
that breaks the verification process into three invariants
that correspond to the three steps necessary for processing
a memory operation (shown in Fig. 1). First, memory
operations are read from the instruction stream in program
order <p and executed by the processor. At this point,
operations impact the microarchitectural state but not the
committed architectural state. Second, operations access the
(highest level) cache in a possibly different order, which we
call cache order <c . Consistency models that permit
reordering of cache accesses enable hardware optimizations
such as write buffers. Sometime after accessing the cache,
operations perform and become visible in the globally
shared memory. This occurs when the affected data is written
back to the memory or is accessed by another processor.
At the global memory, cache orders from all processors
are combined into one global memory order <m .

MEIXNER AND SORIN: DYNAMIC VERIFICATION OF MEMORY CONSISTENCY IN CACHE-COHERENT MULTITHREADED... 19

TABLE 1
PC

Fig. 1. Operation orderings in the system.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 18, 2009 at 10:48 from IEEE Xplore.  Restrictions apply.



Each of the three steps described above introduces
different error hazards, which can be dealt with efficiently
at the time that an operation takes the respective step. The
basic idea of the presented framework is to dynamically
verify an invariant for every step to guarantee that it is
done correctly and, thus, verify that the processing of the
operation as a whole is error free. The three invariants
(Uniprocessor Ordering, Allowable Reordering, and Cache
Coherence) described in the following are sufficient to
guarantee memory consistency defined as follows, which
we derive from [10] (we formally prove that the three
invariants ensure memory consistency in Appendix A.2):

Definiton 1. An execution is consistent with respect to a
consistency model with a given ordering table if there exists a
global order <m such that the following hold:

1. For X and Y of type OPx and OPy, it is true that if
X <p Y and there exists an ordering constraint
between OPx and OPy, then X <m Y.

2. A load Y receives the value from the most recent of all
stores that precede Y in either the global order <m or
program order <p .

Uniprocessor Ordering. On a single-threaded system, a
program expects that the value returned by a load is equal
to the value of the most recent store in program order to the
same memory location. In a multithreaded system, obeying
Uniprocessor Ordering means that every processor should
behave like a uniprocessor system, unless a shared memory
location is accessed by another processor.

Allowable Reordering. To improve the performance,
microprocessors often do not perform memory operations
in program order. The consistency model specifies which
reorderings between program order and the global order
are legal. For example, SPARC�s Total Store Order (TSO)
allows a load to be performed before a store to a different
address that precedes it in program order, although this
reordering would violate SC. In our framework, legal
reorderings are specified in the ordering table.

Cache Coherence. A memory system is coherent if all
processors observe the same history of values for a given
memory location. A coherent memory is the basis for all
shared-memory systems of which we are aware (including
those made by Intel, Sun, IBM, AMD, and HP), although
relaxed consistency models do not strictly require coherence.
Beyond coherence, DVMC requires that the memory
system observes the Single-Writer/Multiple-Reader (SWMR)
property. Although this requirement is stronger than coher-
ence, we consider it a part of the cache coherence invariant,
because virtually all coherence protocols use SWMR to ensure
coherence. We do not consider systems without coherent
memory or SWMR in this paper.

A system that dynamically verifies all three invariants
in the DVMC framework obeys the consistency model
specified in the ordering table, regardless of the mechanisms
used to verify each invariant. Our approach is conservative
in that these conditions are sufficient but not necessary
for memory consistency. General consistency verification
without the possibility of false positives is NP-hard [11]
and is therefore not feasible at runtime. DVMC�s goal is to
detect transient errors, from which we can recover with
backward error recovery. DVMC can also detect errors due
to design bugs and permanent faults, but for these errors,
forward progress cannot be guaranteed. Errors in the
checker hardware added by DVMC can lead to performance
penalties due to unnecessary recoveries after false positives
but do not compromise correctness.

4 IMPLEMENTATION OF DYNAMIC VERIFICATION OF
MEMORY CONSISTENCY

Based on the framework described in Section 3, we
added DVMC to a simulator of an aggressive out-of-order
implementation of the SPARC v9 architecture [35].
SPARC v9 poses a special challenge for consistency verifica-
tion, because it allows runtime switching between three
different consistency models: TSO, Partial Store Order (PSO),
and Relaxed Memory Order (RMO). TSO is a variant
of PC, a common class of consistency models that includes
Intel IA-32 (x86). TSO allows the processor to defer stores
and take them off the critical path. PSO is a SPARC-specific
consistency model that further relaxes TSO by allowing
reorderings between stores. RMO is a variant of Weak
Consistency that is similar to the consistency models for
PowerPC and Alpha. In RMO, no ordering of loads or stores
is enforced by the hardware, unless the software issues
special barrier instructions. This allows the processor to
nonspeculatively execute memory operations out of
order. DVMC enables switching between these models
by using three ordering tables (see Tables 2, 3, and 4).
Atomic read-modify-write operations (for example, swap)
must satisfy ordering requirements for both store and
load. SPARC v9 also features a flexible memory barrier
instruction (Membar) that allows for the exact specification
of operation order in a 4-bit mask. The bitmask contains 1 bit
for load-load (LL), load-store (LS), store-load (SL), and store-
store (SS) orderings. To incorporate such membars, Table 4�s
entries in the Membar rows and columns contain masks
instead of Boolean values. A Boolean value is obtained from
the mask by computing the logical AND between the mask in
the instruction and the mask in the table. If the result is
nonzero, ordering is required.

20 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2009

TABLE 2
TSO

TABLE 3
PSO

Stbar provides SS ordering and is equivalent to Membar #SS.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 18, 2009 at 10:48 from IEEE Xplore.  Restrictions apply.



We started with a baseline system that supports only
SC but obtains a high performance through load-order
speculation and prefetching for both loads and stores. We
then implemented the optimizations described in Table 5 to
take advantage of the relaxed consistency models. The
remainder of this section describes the three verification
mechanisms that were added to the system, as shown
in Fig. 2.

4.1 Uniprocessor Ordering Checker
Uniprocessor Ordering is trivially satisfied when all operations
execute sequentially in program order. Thus, Uniprocessor
Ordering can be dynamically verified by comparing all
load results obtained during the original out-of-order
execution to the load results obtained during a subsequent
sequential execution of the same program [9], [6], [3]. Because
instructions commit in program order, results of sequential
execution can be obtained by replaying all memory opera-
tions when they commit. Replay of memory accesses occurs
during the verification stage, which we add to the pipeline
before the retirement stage. During replay, stores are still
speculative and thus must not modify the architectural state.
Instead, they write to a dedicated verification cache (VC).
Replayed loads first access the VC and, on a miss, access the
highest level of the cache hierarchy (bypassing the write
buffer). The load value from the original execution resides in a
separate structure but could also reside in the register file. In
case of a mismatch between the replayed load value and the
original load value, a Uniprocessor Ordering violation is
signaled. Such a violation can be resolved by a simple
pipeline flush, because all operations are still speculative

prior to verification. Multiple operations can be replayed in
parallel, independent of register dependencies, as long as
they do not access the same address.

In consistency models that require loads to be ordered
(that is, loads appear to have executed only after all
older loads performed), the system speculatively reorders
loads and detects load-order misspeculations by tracking
writes to speculatively loaded addresses. This mechanism
allows stores from other processors to change any load
value until the load passes the verification stage, and
thus loads are considered to perform only after passing
verification. To prevent stalls in the verification stage, the
VC must be big enough to hold all stores that have been
verified but not yet performed.

In a model that allows loads to be reordered such as RMO,
no speculation occurs, and the value of a load cannot be
affected by any store after it passes the execution stage.
Therefore, a load is considered to perform after the execution
stage in these models, and replay strictly serves the purpose
of verifying Uniprocessor Ordering. Since load ordering does
not have to be enforced, load values can reside in the VC after
execution and be used during replay, as long as they are
correctly updated by local stores. This optimization, which
has been used in the dynamic verification of single-threaded
execution [8], prevents cache misses during verification and
reduces the pressure on the L1 cache.

4.2 Allowable Reordering Checker
DVMC verifies Allowable Reordering by checking all
reorderings between program order and the cache access

MEIXNER AND SORIN: DYNAMIC VERIFICATION OF MEMORY CONSISTENCY IN CACHE-COHERENT MULTITHREADED... 21

TABLE 4
RMO

#LL: LL ordering.
#LS: LS ordering.
#SL: SL ordering.
#SS: SS ordering.

TABLE 5
Implemented Optimizations

Fig. 2. Simplified pipeline for DVMC. A single node is shown. Several structures (memory, caches, etc.) were omitted for clarity.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 18, 2009 at 10:48 from IEEE Xplore.  Restrictions apply.



order (described in Section 3) against the restrictions
defined by the ordering table. The position in program
order is obtained by labeling every instruction X with a
sequence number seqX that is stored in the ROB during
decode. Since operations are decoded in program order,
seqX is equal to X�s rank in program order. The rank in the
perform order is implicitly known, because we verify
Allowable Reordering when an operation performs. The
Allowable Reordering checker uses the sequence numbers
to find reorderings and check them against the ordering
table. For this purpose, the checker maintains a counter
register for every operation type OPx (for example, load or
store) in the ordering table. This counter maxfOPxg
contains the greatest sequence number of an operation of
type OPx that has already performed. When operation X of
type OPx performs, the checker verifies that seqX >
maxfOPyg for all operation types OPy that have an
ordering relation OPx <c OPy according to the ordering
table. If all checks pass, the checker updates maxfOPxg.
Otherwise, an error has been detected.

It is crucial for the checker that all committed
operations perform eventually. The checker can detect
lost operations by checking outstanding operations of all
operation types OPx, with an ordering requirement
OPx <c OPy, when an operation Y of type OPy performs.
If an operation of type OPx older than Y is still
outstanding, it was lost, and an error is detected. In our
implementation, we check for outstanding operations
before Membar instructions by comparing the counters
of committed and performed memory accesses. To
prevent long error detection latencies, artificial Membars
are injected periodically. Membar injection does not affect
correctness and has a negligible performance impact, since
injections are infrequent (about one per 100,000 cycles).

The implementation of an Allowable Reordering checker
for SPARCv9 requires three small additions to support
architecture-specific features: the dynamic switching of
consistency models, a FIFO queue to maintain the perform
order of loads until verification, and the computation of
Membar ordering requirements from a bitmask, as
described earlier.

4.3 Cache Coherence Checker
The static verification of Cache Coherence is a well-studied
problem [23], [24], and more recently, methods have been

proposed for the dynamic verification of coherence [7], [31].
Any coherence verification mechanism that ensures
the SWMR principle such as the schemes proposed by
Cantin et al. [7] and Sorin et al. [31] is sufficient for DVMC.
We decided to use the coherence verification mechanism
introduced as part of DVSC [19], because it supports both
snooping and directory protocols and scales well to
larger systems.2

We construct the Cache Coherence checker around
the notion of an epoch. In Single-Reader/Multiple-Writer
protocols, for example, all variations of M(OE)SI protocols,
a processor has to obtain appropriate permissions before
reading from or writing to a cache block. It can later give up
permissions voluntarily in case of a cache eviction, or
permissions can be revoked to allow access by another
processor. An epoch for block b is a time interval during
which a processor has permission to read (Read-Only
epoch) or read and write (Read-Write epoch) block b.
The time base for epochs can be physical or logical, as long
as it guarantees causality. Three rules for determining
coherence violations were introduced and formally proven
to guarantee coherence [22]: 1) reads and writes are only
performed during appropriate epochs, 2) Read-Write
epochs do not overlap other epochs temporally, and 3) the
data value of a block at the beginning of every epoch is equal
to the data value at the end of the most recent Read-Write
epoch. Rules 1) and 2) enforce that the SWMR principle is
observed, whereas rule 3) ensures the correct propagation of
data modified by writes.

The Cache Coherence Checker dynamically verifies the
epoch invariants: epochs do not conflict (illustrated in
Fig. 3), and data is transferred correctly between epochs,
with two mechanisms. First, each cache controller maintains
a small amount of the epoch information state (the logical
time at start, the type of epoch, and block data) for each
block that it holds. For every load and store, it checks this
state, called the Cache Epoch Table (CET), to make sure that
the load or store is being performed in an appropriate epoch.

Second, whenever an epoch for a block ends at a cache,
the cache controller sends the block address and epoch
information�begin and end time, block data signature, and
epoch type (Read-Write or Read-Only)�in an Inform-Epoch

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 6, NO. 1, JANUARY-MARCH 2009

2. The rest of this section includes material from our previous work [19].

Fig. 3. Legal and illegal overlap of epochs. All epochs are for the same block.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 18, 2009 at 10:48 from IEEE Xplore.  Restrictions apply.




















