
ABSTRACT
Recently, several researchers have proposed schemes for low-cost,

low-power error detection in the processor core. In this work, we

demonstrate that one particular scheme, an enhanced implementa-

tion of the Argus framework called Argus-2, is a viable option for

industry adoption. Using an FPGA prototype, we experimentally

evaluate Argus-2’s ability to detect errors due to (a) all possible sin-

gle stuck-at faults in a given core and (b) a statistically significant

number of double stuck-at faults, including pairs of faults that are

randomly located and pairs that are spatially correlated on the chip.

Categories
C.4 [Performance of Systems] Fault tolerance

General Terms
Measurement, Reliability

Keywords
computer architecture, error detection, dynamic verification

1. INTRODUCTION

Fault tolerance is becoming increasingly desirable as CMOS

technology progresses to ever-smaller feature sizes and increasing

susceptibility to errors [2]. Recently, several researchers have pro-

posed schemes to address the need for low-cost, low-power error

detection in the processor core. Some notable schemes include

redundant multithreading [6], DIVA [1], and Argus [4]. Of these

schemes, Argus appears to be the most power-efficient, especially

for detecting errors in the simple, low-power cores that are

expected to dominate many-core processors. However, we are

unaware of any company moving to adopt any of these schemes,

despite their promise, and one factor in this reluctance is a lack of

conclusive experimental or analytical evidence that these low-cost

schemes provide sufficient error coverage. The goal of our work is

to conclusively demonstrate that one particular low-cost error

detection scheme, an enhanced implementation of the Argus frame-

work called Argus-2, is a viable option for industry adoption.

2. ARGUS

We first explain the Argus framework for detecting errors and

then describe the one particular implementation of the Argus frame-

work that we evaluate in this paper.

2.1 High-Level Overview of Argus
Argus is a framework for detecting errors within a processor

core by checking invariants at run-time. By checking invariants,

instead of checking components, implementations of Argus can be

significantly less costly than DMR. The key insight is that, at a high

level, a Von Neumann core performs only four activities: choosing

the sequence of instructions to execute (“control flow”), performing

the computation specified by each instruction (“computation”),

passing the result of each instruction to its data-dependent instruc-

tions (“dataflow”), and interacting with memory (“memory”). The

Argus framework consists of checking each of these four activities

at runtime. An implementation of Argus consists of four check-

ers—for control flow, dataflow, computation, and memory—and it

has been proven that a perfect implementation of Argus can detect

almost all possible processor errors. Implementations are likely to

be imperfect, however, due to cost/reliability tradeoffs. For exam-

ple, a checker that uses lossy signatures or checksums is imperfect,

yet may be an appropriate design decision due to its low cost.

Control Flow Checking. Control flow checkers [8] periodically

compare the static control flow graph of the program binary to the

dynamic control flow graph of the runtime execution. If the static

and dynamic control flow graphs differ, an error has been detected.

When used in isolation, a control flow checker detects errors in

fetch logic, branch destination computation, and PC update logic.

Dataflow Checking. A dataflow checker [5] compares the static

dataflow graph of the program binary to the dataflow graph recon-

structed at runtime. If they differ, an error has been detected. When

used in isolation, a dataflow checker detects errors in many activi-

ties, some of which only apply to superscalar processors; these

activities include fetch, decode, register rename, register read and

write, and instruction scheduling (reorder buffer, load-store queue,

reservation stations, etc.).

Computation Checking. There is a long history of research in

low-cost checkers for the functional units that perform the compu-

tations in processor cores. The key to these checkers is that it is fun-

damentally easier to check a computation than to perform it in the

first place. Sellers et al.’s book [7] on error detecting logic provides

an excellent survey of checkers for adders, multipliers, dividers,

bit-wise logic units, etc.

Memory Checking. The main error hazard in the memory is due to

data corruption. Error detecting codes (EDC) and error correcting

codes (ECC) are well-known, low-cost solutions for protecting the

integrity of caches and DRAM.
Copyright is held by the author/owner(s).

SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.

ACM 978-1-4503-0262-3/11/06.

An FPGA-Based Experimental Evaluation of

Microprocessor Core Error Detection with Argus-2

Patrick J. Eibl Albert Meixner Daniel J. Sorin

IBM NVIDIA Duke University

3039 E. Cornwallis Rd., Box 12195 2701 San Tomas Expy PO Box 90291

Building 062/J211, RTP, NC 27709 Santa Clara, CA 95050 Durham, NC 27708

patrickeibl@gmail.com albert.meixner@gmail.com sorin@ee.duke.edu

2.2 Argus-2 Implementation
Argus is a framework, and there are many implementations that

satisfy this framework. We started with the original Argus-1 imple-

mentation [4] and we created the Argus-2 implementation by

enhancing Argus-1 to reduce its implementation costs and to plug

numerous error detection holes that were revealed during prelimi-

nary experiments.

Both Argus-2 and Argus-1 are based on the same baseline core,

the OpenRISC 1200 core [3]. The OR1200 processor core is a 32-

bit scalar (1-wide), in-order RISC core with a 4-stage pipeline. This

core represents the low-end of the simple cores that are expected to

be used, perhaps in conjunction with a small number of superscalar

cores, in multicore chips. The Argus approach to error detection

applies to any Von Neumann core, not just the OR1200, but we

chose the OR1200 because it is representative of the simple, power-

efficient cores that are attractive for embedded applications and

many-core architectures.

3. EXPERIMENTAL METHODOLOGY

The primary purposes of the experimental evaluation are to

determine Argus-2’s ability to detect errors and its costs.

3.1 Experimental Testbed
We performed all of our experiments on Altera DE2 prototyping

boards that contain a Cyclone II FPGA. The primary advantage of

using the prototyping boards, rather than simulation, is speed.

3.2 Fault Model
Our fault model consists of single and double stuck-at faults, and

these faults can occur at the output of any gate in the circuit, includ-

ing Argus-2 logic itself. For single faults, we exhaustively explore

every possibility. For the double stuck-at faults, we sample from the

enormous space of all possible double faults so as to achieve 95%

confidence that our results are within a small percentage of the

exhaustive (un-sampled) results. We consider both random fault

locations and spatially correlated locations (i.e., the two faults are

spatially near each other).

3.3 Workload
Each experiment involves injecting of one or two faults from the

fault model described in Section 3.2 and then observing the behav-

ior of the system while the processor runs a given software work-

load. The workload that we have chosen is the decoding of jpeg

images. The benchmark runs for a significant amount of time (2.4

seconds) on real hardware, which is enough time to decode two

images and execute approximately 60 million instructions.

4. EXPERIMENTAL RESULTS

We evaluated error detection coverage, area, and performance.

Error Detection Coverage. Of all possible single stuck-at faults,

only 0.013% of them lead to errors that are both unmasked and

undetected by Argus-2 (i.e., silent data corruptions or SDCs). Fur-

thermore, for our large sample of double stuck-at faults, fewer than

0.023% of them lead to SDCs. Among the double stuck-at faults,

the spatially correlated fault pairs were slightly less likely to lead to

SDCs. These small fractions of SDCs show that Argus-2 is a viable

option for industry. Figure 1 shows results for single and double

stuck-at-one faults. The large fraction of faults that are masked (i.e.,

have no impact on application behavior) are primarily due to faults

in components that are either never or rarely used (e.g., multiply-

accumulate unit) and faults in Argus-2’s hardware.

Area Overhead. The hardware for Argus-2 consumes some

amount of chip area. Our results show that Argus-2’s core overhead

(not including the caches) is 12.2%, and its total chip area overhead

(with the caches) is 3.7%. These results confirm that Argus-2’s

overhead is far less than DMR.

Performance. Argus’s performance impact is due to the NOP

instructions it adds into the binary for purposes of checking control

flow and dataflow. Argus-2 adds, on average, 7% to the static

instruction count and 3.5% to the dynamic instruction count. The

increase in dynamic instruction count has a performance overhead

that averages less than 4%.

5. CONCLUSIONS

We conclude that Argus-2 is ready to be adopted by industry. An

extremely small fraction of single and double faults cause silent

data corruptions, which we believe is sufficient for the vast majority

of commodity processors. Argus-2 is the first approach to provide

complete coverage of permanent and transient faults at low cost,

even for simple cores.

6. ACKNOWLEDGMENTS

This material is based on work supported by the National Sci-

ence Foundation under grant CCR-044516.

REFERENCES
[1] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design. In Proc. 32nd Annual IEEE/ACM

Int’l Symposium on Microarchitecture, Nov. 1999.

[2] International Technology Roadmap for Semiconductors, 2007.

[3] D. Lampret. OpenRISC 1200 IP Core Specification, Rev. 0.7.

http://www.opencores.org, Sept. 2001.

[4] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores. In Proc. of

the 40th Annual Int’l Symp. on Microarchitecture, Dec. 2007.

[5] A. Meixner and D. J. Sorin. Error Detection Using Dynamic

Dataflow Verification. In Proc. of the Int’l Conf. on Parallel

Architectures and Compilation Techniques, Sept. 2007.

[6] E. Rotenberg. AR-SMT: A Microarchitectural Approach to

Fault Tolerance in Microprocessors. In Proc. of the 29th Int’l

Symposium on Fault-Tolerant Computing Systems, June 1999.

[7] F. F. Sellers, M.-Y. Hsiao, and L. W. Bearnson. Error

Detecting Logic for Digital Computers. McGraw Hill Book

Company, 1968.

[8] N. J. Warter and W.-M. W. Hwu. A Software Based Approach

to Achieving Optimal Performance for Signature Control Flow

Checking. In Proc. of the 20th Int’l Symposium on Fault-

Tolerant Computing Systems, June 1990.

Figure 1. Error detection results

